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Floquet Hamiltonian: exists, but not easy to compute and not short-ranged in 
generic interacting systems
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Integrable systems: heating/non-heating depending 
on initial state, integrals of motion, drive …



This talk: Case study of driven integrable system 

heating and non-heating phases🥶  🤒 



This talk: Case study of driven integrable system 

heating and non-heating phases🥶  🤒 

interacting particles👯



This talk: Case study of driven integrable system 

heating and non-heating phases🥶  🤒 

interacting particles👯

analytically exact calculation of floquet Hamiltonian and time evolution⏱



This talk: Case study of driven integrable system 

heating and non-heating phases🥶  🤒 

interacting particles👯

analytically exact calculation of floquet Hamiltonian and time evolution⏱

spatially structured heating phase🌗



This talk: Case study of driven integrable system 

heating and non-heating phases🥶  🤒 

interacting particles👯

analytically exact calculation of floquet Hamiltonian and time evolution⏱

spatially structured heating phase🌗

interpretation in terms of quasiparticle propagation🏄



How does a driven system heat up?

Quantum critical systems in 1D

   - scale invariant low energy theory  

   - conformal field theory

phys.org

http://phys.org
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Closed sub-algebra
rotations, 

dilations, 

translations, 

special conformal trans

 Generators of global conformal group

L→ L

time translation                    dilation in z plane

Radial quantization

H0 =
2⇡

L
(L0 + L̄0)CFT Hamiltonian
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CFT Hamiltonian
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that the associated Hawking temperature of the black
holes serves as de facto order parameter which delineates
heating and non-heating phases. The non-heating phase
manifests a pseudo-periodicity both in the propagation
of excitations as well as energy density.

Floquet-SSD Dynamics — Consider a general inhomo-
geneous Hamiltonian on a chain of size L obtained by
deforming a uniform (1 + 1)-dimensional CFT:

H =

Z
L

0

dxf(x)T00(x). (1)

We denote by H0 the homogeneous CFT where f ⌘ 1,
with energy density T00, and by HSSD the SSD theory
where f(x) = 2 sin2(⇡x

L
). We consider a two-step drive

protocol, where HF(t) alternates between HSSD (dura-
tion T1) and H0 (duration T0) as depicted in Fig. 1(a,b).
The uniform theoryH0 typically describes the low-energy
behavior of a quantum chain at criticality and is charac-
terized by a central charge c.

The lattice counterpart we explicitly consider is the
XXZ spin- 1

2
chain,

H = J

L�1X

j=1

fj

⇣
S
x

j
S
x

j+1
+ S

y

j
S
y

j+1
+�S

z

j
S
z

j+1

⌘
, (2)

The Floquet drive HF(t) alternates between the the uni-
form case, H0 with fj ⌘ 1 and the SSD HSSD where
fj = 2 sin2(⇡j

L
). For fj ⌘ 1 and |�|  1, the spin chain

is critical and the low energy theory is a Luttinger liq-
uid described by a compactified free boson with c = 1.
In what follows, we will demonstrate that the general
non-equilibrium exactly solvable CFT-dynamics of HF(t)
precisely captures the main features of the driven XXZ
model HF(t) that we study numerically.

To probe the dynamics we focus on the unequal
time two-point function of the driven CFT HF(t),
h�(x, t)�(x0, 0)i, where � is any primary field (with con-
formal weight h) of the uniform theory H0 [11]. Though
the full time evolution including micromotion can be eval-
uated, we focus on the stroboscopic evolution, where
t = n(T0 + T1), n 2 N. As boundary conditions do
not qualitatively a↵ect the ensuing results, we use pe-
riodic boundary conditions for computational simplic-
ity. Expectation values are computed in the ground
state |0i of the uniform theory. In terms of the Vira-
soro generators Ln and Ln, in the Euclidean framework
with imaginary time ⌧ , H0 = L0 + L0, and crucially,
HSSD = L0 � 1

2
(L1 + L�1) + L0 � 1

2
(L1 + L�1). Such

a Hamiltonian is equivalent to a uniform H0 up to an
asymptotic SL(2,R) transformation [4, 12, 13]. Con-
sequently, time evolution e�⌧HSSD is a simple dilation
up to a coordinate change. Mapping the coordinates
w = ⌧ +ix on the cylinder to the complex plane spanned
by z = e2⇡w/L, the CFT calculation yields, after analytic
continuation to real time (see Supplemental Material for

FIG. 2. CFT two-point function |h�(x, t)�(x0, 0)i| for the
Floquet drive (L = 80, x0 = 31, colorbars in log scale).
(a) Heating phase (T0 = T1 = 34). The excitations are
attracted by two black hole singularities at xc and L � xc.
(b) Non-heating phase (T0 = T1 = 25). The dynamics is
pseudo-periodic. In both cases, the dashed curves are the
null-geodesics of the curved stationary metric.

details [16])

h�(x, t)�(x0, 0)i =
⇣2⇡

L

⌘4 @z̃n
@z

@ ¯̃zn
@z̄

�h
h�(z̃n, ¯̃zn)�(z̃0, ¯̃z0)i,

(3)
where the two-point function on the right hand side corre-
sponds to the one evaluated in the uniform CFT, namely
h�(z̃n, ¯̃zn)�(z̃0, ¯̃z0)i = (z̃n� z̃0)�2h(¯̃zn� ¯̃z0)�2h. Remark-
ably, the nontrivial Floquet dynamics is fully encoded
in the change of variables, which is essentially a Möbius
transformation [5]

z̃n =
(�1 � ⌘

n
�2)z + (⌘n � 1)�1�2

(1� ⌘n)z + �1⌘
n � �2

(4)

where n is the number of drive cycles, ⌘, �1, �2 are com-
plex parameters that depend on T0

L
and T1

L
[16]. This

result is valid for a generic CFT. The central charge en-
ters only via the conformal dimensions of the operators
in the correlation function. Moreover, although Eq. (3)
captures the stroboscopic dynamics of HF(t), it is well
defined not only at discrete, but all continuous times – a
fact that we will exploit below [16]. We now discuss the
two distinct regimes of behavior classified by the param-
eter ⌘: (i) heating phase for ⌘ 2 R

+ (ii) a non-heating
phase with ⌘ 2 C, |⌘| = 1, with ⌘ = 1 signalling the
transition between the two. The corresponding phase di-
agram is given in Fig. 1 (c).
Heating phase. — In this regime, ⌘ 2 R

+, in which case
z̃n ! �1 or �2 as n ! 1 (depending on the sign of ⌘�1).
A typical two-point function is plotted in Fig. 2 (a). Af-
ter an initial transient regime during which excitations
move quasi-ballistically but start to lose their coherence,
the correlation function tends to aggregate at two spa-
tial locations: xc and L � xc, independent of the initial
condition x0. Furthermore, the magnitude of the two
point function grows with time indicating that the ex-
citations accumulate indefinitely at the two ‘horizons’.

Hamiltonian:
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transformation [5]

z̃n =
(�1 � ⌘

n
�2)z + (⌘n � 1)�1�2

(1� ⌘n)z + �1⌘
n � �2

(4)

where n is the number of drive cycles, ⌘, �1, �2 are com-
plex parameters that depend on T0

L
and T1

L
[16]. This

result is valid for a generic CFT. The central charge en-
ters only via the conformal dimensions of the operators
in the correlation function. Moreover, although Eq. (3)
captures the stroboscopic dynamics of HF(t), it is well
defined not only at discrete, but all continuous times – a
fact that we will exploit below [16]. We now discuss the
two distinct regimes of behavior classified by the param-
eter ⌘: (i) heating phase for ⌘ 2 R

+ (ii) a non-heating
phase with ⌘ 2 C, |⌘| = 1, with ⌘ = 1 signalling the
transition between the two. The corresponding phase di-
agram is given in Fig. 1 (c).
Heating phase. — In this regime, ⌘ 2 R

+, in which case
z̃n ! �1 or �2 as n ! 1 (depending on the sign of ⌘�1).
A typical two-point function is plotted in Fig. 2 (a). Af-
ter an initial transient regime during which excitations
move quasi-ballistically but start to lose their coherence,
the correlation function tends to aggregate at two spa-
tial locations: xc and L � xc, independent of the initial
condition x0. Furthermore, the magnitude of the two
point function grows with time indicating that the ex-
citations accumulate indefinitely at the two ‘horizons’.

H0 =
2⇡

L
(L0 + L̄0)

6

SUPPLEMENTARY MATERIAL

Dynamical Two-point function

In this section we compute the dynamical two-point function defined as F (x, t;x0, 0) ⌘ h�(x, t)�(x0, 0)i corresponding
to a primary field � of conformal dimension h. The time evolution of the primary is governed by the Floquet
Hamiltonian HF(t) defined in the main text. We closely follow the strategy employed in [5] wherein the time evolution
of the entanglement entropy for a system driven by HF(t) was computed. Within this setup, we work in imaginary
time ⌧ , and introduce Euclidean coordinates ! = ⌧ + ix. Before getting to the computation for an n-cycle drive, we
describe the 1-cycle drive as a warm-up. The two- point function is

F (x, ⌧ ;x0, 0) = he⌧1HSSDe⌧0H0�(!1, !̄1)e
�⌧0H0e�⌧1HSSD�(!0, !̄0)i, (S1)

where !1 = 0 + ix, !0 = 0 + ix0 and ⌧ = ⌧0 + ⌧1. HSSD and H0 are the SSD and uniform Hamiltonian described in
the main text. Next, under the conformal mapping z = exp

�
2⇡!

L

 
, the two-point function transforms as

F (x, ⌧ ;x0, 0) =

✓
2⇡

L

◆4h

he⌧1HSSDe⌧0H0�(z1, z̄1)e
�⌧0H0e�⌧1HSSD�(z0, z̄0)i. (S2)

To compute the time evolution with HSSD in the complex plane, we introduce the so-called Möbius Hamiltonian [28]

HMöb(✓) = L0 �
tanh(2✓)

2
(L1 + L�1) + L0 �

tanh(2✓)

2
(L1 + L�1), (S3)

defined for ✓ 2 R
+. Interestingly, there exists an SL(2,R) transformation mapping the Möbius Hamiltonian to a

uniform Hamiltonian. Such mapping is explicitly given by

ẑ = f(z) =
� cosh(✓)z + sinh(✓)

sinh(✓)z � cosh(✓)
. (S4)

In the ẑ-coordinates, HMöb(✓) / 2⇡

L cosh(2✓)
(L0 + L0). Thus the time evolution with HMöb(✓) for a time ⌧ in the ẑ-

coordinates is a simple dilation by a factor � = exp
�

2⇡⌧

L cosh 2✓

 
. Then going back to the original coordinates, the whole

time evolution with HMöb(✓) amounts to a simple change of coordinates z
new

✓
(z) = f

�1 (�f(z)) (in the following of
the text we often leave the z dependence of the conformal mappings implicit):

z
new

✓
(z) =

[(1� �) cosh(2✓)� (�+ 1)] z + (�� 1) sinh(2✓)

(1� �) sinh(2✓)z + [(�� 1) cosh(2✓)� (�+ 1)]
. (S5)

The Hamiltonian H0 and HSSD can be seen as two di↵erent limits of the interpolating Hamiltomian HMöb(✓). Indeed,
H0 = HMöb(0) and HSSD = HMöb(✓!1). From this observation, it may be deduced that one can first evaluate
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By looking at the expression for znew
✓

(z) in equation (S5), we get znew
✓=0

(z) = �z, which is a dilatation in the z plane,
as expected for the uniform Hamiltonian H0. Next, we need to evaluate
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Hence, z̃1 is once again related to z by a Möbius transformation, as expected because it is the obtained via a composi-
tion of two (invertible) Möbius transformations. Consequently the time evolution e⌧1HSSDe⌧0H0�(z, z̄)e�⌧0H0e�⌧1HSSD

for a 1-cycle drive of any primary field of a CFT can be reduced to a normalized Möbius transformation
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, (S9)

in particular

6

SUPPLEMENTARY MATERIAL

Dynamical Two-point function

In this section we compute the dynamical two-point function defined as F (x, t;x0, 0) ⌘ h�(x, t)�(x0, 0)i corresponding
to a primary field � of conformal dimension h. The time evolution of the primary is governed by the Floquet
Hamiltonian HF(t) defined in the main text. We closely follow the strategy employed in [5] wherein the time evolution
of the entanglement entropy for a system driven by HF(t) was computed. Within this setup, we work in imaginary
time ⌧ , and introduce Euclidean coordinates ! = ⌧ + ix. Before getting to the computation for an n-cycle drive, we
describe the 1-cycle drive as a warm-up. The two- point function is
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To compute the time evolution with HSSD in the complex plane, we introduce the so-called Möbius Hamiltonian [28]
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defined for ✓ 2 R
+. Interestingly, there exists an SL(2,R) transformation mapping the Möbius Hamiltonian to a

uniform Hamiltonian. Such mapping is explicitly given by
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The Hamiltonian H0 and HSSD can be seen as two di↵erent limits of the interpolating Hamiltomian HMöb(✓). Indeed,
H0 = HMöb(0) and HSSD = HMöb(✓!1). From this observation, it may be deduced that one can first evaluate
e
⌧0H0�(!, !̄)e�⌧0H0 by applying the method in the case ✓ = 0.
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By looking at the expression for znew
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(z) in equation (S5), we get znew
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(z) = �z, which is a dilatation in the z plane,
as expected for the uniform Hamiltonian H0. Next, we need to evaluate
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Hence, z̃1 is once again related to z by a Möbius transformation, as expected because it is the obtained via a composi-
tion of two (invertible) Möbius transformations. Consequently the time evolution e⌧1HSSDe⌧0H0�(z, z̄)e�⌧0H0e�⌧1HSSD

for a 1-cycle drive of any primary field of a CFT can be reduced to a normalized Möbius transformation
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time evolution with HMöb(✓) amounts to a simple change of coordinates z
new

✓
(z) = f

�1 (�f(z)) (in the following of
the text we often leave the z dependence of the conformal mappings implicit):

z
new

✓
(z) =

[(1� �) cosh(2✓)� (�+ 1)] z + (�� 1) sinh(2✓)

(1� �) sinh(2✓)z + [(�� 1) cosh(2✓)� (�+ 1)]
. (S5)

The Hamiltonian H0 and HSSD can be seen as two di↵erent limits of the interpolating Hamiltomian HMöb(✓). Indeed,
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tion of two (invertible) Möbius transformations. Consequently the time evolution e⌧1HSSDe⌧0H0�(z, z̄)e�⌧0H0e�⌧1HSSD

for a 1-cycle drive of any primary field of a CFT can be reduced to a normalized Möbius transformation
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2

that the associated Hawking temperature of the black
holes serves as de facto order parameter which delineates
heating and non-heating phases. The non-heating phase
manifests a pseudo-periodicity both in the propagation
of excitations as well as energy density.

Floquet-SSD Dynamics — Consider a general inhomo-
geneous Hamiltonian on a chain of size L obtained by
deforming a uniform (1 + 1)-dimensional CFT:

H =

Z
L

0

dxf(x)T00(x). (1)

We denote by H0 the homogeneous CFT where f ⌘ 1,
with energy density T00, and by HSSD the SSD theory
where f(x) = 2 sin2(⇡x

L
). We consider a two-step drive

protocol, where HF(t) alternates between HSSD (dura-
tion T1) and H0 (duration T0) as depicted in Fig. 1(a,b).
The uniform theoryH0 typically describes the low-energy
behavior of a quantum chain at criticality and is charac-
terized by a central charge c.

The lattice counterpart we explicitly consider is the
XXZ spin- 1

2
chain,

H = J

L�1X

j=1

fj

⇣
S
x

j
S
x

j+1
+ S

y

j
S
y

j+1
+�S

z

j
S
z

j+1

⌘
, (2)

The Floquet drive HF(t) alternates between the the uni-
form case, H0 with fj ⌘ 1 and the SSD HSSD where
fj = 2 sin2(⇡j

L
). For fj ⌘ 1 and |�|  1, the spin chain

is critical and the low energy theory is a Luttinger liq-
uid described by a compactified free boson with c = 1.
In what follows, we will demonstrate that the general
non-equilibrium exactly solvable CFT-dynamics of HF(t)
precisely captures the main features of the driven XXZ
model HF(t) that we study numerically.

To probe the dynamics we focus on the unequal
time two-point function of the driven CFT HF(t),
h�(x, t)�(x0, 0)i, where � is any primary field (with con-
formal weight h) of the uniform theory H0 [11]. Though
the full time evolution including micromotion can be eval-
uated, we focus on the stroboscopic evolution, where
t = n(T0 + T1), n 2 N. As boundary conditions do
not qualitatively a↵ect the ensuing results, we use pe-
riodic boundary conditions for computational simplic-
ity. Expectation values are computed in the ground
state |0i of the uniform theory. In terms of the Vira-
soro generators Ln and Ln, in the Euclidean framework
with imaginary time ⌧ , H0 = L0 + L0, and crucially,
HSSD = L0 � 1

2
(L1 + L�1) + L0 � 1

2
(L1 + L�1). Such

a Hamiltonian is equivalent to a uniform H0 up to an
asymptotic SL(2,R) transformation [4, 12, 13]. Con-
sequently, time evolution e�⌧HSSD is a simple dilation
up to a coordinate change. Mapping the coordinates
w = ⌧ +ix on the cylinder to the complex plane spanned
by z = e2⇡w/L, the CFT calculation yields, after analytic
continuation to real time (see Supplemental Material for

FIG. 2. CFT two-point function |h�(x, t)�(x0, 0)i| for the
Floquet drive (L = 80, x0 = 31, colorbars in log scale).
(a) Heating phase (T0 = T1 = 34). The excitations are
attracted by two black hole singularities at xc and L � xc.
(b) Non-heating phase (T0 = T1 = 25). The dynamics is
pseudo-periodic. In both cases, the dashed curves are the
null-geodesics of the curved stationary metric.

details [16])

h�(x, t)�(x0, 0)i =
⇣2⇡

L

⌘4 @z̃n
@z

@ ¯̃zn
@z̄

�h
h�(z̃n, ¯̃zn)�(z̃0, ¯̃z0)i,

(3)
where the two-point function on the right hand side corre-
sponds to the one evaluated in the uniform CFT, namely
h�(z̃n, ¯̃zn)�(z̃0, ¯̃z0)i = (z̃n� z̃0)�2h(¯̃zn� ¯̃z0)�2h. Remark-
ably, the nontrivial Floquet dynamics is fully encoded
in the change of variables, which is essentially a Möbius
transformation [5]

z̃n =
(�1 � ⌘

n
�2)z + (⌘n � 1)�1�2

(1� ⌘n)z + �1⌘
n � �2

(4)

where n is the number of drive cycles, ⌘, �1, �2 are com-
plex parameters that depend on T0

L
and T1

L
[16]. This

result is valid for a generic CFT. The central charge en-
ters only via the conformal dimensions of the operators
in the correlation function. Moreover, although Eq. (3)
captures the stroboscopic dynamics of HF(t), it is well
defined not only at discrete, but all continuous times – a
fact that we will exploit below [16]. We now discuss the
two distinct regimes of behavior classified by the param-
eter ⌘: (i) heating phase for ⌘ 2 R

+ (ii) a non-heating
phase with ⌘ 2 C, |⌘| = 1, with ⌘ = 1 signalling the
transition between the two. The corresponding phase di-
agram is given in Fig. 1 (c).
Heating phase. — In this regime, ⌘ 2 R

+, in which case
z̃n ! �1 or �2 as n ! 1 (depending on the sign of ⌘�1).
A typical two-point function is plotted in Fig. 2 (a). Af-
ter an initial transient regime during which excitations
move quasi-ballistically but start to lose their coherence,
the correlation function tends to aggregate at two spa-
tial locations: xc and L � xc, independent of the initial
condition x0. Furthermore, the magnitude of the two
point function grows with time indicating that the ex-
citations accumulate indefinitely at the two ‘horizons’.

H0 =
2⇡

L
(L0 + L̄0)

interpolation
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SUPPLEMENTARY MATERIAL

Dynamical Two-point function

In this section we compute the dynamical two-point function defined as F (x, t;x0, 0) ⌘ h�(x, t)�(x0, 0)i corresponding
to a primary field � of conformal dimension h. The time evolution of the primary is governed by the Floquet
Hamiltonian HF(t) defined in the main text. We closely follow the strategy employed in [5] wherein the time evolution
of the entanglement entropy for a system driven by HF(t) was computed. Within this setup, we work in imaginary
time ⌧ , and introduce Euclidean coordinates ! = ⌧ + ix. Before getting to the computation for an n-cycle drive, we
describe the 1-cycle drive as a warm-up. The two- point function is

F (x, ⌧ ;x0, 0) = he⌧1HSSDe⌧0H0�(!1, !̄1)e
�⌧0H0e�⌧1HSSD�(!0, !̄0)i, (S1)

where !1 = 0 + ix, !0 = 0 + ix0 and ⌧ = ⌧0 + ⌧1. HSSD and H0 are the SSD and uniform Hamiltonian described in
the main text. Next, under the conformal mapping z = exp
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, the two-point function transforms as
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To compute the time evolution with HSSD in the complex plane, we introduce the so-called Möbius Hamiltonian [28]

HMöb(✓) = L0 �
tanh(2✓)

2
(L1 + L�1) + L0 �

tanh(2✓)

2
(L1 + L�1), (S3)

defined for ✓ 2 R
+. Interestingly, there exists an SL(2,R) transformation mapping the Möbius Hamiltonian to a

uniform Hamiltonian. Such mapping is explicitly given by

ẑ = f(z) =
� cosh(✓)z + sinh(✓)

sinh(✓)z � cosh(✓)
. (S4)

In the ẑ-coordinates, HMöb(✓) / 2⇡
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(L0 + L0). Thus the time evolution with HMöb(✓) for a time ⌧ in the ẑ-

coordinates is a simple dilation by a factor � = exp
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. Then going back to the original coordinates, the whole

time evolution with HMöb(✓) amounts to a simple change of coordinates z
new
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(z) = f

�1 (�f(z)) (in the following of
the text we often leave the z dependence of the conformal mappings implicit):

z
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The Hamiltonian H0 and HSSD can be seen as two di↵erent limits of the interpolating Hamiltomian HMöb(✓). Indeed,
H0 = HMöb(0) and HSSD = HMöb(✓!1). From this observation, it may be deduced that one can first evaluate
e
⌧0H0�(!, !̄)e�⌧0H0 by applying the method in the case ✓ = 0.
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By looking at the expression for znew
✓

(z) in equation (S5), we get znew
✓=0

(z) = �z, which is a dilatation in the z plane,
as expected for the uniform Hamiltonian H0. Next, we need to evaluate

e⌧1HSSD(e⌧0H0�(z1, z̄1)e
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which can be obtained by using expression of znew
✓

in the limit ✓ ! 1. This just amounts to going to the coordinates
z̃1, defined as
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Hence, z̃1 is once again related to z by a Möbius transformation, as expected because it is the obtained via a composi-
tion of two (invertible) Möbius transformations. Consequently the time evolution e⌧1HSSDe⌧0H0�(z, z̄)e�⌧0H0e�⌧1HSSD

for a 1-cycle drive of any primary field of a CFT can be reduced to a normalized Möbius transformation

z̃1 =
az + b

cz + d
, (S9)

in    coordinates z
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the text we often leave the z dependence of the conformal mappings implicit):
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The Hamiltonian H0 and HSSD can be seen as two di↵erent limits of the interpolating Hamiltomian HMöb(✓). Indeed,
H0 = HMöb(0) and HSSD = HMöb(✓!1). From this observation, it may be deduced that one can first evaluate
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By looking at the expression for znew
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(z) in equation (S5), we get znew
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(z) = �z, which is a dilatation in the z plane,
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Hence, z̃1 is once again related to z by a Möbius transformation, as expected because it is the obtained via a composi-
tion of two (invertible) Möbius transformations. Consequently the time evolution e⌧1HSSDe⌧0H0�(z, z̄)e�⌧0H0e�⌧1HSSD

for a 1-cycle drive of any primary field of a CFT can be reduced to a normalized Möbius transformation
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, (S9)
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uniform Hamiltonian. Such mapping is explicitly given by
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By looking at the expression for znew
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(z) in equation (S5), we get znew
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(z) = �z, which is a dilatation in the z plane,
as expected for the uniform Hamiltonian H0. Next, we need to evaluate
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Hence, z̃1 is once again related to z by a Möbius transformation, as expected because it is the obtained via a composi-
tion of two (invertible) Möbius transformations. Consequently the time evolution e⌧1HSSDe⌧0H0�(z, z̄)e�⌧0H0e�⌧1HSSD

for a 1-cycle drive of any primary field of a CFT can be reduced to a normalized Möbius transformation
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Sine-square deformation and Möbius transformation
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that the associated Hawking temperature of the black
holes serves as de facto order parameter which delineates
heating and non-heating phases. The non-heating phase
manifests a pseudo-periodicity both in the propagation
of excitations as well as energy density.

Floquet-SSD Dynamics — Consider a general inhomo-
geneous Hamiltonian on a chain of size L obtained by
deforming a uniform (1 + 1)-dimensional CFT:

H =

Z
L

0

dxf(x)T00(x). (1)

We denote by H0 the homogeneous CFT where f ⌘ 1,
with energy density T00, and by HSSD the SSD theory
where f(x) = 2 sin2(⇡x

L
). We consider a two-step drive

protocol, where HF(t) alternates between HSSD (dura-
tion T1) and H0 (duration T0) as depicted in Fig. 1(a,b).
The uniform theoryH0 typically describes the low-energy
behavior of a quantum chain at criticality and is charac-
terized by a central charge c.

The lattice counterpart we explicitly consider is the
XXZ spin- 1

2
chain,

H = J

L�1X

j=1

fj

⇣
S
x

j
S
x

j+1
+ S

y

j
S
y

j+1
+�S

z

j
S
z

j+1

⌘
, (2)

The Floquet drive HF(t) alternates between the the uni-
form case, H0 with fj ⌘ 1 and the SSD HSSD where
fj = 2 sin2(⇡j

L
). For fj ⌘ 1 and |�|  1, the spin chain

is critical and the low energy theory is a Luttinger liq-
uid described by a compactified free boson with c = 1.
In what follows, we will demonstrate that the general
non-equilibrium exactly solvable CFT-dynamics of HF(t)
precisely captures the main features of the driven XXZ
model HF(t) that we study numerically.

To probe the dynamics we focus on the unequal
time two-point function of the driven CFT HF(t),
h�(x, t)�(x0, 0)i, where � is any primary field (with con-
formal weight h) of the uniform theory H0 [11]. Though
the full time evolution including micromotion can be eval-
uated, we focus on the stroboscopic evolution, where
t = n(T0 + T1), n 2 N. As boundary conditions do
not qualitatively a↵ect the ensuing results, we use pe-
riodic boundary conditions for computational simplic-
ity. Expectation values are computed in the ground
state |0i of the uniform theory. In terms of the Vira-
soro generators Ln and Ln, in the Euclidean framework
with imaginary time ⌧ , H0 = L0 + L0, and crucially,
HSSD = L0 � 1

2
(L1 + L�1) + L0 � 1

2
(L1 + L�1). Such

a Hamiltonian is equivalent to a uniform H0 up to an
asymptotic SL(2,R) transformation [4, 12, 13]. Con-
sequently, time evolution e�⌧HSSD is a simple dilation
up to a coordinate change. Mapping the coordinates
w = ⌧ +ix on the cylinder to the complex plane spanned
by z = e2⇡w/L, the CFT calculation yields, after analytic
continuation to real time (see Supplemental Material for

FIG. 2. CFT two-point function |h�(x, t)�(x0, 0)i| for the
Floquet drive (L = 80, x0 = 31, colorbars in log scale).
(a) Heating phase (T0 = T1 = 34). The excitations are
attracted by two black hole singularities at xc and L � xc.
(b) Non-heating phase (T0 = T1 = 25). The dynamics is
pseudo-periodic. In both cases, the dashed curves are the
null-geodesics of the curved stationary metric.

details [16])

h�(x, t)�(x0, 0)i =
⇣2⇡

L

⌘4 @z̃n
@z

@ ¯̃zn
@z̄

�h
h�(z̃n, ¯̃zn)�(z̃0, ¯̃z0)i,

(3)
where the two-point function on the right hand side corre-
sponds to the one evaluated in the uniform CFT, namely
h�(z̃n, ¯̃zn)�(z̃0, ¯̃z0)i = (z̃n� z̃0)�2h(¯̃zn� ¯̃z0)�2h. Remark-
ably, the nontrivial Floquet dynamics is fully encoded
in the change of variables, which is essentially a Möbius
transformation [5]

z̃n =
(�1 � ⌘

n
�2)z + (⌘n � 1)�1�2

(1� ⌘n)z + �1⌘
n � �2

(4)

where n is the number of drive cycles, ⌘, �1, �2 are com-
plex parameters that depend on T0

L
and T1

L
[16]. This

result is valid for a generic CFT. The central charge en-
ters only via the conformal dimensions of the operators
in the correlation function. Moreover, although Eq. (3)
captures the stroboscopic dynamics of HF(t), it is well
defined not only at discrete, but all continuous times – a
fact that we will exploit below [16]. We now discuss the
two distinct regimes of behavior classified by the param-
eter ⌘: (i) heating phase for ⌘ 2 R

+ (ii) a non-heating
phase with ⌘ 2 C, |⌘| = 1, with ⌘ = 1 signalling the
transition between the two. The corresponding phase di-
agram is given in Fig. 1 (c).
Heating phase. — In this regime, ⌘ 2 R

+, in which case
z̃n ! �1 or �2 as n ! 1 (depending on the sign of ⌘�1).
A typical two-point function is plotted in Fig. 2 (a). Af-
ter an initial transient regime during which excitations
move quasi-ballistically but start to lose their coherence,
the correlation function tends to aggregate at two spa-
tial locations: xc and L � xc, independent of the initial
condition x0. Furthermore, the magnitude of the two
point function grows with time indicating that the ex-
citations accumulate indefinitely at the two ‘horizons’.

H0 =
2⇡

L
(L0 + L̄0)

interpolation
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Dynamical Two-point function

In this section we compute the dynamical two-point function defined as F (x, t;x0, 0) ⌘ h�(x, t)�(x0, 0)i corresponding
to a primary field � of conformal dimension h. The time evolution of the primary is governed by the Floquet
Hamiltonian HF(t) defined in the main text. We closely follow the strategy employed in [5] wherein the time evolution
of the entanglement entropy for a system driven by HF(t) was computed. Within this setup, we work in imaginary
time ⌧ , and introduce Euclidean coordinates ! = ⌧ + ix. Before getting to the computation for an n-cycle drive, we
describe the 1-cycle drive as a warm-up. The two- point function is

F (x, ⌧ ;x0, 0) = he⌧1HSSDe⌧0H0�(!1, !̄1)e
�⌧0H0e�⌧1HSSD�(!0, !̄0)i, (S1)

where !1 = 0 + ix, !0 = 0 + ix0 and ⌧ = ⌧0 + ⌧1. HSSD and H0 are the SSD and uniform Hamiltonian described in
the main text. Next, under the conformal mapping z = exp

�
2⇡!
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, the two-point function transforms as

F (x, ⌧ ;x0, 0) =

✓
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◆4h

he⌧1HSSDe⌧0H0�(z1, z̄1)e
�⌧0H0e�⌧1HSSD�(z0, z̄0)i. (S2)

To compute the time evolution with HSSD in the complex plane, we introduce the so-called Möbius Hamiltonian [28]

HMöb(✓) = L0 �
tanh(2✓)

2
(L1 + L�1) + L0 �

tanh(2✓)

2
(L1 + L�1), (S3)

defined for ✓ 2 R
+. Interestingly, there exists an SL(2,R) transformation mapping the Möbius Hamiltonian to a

uniform Hamiltonian. Such mapping is explicitly given by

ẑ = f(z) =
� cosh(✓)z + sinh(✓)

sinh(✓)z � cosh(✓)
. (S4)

In the ẑ-coordinates, HMöb(✓) / 2⇡

L cosh(2✓)
(L0 + L0). Thus the time evolution with HMöb(✓) for a time ⌧ in the ẑ-

coordinates is a simple dilation by a factor � = exp
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L cosh 2✓

 
. Then going back to the original coordinates, the whole

time evolution with HMöb(✓) amounts to a simple change of coordinates z
new

✓
(z) = f

�1 (�f(z)) (in the following of
the text we often leave the z dependence of the conformal mappings implicit):

z
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(z) =

[(1� �) cosh(2✓)� (�+ 1)] z + (�� 1) sinh(2✓)

(1� �) sinh(2✓)z + [(�� 1) cosh(2✓)� (�+ 1)]
. (S5)

The Hamiltonian H0 and HSSD can be seen as two di↵erent limits of the interpolating Hamiltomian HMöb(✓). Indeed,
H0 = HMöb(0) and HSSD = HMöb(✓!1). From this observation, it may be deduced that one can first evaluate
e
⌧0H0�(!, !̄)e�⌧0H0 by applying the method in the case ✓ = 0.

e
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By looking at the expression for znew
✓

(z) in equation (S5), we get znew
✓=0

(z) = �z, which is a dilatation in the z plane,
as expected for the uniform Hamiltonian H0. Next, we need to evaluate

e⌧1HSSD(e⌧0H0�(z1, z̄1)e
�⌧0H0)e�⌧1HSSD / e⌧1HSSD�(�z1,�z̄1)e
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which can be obtained by using expression of znew
✓

in the limit ✓ ! 1. This just amounts to going to the coordinates
z̃1, defined as
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Hence, z̃1 is once again related to z by a Möbius transformation, as expected because it is the obtained via a composi-
tion of two (invertible) Möbius transformations. Consequently the time evolution e⌧1HSSDe⌧0H0�(z, z̄)e�⌧0H0e�⌧1HSSD

for a 1-cycle drive of any primary field of a CFT can be reduced to a normalized Möbius transformation

z̃1 =
az + b

cz + d
, (S9)
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To compute the time evolution with HSSD in the complex plane, we introduce the so-called Möbius Hamiltonian [28]
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The Hamiltonian H0 and HSSD can be seen as two di↵erent limits of the interpolating Hamiltomian HMöb(✓). Indeed,
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By looking at the expression for znew
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HMöb(✓) = L0 �
tanh(2✓)

2
(L1 + L�1) + L0 �

tanh(2✓)

2
(L1 + L�1), (S3)

defined for ✓ 2 R
+. Interestingly, there exists an SL(2,R) transformation mapping the Möbius Hamiltonian to a
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ẑ = f(z) =
� cosh(✓)z + sinh(✓)

sinh(✓)z � cosh(✓)
. (S4)
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Floquet Hamiltonian: exact
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to computational limitations on long time physics.
We briefly discuss the role of micromotion within a

period. We find that micromotion can indeed lead to
additional interesting features both in the CFT as well
as the physical system on a lattice. Here, we focused
on regimes where micromotion is reduced to small fluc-
tuations around the stroboscopic dynamics, and can be
neglected to first order. A thorough study of the role of
micromotion will be addressed in future work [20].

Energy propagation — The time evolution of the en-
ergy density E(x, t) = hT00(x, t)i provides yet another
remarkable validation of the CFT description of the
Floquet-SSD XXZ model. For nontrivial energy dy-
namics, we choose the ground state |Gi of the open
chain as the initial state, because for the periodic chain
E(x, 0) ⌘ 0 in the ground state. The discussion is also
applicable to other choices of initial states, such as ex-
cited states of the periodic chain. The computation of
the time evolution of the energy is similar to the two-
point function above, except that T00 is not primary and
boundaries cannot be neglected. Using boundary CFT
techniques, we obtain [16]

E(x, t) = ↵
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where ↵ = c

32
( 2⇡
L
)2, c is the central charge of the theory

and z̃n is given by Eq. (4). In Fig. 4, we show a compar-
ison between the analytically and numerically obtained
energy densities. In the non-heating phase, the energy
oscillates in time with pseudo-periodicity TE , while in
the heating phase, energy accumulates indefinitely at the
two horizons xc and L�xc. Away from these two points,
E ! 0 as t ! 1, whereas E(xc, t) ⇠ e4⇡⇥Ht. We see that
heating is spatially non-uniform and occurs on the time
scale ⇥�1

H
.

Finally, the curved space-time description paradoxi-
cally suggests the existence of a well defined Floquet
e↵ective Hamiltonian He↵ =

R
dxv(x)T00(x) in both

phases. Note that v =
p
g is the velocity profile appear-

ing in Eq. (5) (the time-reversal symmetric case where
h = 0). We infer [16]

He↵ = ↵

h
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2
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(L̄1 + L̄�1)

i
,

(9)
where ��1 = cos(⇡T0

L
)+ L

⇡T1

sin(⇡T0

L
). In the non-heating

phase, |�| < 1 and He↵ is related to the uniform theory
H0 by an SL(2,R) transformation [16]. At the transi-
tion, � = 1 and we recover the SSD Hamiltonian. In
the heating phase, |�| > 1 and the relation with H0 in-
stead requires SL(2,C), leading to drastically di↵erent
behavior. In particular, we find that He↵ is unbounded
from below in the heating phase as can be seen from the
(co)adjoint orbits of SL(2,R) [21]. A simpler way to see
this is through conformal quantum mechanics [22, 23]:
any Hamlitonian of the form aL1+bL0+cL�1 has a classi-

cal counterpart H = p
2

2
+V (q) with V (q) = 1

2

1

q2
+ c

(2)

8
q
2

FIG. 4. Evolution of energy density E(x, t) in both
phases, comparing CFT computation with numerical simu-
lations (L = 80, T1 = 4, � = 0.5). In the heating phase (a
and b, T0 = �2) the energy accumulates indefinitely at the
black hole singularities with a time-scale ⇥�1

H
. In the non-

heating phase (c and d, T0 = 2) the energy oscillates in the
whole chain with pseudo periodicity TE .

with c
(2) = b

2 � 4ac the quadratic Casimir invariant.
In our case c

(2) = ↵
2(1 � �

2) so that V is bounded in
the non-heating phase and unbounded in the heating
phase. Note that in the latter case, the expression for
the density of He↵ bears marked similarities to the one
of an entanglement Hamiltonian of a subsystem of size
[xc, L� xc] [24].

Discussion — The Floquet drive alternating between
a uniform and a SSD CFT provides an exactly solvable
non-equilibrium system with a rich phase diagram. We
present exact analytical results describing the propaga-
tion of excitations as well as energy density in the system.
Dynamics in the heating phase are understood by anal-
ogy to two black-holes singularities and null geodesics in
a curved but stationary space-time geometry. Beyond
the timescale fixed by the inverse Hawking temperature,
excitations are absorbed by the black holes along with
an accumulation of energy at these singularities. We
demonstrate numerically that the CFT provides a sur-
prisingly robust description of driven critical spin chains.
Cold atomic gases are a promising platform to realize
such deformed Hamiltonians [25, 26], thereby opening
up the possibility for experimental observation of emer-
gent black hole dynamics in (1+1)-dimensional quantum
systems.

Note added — We note that Ref. 27 also discussed sim-
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p
g is the velocity profile appear-

ing in Eq. (5) (the time-reversal symmetric case where
h = 0). We infer [16]
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). In the non-heating

phase, |�| < 1 and He↵ is related to the uniform theory
H0 by an SL(2,R) transformation [16]. At the transi-
tion, � = 1 and we recover the SSD Hamiltonian. In
the heating phase, |�| > 1 and the relation with H0 in-
stead requires SL(2,C), leading to drastically di↵erent
behavior. In particular, we find that He↵ is unbounded
from below in the heating phase as can be seen from the
(co)adjoint orbits of SL(2,R) [21]. A simpler way to see
this is through conformal quantum mechanics [22, 23]:
any Hamlitonian of the form aL1+bL0+cL�1 has a classi-

cal counterpart H = p
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FIG. 4. Evolution of energy density E(x, t) in both
phases, comparing CFT computation with numerical simu-
lations (L = 80, T1 = 4, � = 0.5). In the heating phase (a
and b, T0 = �2) the energy accumulates indefinitely at the
black hole singularities with a time-scale ⇥�1

H
. In the non-

heating phase (c and d, T0 = 2) the energy oscillates in the
whole chain with pseudo periodicity TE .

with c
(2) = b

2 � 4ac the quadratic Casimir invariant.
In our case c

(2) = ↵
2(1 � �

2) so that V is bounded in
the non-heating phase and unbounded in the heating
phase. Note that in the latter case, the expression for
the density of He↵ bears marked similarities to the one
of an entanglement Hamiltonian of a subsystem of size
[xc, L� xc] [24].

Discussion — The Floquet drive alternating between
a uniform and a SSD CFT provides an exactly solvable
non-equilibrium system with a rich phase diagram. We
present exact analytical results describing the propaga-
tion of excitations as well as energy density in the system.
Dynamics in the heating phase are understood by anal-
ogy to two black-holes singularities and null geodesics in
a curved but stationary space-time geometry. Beyond
the timescale fixed by the inverse Hawking temperature,
excitations are absorbed by the black holes along with
an accumulation of energy at these singularities. We
demonstrate numerically that the CFT provides a sur-
prisingly robust description of driven critical spin chains.
Cold atomic gases are a promising platform to realize
such deformed Hamiltonians [25, 26], thereby opening
up the possibility for experimental observation of emer-
gent black hole dynamics in (1+1)-dimensional quantum
systems.

Note added — We note that Ref. 27 also discussed sim-
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period. We find that micromotion can indeed lead to
additional interesting features both in the CFT as well
as the physical system on a lattice. Here, we focused
on regimes where micromotion is reduced to small fluc-
tuations around the stroboscopic dynamics, and can be
neglected to first order. A thorough study of the role of
micromotion will be addressed in future work [20].

Energy propagation — The time evolution of the en-
ergy density E(x, t) = hT00(x, t)i provides yet another
remarkable validation of the CFT description of the
Floquet-SSD XXZ model. For nontrivial energy dy-
namics, we choose the ground state |Gi of the open
chain as the initial state, because for the periodic chain
E(x, 0) ⌘ 0 in the ground state. The discussion is also
applicable to other choices of initial states, such as ex-
cited states of the periodic chain. The computation of
the time evolution of the energy is similar to the two-
point function above, except that T00 is not primary and
boundaries cannot be neglected. Using boundary CFT
techniques, we obtain [16]
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e↵ective Hamiltonian He↵ =
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the heating phase, |�| > 1 and the relation with H0 in-
stead requires SL(2,C), leading to drastically di↵erent
behavior. In particular, we find that He↵ is unbounded
from below in the heating phase as can be seen from the
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FIG. 4. Evolution of energy density E(x, t) in both
phases, comparing CFT computation with numerical simu-
lations (L = 80, T1 = 4, � = 0.5). In the heating phase (a
and b, T0 = �2) the energy accumulates indefinitely at the
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In our case c
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2) so that V is bounded in
the non-heating phase and unbounded in the heating
phase. Note that in the latter case, the expression for
the density of He↵ bears marked similarities to the one
of an entanglement Hamiltonian of a subsystem of size
[xc, L� xc] [24].

Discussion — The Floquet drive alternating between
a uniform and a SSD CFT provides an exactly solvable
non-equilibrium system with a rich phase diagram. We
present exact analytical results describing the propaga-
tion of excitations as well as energy density in the system.
Dynamics in the heating phase are understood by anal-
ogy to two black-holes singularities and null geodesics in
a curved but stationary space-time geometry. Beyond
the timescale fixed by the inverse Hawking temperature,
excitations are absorbed by the black holes along with
an accumulation of energy at these singularities. We
demonstrate numerically that the CFT provides a sur-
prisingly robust description of driven critical spin chains.
Cold atomic gases are a promising platform to realize
such deformed Hamiltonians [25, 26], thereby opening
up the possibility for experimental observation of emer-
gent black hole dynamics in (1+1)-dimensional quantum
systems.

Note added — We note that Ref. 27 also discussed sim-

4

to computational limitations on long time physics.
We briefly discuss the role of micromotion within a

period. We find that micromotion can indeed lead to
additional interesting features both in the CFT as well
as the physical system on a lattice. Here, we focused
on regimes where micromotion is reduced to small fluc-
tuations around the stroboscopic dynamics, and can be
neglected to first order. A thorough study of the role of
micromotion will be addressed in future work [20].

Energy propagation — The time evolution of the en-
ergy density E(x, t) = hT00(x, t)i provides yet another
remarkable validation of the CFT description of the
Floquet-SSD XXZ model. For nontrivial energy dy-
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applicable to other choices of initial states, such as ex-
cited states of the periodic chain. The computation of
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the heating phase, energy accumulates indefinitely at the
two horizons xc and L�xc. Away from these two points,
E ! 0 as t ! 1, whereas E(xc, t) ⇠ e4⇡⇥Ht. We see that
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e↵ective Hamiltonian He↵ =
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behavior. In particular, we find that He↵ is unbounded
from below in the heating phase as can be seen from the
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FIG. 4. Evolution of energy density E(x, t) in both
phases, comparing CFT computation with numerical simu-
lations (L = 80, T1 = 4, � = 0.5). In the heating phase (a
and b, T0 = �2) the energy accumulates indefinitely at the
black hole singularities with a time-scale ⇥�1

H
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heating phase (c and d, T0 = 2) the energy oscillates in the
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2) so that V is bounded in
the non-heating phase and unbounded in the heating
phase. Note that in the latter case, the expression for
the density of He↵ bears marked similarities to the one
of an entanglement Hamiltonian of a subsystem of size
[xc, L� xc] [24].

Discussion — The Floquet drive alternating between
a uniform and a SSD CFT provides an exactly solvable
non-equilibrium system with a rich phase diagram. We
present exact analytical results describing the propaga-
tion of excitations as well as energy density in the system.
Dynamics in the heating phase are understood by anal-
ogy to two black-holes singularities and null geodesics in
a curved but stationary space-time geometry. Beyond
the timescale fixed by the inverse Hawking temperature,
excitations are absorbed by the black holes along with
an accumulation of energy at these singularities. We
demonstrate numerically that the CFT provides a sur-
prisingly robust description of driven critical spin chains.
Cold atomic gases are a promising platform to realize
such deformed Hamiltonians [25, 26], thereby opening
up the possibility for experimental observation of emer-
gent black hole dynamics in (1+1)-dimensional quantum
systems.

Note added — We note that Ref. 27 also discussed sim-

4

to computational limitations on long time physics.
We briefly discuss the role of micromotion within a

period. We find that micromotion can indeed lead to
additional interesting features both in the CFT as well
as the physical system on a lattice. Here, we focused
on regimes where micromotion is reduced to small fluc-
tuations around the stroboscopic dynamics, and can be
neglected to first order. A thorough study of the role of
micromotion will be addressed in future work [20].

Energy propagation — The time evolution of the en-
ergy density E(x, t) = hT00(x, t)i provides yet another
remarkable validation of the CFT description of the
Floquet-SSD XXZ model. For nontrivial energy dy-
namics, we choose the ground state |Gi of the open
chain as the initial state, because for the periodic chain
E(x, 0) ⌘ 0 in the ground state. The discussion is also
applicable to other choices of initial states, such as ex-
cited states of the periodic chain. The computation of
the time evolution of the energy is similar to the two-
point function above, except that T00 is not primary and
boundaries cannot be neglected. Using boundary CFT
techniques, we obtain [16]
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ison between the analytically and numerically obtained
energy densities. In the non-heating phase, the energy
oscillates in time with pseudo-periodicity TE , while in
the heating phase, energy accumulates indefinitely at the
two horizons xc and L�xc. Away from these two points,
E ! 0 as t ! 1, whereas E(xc, t) ⇠ e4⇡⇥Ht. We see that
heating is spatially non-uniform and occurs on the time
scale ⇥�1
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e↵ective Hamiltonian He↵ =
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phases. Note that v =
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tion, � = 1 and we recover the SSD Hamiltonian. In
the heating phase, |�| > 1 and the relation with H0 in-
stead requires SL(2,C), leading to drastically di↵erent
behavior. In particular, we find that He↵ is unbounded
from below in the heating phase as can be seen from the
(co)adjoint orbits of SL(2,R) [21]. A simpler way to see
this is through conformal quantum mechanics [22, 23]:
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FIG. 4. Evolution of energy density E(x, t) in both
phases, comparing CFT computation with numerical simu-
lations (L = 80, T1 = 4, � = 0.5). In the heating phase (a
and b, T0 = �2) the energy accumulates indefinitely at the
black hole singularities with a time-scale ⇥�1

H
. In the non-

heating phase (c and d, T0 = 2) the energy oscillates in the
whole chain with pseudo periodicity TE .
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2) so that V is bounded in
the non-heating phase and unbounded in the heating
phase. Note that in the latter case, the expression for
the density of He↵ bears marked similarities to the one
of an entanglement Hamiltonian of a subsystem of size
[xc, L� xc] [24].

Discussion — The Floquet drive alternating between
a uniform and a SSD CFT provides an exactly solvable
non-equilibrium system with a rich phase diagram. We
present exact analytical results describing the propaga-
tion of excitations as well as energy density in the system.
Dynamics in the heating phase are understood by anal-
ogy to two black-holes singularities and null geodesics in
a curved but stationary space-time geometry. Beyond
the timescale fixed by the inverse Hawking temperature,
excitations are absorbed by the black holes along with
an accumulation of energy at these singularities. We
demonstrate numerically that the CFT provides a sur-
prisingly robust description of driven critical spin chains.
Cold atomic gases are a promising platform to realize
such deformed Hamiltonians [25, 26], thereby opening
up the possibility for experimental observation of emer-
gent black hole dynamics in (1+1)-dimensional quantum
systems.
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as the physical system on a lattice. Here, we focused
on regimes where micromotion is reduced to small fluc-
tuations around the stroboscopic dynamics, and can be
neglected to first order. A thorough study of the role of
micromotion will be addressed in future work [20].

Energy propagation — The time evolution of the en-
ergy density E(x, t) = hT00(x, t)i provides yet another
remarkable validation of the CFT description of the
Floquet-SSD XXZ model. For nontrivial energy dy-
namics, we choose the ground state |Gi of the open
chain as the initial state, because for the periodic chain
E(x, 0) ⌘ 0 in the ground state. The discussion is also
applicable to other choices of initial states, such as ex-
cited states of the periodic chain. The computation of
the time evolution of the energy is similar to the two-
point function above, except that T00 is not primary and
boundaries cannot be neglected. Using boundary CFT
techniques, we obtain [16]
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two horizons xc and L�xc. Away from these two points,
E ! 0 as t ! 1, whereas E(xc, t) ⇠ e4⇡⇥Ht. We see that
heating is spatially non-uniform and occurs on the time
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e↵ective Hamiltonian He↵ =
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H0 by an SL(2,R) transformation [16]. At the transi-
tion, � = 1 and we recover the SSD Hamiltonian. In
the heating phase, |�| > 1 and the relation with H0 in-
stead requires SL(2,C), leading to drastically di↵erent
behavior. In particular, we find that He↵ is unbounded
from below in the heating phase as can be seen from the
(co)adjoint orbits of SL(2,R) [21]. A simpler way to see
this is through conformal quantum mechanics [22, 23]:
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FIG. 4. Evolution of energy density E(x, t) in both
phases, comparing CFT computation with numerical simu-
lations (L = 80, T1 = 4, � = 0.5). In the heating phase (a
and b, T0 = �2) the energy accumulates indefinitely at the
black hole singularities with a time-scale ⇥�1

H
. In the non-

heating phase (c and d, T0 = 2) the energy oscillates in the
whole chain with pseudo periodicity TE .

with c
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2 � 4ac the quadratic Casimir invariant.
In our case c
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2) so that V is bounded in
the non-heating phase and unbounded in the heating
phase. Note that in the latter case, the expression for
the density of He↵ bears marked similarities to the one
of an entanglement Hamiltonian of a subsystem of size
[xc, L� xc] [24].

Discussion — The Floquet drive alternating between
a uniform and a SSD CFT provides an exactly solvable
non-equilibrium system with a rich phase diagram. We
present exact analytical results describing the propaga-
tion of excitations as well as energy density in the system.
Dynamics in the heating phase are understood by anal-
ogy to two black-holes singularities and null geodesics in
a curved but stationary space-time geometry. Beyond
the timescale fixed by the inverse Hawking temperature,
excitations are absorbed by the black holes along with
an accumulation of energy at these singularities. We
demonstrate numerically that the CFT provides a sur-
prisingly robust description of driven critical spin chains.
Cold atomic gases are a promising platform to realize
such deformed Hamiltonians [25, 26], thereby opening
up the possibility for experimental observation of emer-
gent black hole dynamics in (1+1)-dimensional quantum
systems.
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FIG. 4. Evolution of energy density E(x, t) in both
phases, comparing CFT computation with numerical simu-
lations (L = 80, T1 = 4, � = 0.5). In the heating phase (a
and b, T0 = �2) the energy accumulates indefinitely at the
black hole singularities with a time-scale ⇥�1
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heating phase (c and d, T0 = 2) the energy oscillates in the
whole chain with pseudo periodicity TE .
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2) so that V is bounded in
the non-heating phase and unbounded in the heating
phase. Note that in the latter case, the expression for
the density of He↵ bears marked similarities to the one
of an entanglement Hamiltonian of a subsystem of size
[xc, L� xc] [24].

Discussion — The Floquet drive alternating between
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a curved but stationary space-time geometry. Beyond
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demonstrate numerically that the CFT provides a sur-
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present exact analytical results describing the propaga-
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Dynamics in the heating phase are understood by anal-
ogy to two black-holes singularities and null geodesics in
a curved but stationary space-time geometry. Beyond
the timescale fixed by the inverse Hawking temperature,
excitations are absorbed by the black holes along with
an accumulation of energy at these singularities. We
demonstrate numerically that the CFT provides a sur-
prisingly robust description of driven critical spin chains.
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present exact analytical results describing the propaga-
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Dynamics in the heating phase are understood by anal-
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excitations are absorbed by the black holes along with
an accumulation of energy at these singularities. We
demonstrate numerically that the CFT provides a sur-
prisingly robust description of driven critical spin chains.
Cold atomic gases are a promising platform to realize
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Lattice systems  - XXZ spin chain



2

that the associated Hawking temperature of the black
holes serves as de facto order parameter which delineates
heating and non-heating phases. The non-heating phase
manifests a pseudo-periodicity both in the propagation
of excitations as well as energy density.

Floquet-SSD Dynamics — Consider a general inhomo-
geneous Hamiltonian on a chain of size L obtained by
deforming a uniform (1 + 1)-dimensional CFT:

H =

Z
L

0

dxf(x)T00(x). (1)

We denote by H0 the homogeneous CFT where f ⌘ 1,
with energy density T00, and by HSSD the SSD theory
where f(x) = 2 sin2(⇡x

L
). We consider a two-step drive

protocol, where HF(t) alternates between HSSD (dura-
tion T1) and H0 (duration T0) as depicted in Fig. 1(a,b).
The uniform theoryH0 typically describes the low-energy
behavior of a quantum chain at criticality and is charac-
terized by a central charge c.

The lattice counterpart we explicitly consider is the
XXZ spin- 1

2
chain,

H = J

L�1X

j=1

fj
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S
x

j
S
x

j+1
+ S

y

j
S
y

j+1
+�S

z

j
S
z

j+1

⌘
, (2)

The Floquet drive HF(t) alternates between the the uni-
form case, H0 with fj ⌘ 1 and the SSD HSSD where
fj = 2 sin2(⇡j

L
). For fj ⌘ 1 and |�|  1, the spin chain

is critical and the low energy theory is a Luttinger liq-
uid described by a compactified free boson with c = 1.
In what follows, we will demonstrate that the general
non-equilibrium exactly solvable CFT-dynamics of HF(t)
precisely captures the main features of the driven XXZ
model HF(t) that we study numerically.

To probe the dynamics we focus on the unequal
time two-point function of the driven CFT HF(t),
h�(x, t)�(x0, 0)i, where � is any primary field (with con-
formal weight h) of the uniform theory H0 [11]. Though
the full time evolution including micromotion can be eval-
uated, we focus on the stroboscopic evolution, where
t = n(T0 + T1), n 2 N. As boundary conditions do
not qualitatively a↵ect the ensuing results, we use pe-
riodic boundary conditions for computational simplic-
ity. Expectation values are computed in the ground
state |0i of the uniform theory. In terms of the Vira-
soro generators Ln and Ln, in the Euclidean framework
with imaginary time ⌧ , H0 = L0 + L0, and crucially,
HSSD = L0 � 1

2
(L1 + L�1) + L0 � 1

2
(L1 + L�1). Such

a Hamiltonian is equivalent to a uniform H0 up to an
asymptotic SL(2,R) transformation [4, 12, 13]. Con-
sequently, time evolution e�⌧HSSD is a simple dilation
up to a coordinate change. Mapping the coordinates
w = ⌧ +ix on the cylinder to the complex plane spanned
by z = e2⇡w/L, the CFT calculation yields, after analytic
continuation to real time (see Supplemental Material for

FIG. 2. CFT two-point function |h�(x, t)�(x0, 0)i| for the
Floquet drive (L = 80, x0 = 31, colorbars in log scale).
(a) Heating phase (T0 = T1 = 34). The excitations are
attracted by two black hole singularities at xc and L � xc.
(b) Non-heating phase (T0 = T1 = 25). The dynamics is
pseudo-periodic. In both cases, the dashed curves are the
null-geodesics of the curved stationary metric.

details [16])

h�(x, t)�(x0, 0)i =
⇣2⇡

L
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h�(z̃n, ¯̃zn)�(z̃0, ¯̃z0)i,

(3)
where the two-point function on the right hand side corre-
sponds to the one evaluated in the uniform CFT, namely
h�(z̃n, ¯̃zn)�(z̃0, ¯̃z0)i = (z̃n� z̃0)�2h(¯̃zn� ¯̃z0)�2h. Remark-
ably, the nontrivial Floquet dynamics is fully encoded
in the change of variables, which is essentially a Möbius
transformation [5]

z̃n =
(�1 � ⌘

n
�2)z + (⌘n � 1)�1�2

(1� ⌘n)z + �1⌘
n � �2

(4)

where n is the number of drive cycles, ⌘, �1, �2 are com-
plex parameters that depend on T0

L
and T1

L
[16]. This

result is valid for a generic CFT. The central charge en-
ters only via the conformal dimensions of the operators
in the correlation function. Moreover, although Eq. (3)
captures the stroboscopic dynamics of HF(t), it is well
defined not only at discrete, but all continuous times – a
fact that we will exploit below [16]. We now discuss the
two distinct regimes of behavior classified by the param-
eter ⌘: (i) heating phase for ⌘ 2 R

+ (ii) a non-heating
phase with ⌘ 2 C, |⌘| = 1, with ⌘ = 1 signalling the
transition between the two. The corresponding phase di-
agram is given in Fig. 1 (c).
Heating phase. — In this regime, ⌘ 2 R

+, in which case
z̃n ! �1 or �2 as n ! 1 (depending on the sign of ⌘�1).
A typical two-point function is plotted in Fig. 2 (a). Af-
ter an initial transient regime during which excitations
move quasi-ballistically but start to lose their coherence,
the correlation function tends to aggregate at two spa-
tial locations: xc and L � xc, independent of the initial
condition x0. Furthermore, the magnitude of the two
point function grows with time indicating that the ex-
citations accumulate indefinitely at the two ‘horizons’.

Lattice systems  - XXZ spin chain
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that the associated Hawking temperature of the black
holes serves as de facto order parameter which delineates
heating and non-heating phases. The non-heating phase
manifests a pseudo-periodicity both in the propagation
of excitations as well as energy density.

Floquet-SSD Dynamics — Consider a general inhomo-
geneous Hamiltonian on a chain of size L obtained by
deforming a uniform (1 + 1)-dimensional CFT:

H =

Z
L

0

dxf(x)T00(x). (1)

We denote by H0 the homogeneous CFT where f ⌘ 1,
with energy density T00, and by HSSD the SSD theory
where f(x) = 2 sin2(⇡x

L
). We consider a two-step drive

protocol, where HF(t) alternates between HSSD (dura-
tion T1) and H0 (duration T0) as depicted in Fig. 1(a,b).
The uniform theoryH0 typically describes the low-energy
behavior of a quantum chain at criticality and is charac-
terized by a central charge c.
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The Floquet drive HF(t) alternates between the the uni-
form case, H0 with fj ⌘ 1 and the SSD HSSD where
fj = 2 sin2(⇡j

L
). For fj ⌘ 1 and |�|  1, the spin chain

is critical and the low energy theory is a Luttinger liq-
uid described by a compactified free boson with c = 1.
In what follows, we will demonstrate that the general
non-equilibrium exactly solvable CFT-dynamics of HF(t)
precisely captures the main features of the driven XXZ
model HF(t) that we study numerically.

To probe the dynamics we focus on the unequal
time two-point function of the driven CFT HF(t),
h�(x, t)�(x0, 0)i, where � is any primary field (with con-
formal weight h) of the uniform theory H0 [11]. Though
the full time evolution including micromotion can be eval-
uated, we focus on the stroboscopic evolution, where
t = n(T0 + T1), n 2 N. As boundary conditions do
not qualitatively a↵ect the ensuing results, we use pe-
riodic boundary conditions for computational simplic-
ity. Expectation values are computed in the ground
state |0i of the uniform theory. In terms of the Vira-
soro generators Ln and Ln, in the Euclidean framework
with imaginary time ⌧ , H0 = L0 + L0, and crucially,
HSSD = L0 � 1
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a Hamiltonian is equivalent to a uniform H0 up to an
asymptotic SL(2,R) transformation [4, 12, 13]. Con-
sequently, time evolution e�⌧HSSD is a simple dilation
up to a coordinate change. Mapping the coordinates
w = ⌧ +ix on the cylinder to the complex plane spanned
by z = e2⇡w/L, the CFT calculation yields, after analytic
continuation to real time (see Supplemental Material for

FIG. 2. CFT two-point function |h�(x, t)�(x0, 0)i| for the
Floquet drive (L = 80, x0 = 31, colorbars in log scale).
(a) Heating phase (T0 = T1 = 34). The excitations are
attracted by two black hole singularities at xc and L � xc.
(b) Non-heating phase (T0 = T1 = 25). The dynamics is
pseudo-periodic. In both cases, the dashed curves are the
null-geodesics of the curved stationary metric.
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where the two-point function on the right hand side corre-
sponds to the one evaluated in the uniform CFT, namely
h�(z̃n, ¯̃zn)�(z̃0, ¯̃z0)i = (z̃n� z̃0)�2h(¯̃zn� ¯̃z0)�2h. Remark-
ably, the nontrivial Floquet dynamics is fully encoded
in the change of variables, which is essentially a Möbius
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where n is the number of drive cycles, ⌘, �1, �2 are com-
plex parameters that depend on T0
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and T1
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[16]. This

result is valid for a generic CFT. The central charge en-
ters only via the conformal dimensions of the operators
in the correlation function. Moreover, although Eq. (3)
captures the stroboscopic dynamics of HF(t), it is well
defined not only at discrete, but all continuous times – a
fact that we will exploit below [16]. We now discuss the
two distinct regimes of behavior classified by the param-
eter ⌘: (i) heating phase for ⌘ 2 R

+ (ii) a non-heating
phase with ⌘ 2 C, |⌘| = 1, with ⌘ = 1 signalling the
transition between the two. The corresponding phase di-
agram is given in Fig. 1 (c).
Heating phase. — In this regime, ⌘ 2 R

+, in which case
z̃n ! �1 or �2 as n ! 1 (depending on the sign of ⌘�1).
A typical two-point function is plotted in Fig. 2 (a). Af-
ter an initial transient regime during which excitations
move quasi-ballistically but start to lose their coherence,
the correlation function tends to aggregate at two spa-
tial locations: xc and L � xc, independent of the initial
condition x0. Furthermore, the magnitude of the two
point function grows with time indicating that the ex-
citations accumulate indefinitely at the two ‘horizons’.
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Summary

SSD Hamiltonians with periodic driving 

shows transition between heating and 

non-heating phase


heating in ‘hot spots’, comparably slow


excitations propagate analogous to curved 

space-time with black holes


picture valid beyond CFT, beyond periodic drive
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Figure 1. Continuum spectra. a, The hyperboloid (orange) defined by t2 � x2 � y2 = +1 in (2+1)-dimensional (x, y, t) Minkowski space
is mapped (black rays) by the stereographic projection through the point (0, 0,�1) (black dot) to the unit disk (blue) at t = 0. The geodesics
(red) are given by intersections of the hyperboloid with planes passing through the origin (0, 0, 0) (green dot), and are mapped by the projection
to circular arcs perpendicular to the boundary of the Poincaré disk. b, Comparison of the first few eigenmodes of the Euclidean and hyperbolic
drum of radius r0 = 0.94 according to increasing eigenvalues �n`

g . Their spatial profile un`
g is shown with yellow (green, blue) denoting

maxima (zeros, minima). The number of radial zeros inside the disk, n, and the angular momentum (number of angular zeroes), `, can easily
be inferred from the plots. Modes with ` = 0 are indicated with a grey background.

Figure 2. Angular momentum dispersion. a, Rescaled frequency
�n`
g vs. angular momentum ` for eigenmodes un`

g of the continuum
Laplace-Beltrami operator, i.e., solutions to Eq. (2), for the Euclidean
(left) and hyperbolic (right) geometry. For the first six branches, the
value of n is indicated by red numbers. b, Same data for a Euclidean
{3, 6} (left) and hyperbolic {3, 7} (right) tessellation, each with 85
sites. For the hyperbolic lattice, we additionally show the experimen-
tal results (orange squares) obtained from the electric circuit.

as a hyperboloid sheet with fixed timelike distance from the
origin, see Fig. 1a. To solve for the eigenmodes of the wave
equation, it is convenient to set  = �1 and to employ the
stereographic projection (Fig. 1a), which maps the hyperbolic
plane onto the Poincaré disk, i.e., the unit disk with length
element ds2 = (1� x2

� y2)�2
(dx2

+ dy2).
The eigenmodes of the hyperbolic drum with x2

+ y2 

r2
0

< 1 correspond to the spectrum17,33,34 of the Laplace-
Beltrami operator

�H =
�
1� x2

� y2
�2

�E, (1)

where�E = (@2/@x2
+@2/@y2) is the usual Laplace operator

in the Euclidean plane. Adopting Dirichlet boundary condi-
tions, which yield vanishing amplitude on the disk boundary,
the spectrum of the drum is given by solutions to

��
g
un`
g

= �n`
g
un`
g

with un`
g

��
x2+y2=r20

= 0, (2)

where g 2 {E,H} indicates the geometry, and �n`
g

is the
frequency of the mode with angular momentum ` and with n
radial zeroes. Solutions to Eq. (2) are superpositions of Bessel
functions (associated Legendre functions) in the Euclidean
(hyperbolic) case35.

We plot in Fig. 1b the first few solutions to Eq. (2) on the
Euclidean vs. Poincaré disk for r0 = 0.94, which corresponds
to our experimental realization discussed below. We observe
a significant reordering of the eigenmodes characterized by
(n, `): while in the Euclidean case the first eigenmode with
n = 1 is the fourth (not counting degenerate eigenmodes
separately), in the hyperbolic case, it is only the sixth mode.
This reordering becomes even more apparent when consid-
ering the angular momentum dispersion �n`

g
vs. ` displayed

in Fig. 2a. In both the Euclidean and the hyperbolic case,
several branches (corresponding to di�erent values of n, indi-
cated by red numbers) are discernible. The spectral reordering
manifests as a reduced slope of the branches (relative to their
spacing) compared to their behaviour for the Euclidean drum.
Consequently, eigenmodes with large ` and small n appear
much earlier in the spectrum in hyperbolic compared to Eu-
clidean space. The spectral reordering is stronger for larger
radii r0. This is intuitively understood from the fact that the
circumference of a hyperbolic drum grows superlinearly with
its radius, such that oscillations in the angular direction stretch
over larger distances. This makes them energetically favor-
able over oscillations in the radial direction, resulting in the
observed reordering.

Lattice regularization of the hyperbolic plane
To experimentally realize a hyperbolic drum in an electric
circuit network, we use a lattice regularization constructed by
tessellating the hyperbolic plane. The metric of the underlying
continuous space is then manifested only in the connectivity of
the lattice sites. Di�erent tessellations of the hyperbolic plane

Energetic ordering of Laplacian eigenstates

Geodesics
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Figure 4. Time-resolved measurement. a, Schematic illustration of the wave propagation after exciting a Euclidean (top) and hyperbolic
(bottom) drum with a short and spatially localized pulse. The waves travel along geodesics originating from the source (red lines) and wave
fronts at di�erent times are concentric circles perpendicular to the geodesics (black circles). b, Broadband excitation pulse (blue) which is
fed as a current pulse into node 31 at the boundary, and the voltage response measured at the same node (orange). The time corresponding
to the instantaneous phases in panels d-f is marked by a red vertical line. c, Frequency spectrum of the excitation pulse shown in panel b,
demonstrating the wide range of frequencies contained in the pulse. d, Instantaneous phases of the pulse propagating on the hyperbolic drum
(see legend) at time t = 2.032µs. The nodes are indicated by black dots, and concentric hyperbolic circles with center at node 31 are shown
in black to illustrate the hyperbolic metric. e, Instantaneous phase ' vs. the hyperbolic distance dH of every node from the source of the signal.
f, Instantaneous phase ' vs. the Euclidean distance dE of every node from the source of the signal. The shaded region in panels e,f indicates
the approximate spread of the instantaneous phase as a function of dH and dE, respectively.

frequency f = !/2⇡ for each node a. The data for three
input nodes are shown in Fig. 3b. Second, these eigenmodes
are resonantly excited and their voltage profile is measured
using lock-in amplifiers. For the modes at the highest six fre-
quencies, both magnitude (relative to the voltage at the input
node) and phase (relative to a reference signal) are shown in
Fig. 3c. In the final experiment, the circuit is stimulated by the
broadband voltage pulse shown in Fig. 4a fed into the circuit as
a current pulse at a node close to the boundary. Subsequently,
the voltage is measured as a function of time at each node. We
observe the pulse to propagate in the Poincaré disk (the full
time dependence is shown in Supplementary Movie S1 and
discussed in supplementary text S536). A snapshot of the in-
stantaneous phase profile is shown in Fig. 4b, which visualizes
the propagation of the pulse.

Discussion of the experimental data
We proceed with discussing the results of these three measure-
ments. Comparing the impedance of input node 1 (blue curve)
to nodes 14 and 18, see Fig. 3b, we clearly observe the spectral
reordering discussed in the previous section: there are four
additional peaks for input node 14 and 18 located between the
two highest-frequency peaks for input node 1. This implies
that the second ` = 0 mode (i.e. the first mode with n > 0)
is the sixth eigenmode. The explicit values of ` and n for
specific modes can be deduced from the voltage profiles of the
eigenmodes obtained in the second experiment, see Fig. 3c.

We further plot (orange squares in Fig. 2b) the extracted
dispersion of the Laplacian frequencies �n,`

H
with the angular

momentum |`|, obtained by a circular Fourier transform of the
measured signal. We observe an almost perfect match with the
theoretically predicted values (blue dots in Fig. 2b) for the first

few measured modes. However, higher modes are increasingly
di�cult to excite and detect, due to the finite resolution in fre-
quency and space. We remark that the boundary sites of the
present experimental realization of a hyperbolic lattice could
be used to probe holographic dualities. For each eigenmode
of the system, only its angular distribution on the boundary is
important (cf. the angular momentum dispersion in Fig. 2b),
yielding a novel and universal one-dimensional physical sys-
tem on the boundary. We leave a detailed examination of these
intriguing edge modes to future studies.

Finally, we discuss the time-resolved measurements. We
excite the densest region of the frequency spectrum (Fig. 3b)
using a current pulse (Fig. 4b) of mean frequency 500 kHz
(Fig. 4c). By exciting a large number of modes, we approx-
imate the continuum response. The propagation of the pulse
through the circuit network leads to the profile of instantaneous
phases depicted in Fig. 4d, where the phase fronts can be easily
identified by the positions of equal instantaneous phase. Since
the connectivity of the nodes implements the metric of the
Poincaré disk, these phase fronts form concentric hyperbolic
circles, highlighted by black circles in Fig. 4d. This agrees
with the theoretical expectation that the signal emanates from
the excited node along geodesics, which are the generalization
of “straight lines” in curved space (red lines in Fig. 4a).

Wave fronts are perpendicular to these geodesics and thus
constitute concentric circles (black circles in Fig. 4a) up to
corrections due to boundary reflections. In Fig. 4d-f, we have
chosen an early time during the excitation such that contribu-
tions from such reflections do not have a significant impact
on the measured phases. Finally, when plotting the phase vs.
hyperbolic (dH) and Euclidean (dE) distance in Fig. 4e and f,
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frequency f = !/2⇡ for each node a. The data for three
input nodes are shown in Fig. 3b. Second, these eigenmodes
are resonantly excited and their voltage profile is measured
using lock-in amplifiers. For the modes at the highest six fre-
quencies, both magnitude (relative to the voltage at the input
node) and phase (relative to a reference signal) are shown in
Fig. 3c. In the final experiment, the circuit is stimulated by the
broadband voltage pulse shown in Fig. 4a fed into the circuit as
a current pulse at a node close to the boundary. Subsequently,
the voltage is measured as a function of time at each node. We
observe the pulse to propagate in the Poincaré disk (the full
time dependence is shown in Supplementary Movie S1 and
discussed in supplementary text S536). A snapshot of the in-
stantaneous phase profile is shown in Fig. 4b, which visualizes
the propagation of the pulse.

Discussion of the experimental data
We proceed with discussing the results of these three measure-
ments. Comparing the impedance of input node 1 (blue curve)
to nodes 14 and 18, see Fig. 3b, we clearly observe the spectral
reordering discussed in the previous section: there are four
additional peaks for input node 14 and 18 located between the
two highest-frequency peaks for input node 1. This implies
that the second ` = 0 mode (i.e. the first mode with n > 0)
is the sixth eigenmode. The explicit values of ` and n for
specific modes can be deduced from the voltage profiles of the
eigenmodes obtained in the second experiment, see Fig. 3c.

We further plot (orange squares in Fig. 2b) the extracted
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momentum |`|, obtained by a circular Fourier transform of the
measured signal. We observe an almost perfect match with the
theoretically predicted values (blue dots in Fig. 2b) for the first

few measured modes. However, higher modes are increasingly
di�cult to excite and detect, due to the finite resolution in fre-
quency and space. We remark that the boundary sites of the
present experimental realization of a hyperbolic lattice could
be used to probe holographic dualities. For each eigenmode
of the system, only its angular distribution on the boundary is
important (cf. the angular momentum dispersion in Fig. 2b),
yielding a novel and universal one-dimensional physical sys-
tem on the boundary. We leave a detailed examination of these
intriguing edge modes to future studies.

Finally, we discuss the time-resolved measurements. We
excite the densest region of the frequency spectrum (Fig. 3b)
using a current pulse (Fig. 4b) of mean frequency 500 kHz
(Fig. 4c). By exciting a large number of modes, we approx-
imate the continuum response. The propagation of the pulse
through the circuit network leads to the profile of instantaneous
phases depicted in Fig. 4d, where the phase fronts can be easily
identified by the positions of equal instantaneous phase. Since
the connectivity of the nodes implements the metric of the
Poincaré disk, these phase fronts form concentric hyperbolic
circles, highlighted by black circles in Fig. 4d. This agrees
with the theoretical expectation that the signal emanates from
the excited node along geodesics, which are the generalization
of “straight lines” in curved space (red lines in Fig. 4a).

Wave fronts are perpendicular to these geodesics and thus
constitute concentric circles (black circles in Fig. 4a) up to
corrections due to boundary reflections. In Fig. 4d-f, we have
chosen an early time during the excitation such that contribu-
tions from such reflections do not have a significant impact
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Kirchhoff’s law

2

FIG. 1. Electrical circuit exhibiting a topological corner state with nodes of the circuit indicated by black dots. a) Unit cell of the circuit. Blue
and black circuit elements correspond to weak and strong bonds in a tight-binding or mechanical analogue of the circuit. Red circuit elements
connect to the ground. All capacitor-inductor pairs have the same resonance frequency !0 = 1/

p
L1C1 = 1/

p
L2C2 = 1/

p
Lg

1C
g
1 . b)

Layout of the full circuit which has been realized experimentally. The corners (i) and (iii) are invariant under the mirror symmetry that leaves
the dashed grey line invariant. They are compatible with the bulk unit cell choices (I) and (II), respectively, which correspond to an interchange
of strong and weak bonds. As a consequence we expect a topological bound state at corner (i) but not at corner (iii). c) Unit cell of the
experimentally realized circuit.

given by Kirchhoff’s law

Ia(!) =
X

b=1,2,···
Jab(!)Vb(!) (1)

that relates the voltages Va to the currents Ia via the grounded
circuit Laplacian

Jab(!) = i!Cab �
i

!
Wab. (2)

Here, the off-diagonal components of the matrix C contain
the capacitance Cab between nodes a 6= b, while its diagonal
component is given by the total node capacitance

Caa = �Ca0 �

X

b=1,2,···
Cab (3)

including the capacitance Ca0 between node a and the ground.
Similarly, the off-diagonal components of the matrix W con-
tain the inverse inductivity Wab = L�1

ab between nodes a 6= b,
while its diagonal components are given by the total node in-
ductivity

Waa = �L�1
a0 �

X

b=1,2,···
L�1
ab (4)

including the inductivity La0 between node a and the ground.
At fixed frequency !, Jab(!) determines the linear re-

sponse of the circuit in that the impedance Zab between two
nodes a and b is given by

Zab(!) = Gaa(!) +Gbb(!)�Gab(!)�Gba(!), (5)

where G(!) = J�1(!) is the circuit Green’s function. The
impedance is thus dominated by the smallest eigenvalues
jn(!) of J(!) at this given frequency, provided that the sites
a and b are in the support of the corresponding eigenfunctions.

In turn, frequencies ! for which an exact zero eigenvalue
jn(!) = 0 exists correspond to eigenmodes of the circuit.
They are determined by the equations of motion satisfied by
the electric potential �a(t) at node a

X

b=1,2,···
Cab

d2

dt2
�b(t) +

X

b=1,2,···
Wab�b(t) = 0. (6)

The spectrum !2 of eigenmodes of the circuit is thus given by
the spectrum of the dynamical matrix

D = C�1/2WC�1/2, (7)

with matrix multiplication implied.

circuit Laplacian

capacities inductances resistances

Jab(!) = i!Cab �
i

!Lab
+

1

Rab

[Ling Lu, Nature Physics (2018)]
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Figure 3. Experimental data. a, Schematic of hyperbolic tessellation (left half) with the unit circle in blue and the circle with radius r0 = 0.94
in red, and photograph of the electric circuit (right half). b, Measurement of impedance to ground Za of the circuit at node a as a function
of input frequency f for di�erent nodes (see inset legend and panel a for an identification of the nodes). Each impedance peak indicates an
eigenmode at that corresponding frequency, which can be excited at the corresponding input node. The highest six frequencies are indicated by
vertical grey lines and the corresponding eigenmodes are shown in panel c. c, Measurement of the voltage profile of the first six eigenmodes
(only one mode is shown for each pair of degenerate modes). The saturation encodes the magnitude as a fraction of the voltage (white denotes
0 and full saturation 1) at the input node (black dots), and the color encodes the phase relative to the reference voltage (see legend).

are possible, and they generally di�er in their symmetries and
in how densely their vertices cover the disk. Regular tilings
with q copies of p-sided polygons meeting at each vertex are
conventionally denoted by the Schläfli symbol “{p, q}”, where
a hyperbolic lattice is obtained for (p� 2)(q � 2) > 4. In con-
trast to the Euclidean case, hyperbolic tessellations uniquely
fix the distance between neighboring sites.

We analyze and compare several di�erent tessellations in
supplementary text S336. For a given coverage r0 of the disk,
a good approximation of the continuum is naturally achieved
by tessellations that feature small area per vertex (i.e., which
tile the hyperbolic plane densely)17. However, for our exper-
iments, three di�erent aspects of the modelled lattice are im-
portant. First, for a fixed number of vertices, tessellations with
larger area per vertex cover a larger fraction of the Poincaré
disk, leading to stronger signatures of the negative curvature.
Second, a vertex at the origin of the disk allows for easy ex-
citation and identification of ` = 0 modes. And third, a high
order of rotation symmetry prevents ` 6= 0 modes to have non-
vanishing weight at the origin of the disk, which would im-
pede the identification of ` = 0 modes. These considerations
favour the {3, 7} tessellation, which exhibits a seven-fold ro-
tation symmetry with respect to a site at the centre, and which
covers a disk with radius r0 = 0.94 with only 85 sites, see
Fig. 3a.

The lattice regularization of the continuum Laplace-
Beltrami operator is given by the graph Laplacian matrix,
which is fully determined by the connectivity or topology of
the lattice sites17,35. Eigenvectors of that matrix, therefore, cor-
respond to eigenmodes of the Laplace-Beltrami operator, and
the absolute value of the angular momentum ` can be system-
atically determined by a Fourier transform of the eigenvector
components on the outermost sites. Due to the discreteness
of the lattice, this analysis is only reliable for modes with
su�ciently small ` and n, i.e., in the long-wavelength limit.
We extract the angular momentum dispersion for the chosen
tessellation, and in Fig. 2b compare it to the corresponding

Euclidean {3, 6} tessellation with the same number of sites.
As in the continuum, a strong spectral reordering is observed.
This reordering is a universal feature of the spatial curvature
and does, therefore, not rely on the details of the tessellation,
as long as it adequately approximates the continuum.
Implementation in an electric circuit
In our experiments, the tessellation is realized as an electric
circuit network (right half of Fig. 3a) with a node at each
site. Nodes are coupled capacitively among each other and
inductively to ground. The boundary conditions are imple-
mented by additional capacitive coupling of the nodes in the
outermost shell to ground. E�ectively, this corresponds to
adding one more shell with all nodes shorted to ground, i.e.,
it represents the lattice equivalent of the Dirichlet boundary
conditions. A generic electric circuit network is described by
Kircho�’s law

Ia =

X

b

Jab(!)Vb, (3)

where Ia and Va are the input current and voltage amplitude
(for angular frequency !) at node a, respectively. The matrix
J(!) is called28 the grounded circuit Laplacian, and generally
depends on !. In the continuum limit, the input current I at
some position is related to the divergence of the current density
j via I = r · j, with j = �E = �rV , � the conductivity, E
the electric field due to an applied voltage V , and r the del
operator (for brevity, we dropped the subscript “g” indicating
the geometry). Hence, I = r · (�rV ) = ��V , establishing
the interpretation of J as the restriction of the continuum
Laplace operator to the grounded circuit. The impedance to
ground of node a, Za(!) = Va/Ia, is fully determined by
J and its resonances correspond to eigenmodes of J with
eigenvalues � / 1/!235. Note that this relationship could be
changed to � / !2 by exchanging the roles of capacitors and
inductors in implementing the connections between the nodes
resp. to the ground.

Three types of experiments are performed. First, an
impedance analyzer is used to measure Za as a function of

95% of hyperbolic plane
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Figure 3. Experimental data. a, Schematic of hyperbolic tessellation (left half) with the unit circle in blue and the circle with radius r0 = 0.94
in red, and photograph of the electric circuit (right half). b, Measurement of impedance to ground Za of the circuit at node a as a function
of input frequency f for di�erent nodes (see inset legend and panel a for an identification of the nodes). Each impedance peak indicates an
eigenmode at that corresponding frequency, which can be excited at the corresponding input node. The highest six frequencies are indicated by
vertical grey lines and the corresponding eigenmodes are shown in panel c. c, Measurement of the voltage profile of the first six eigenmodes
(only one mode is shown for each pair of degenerate modes). The saturation encodes the magnitude as a fraction of the voltage (white denotes
0 and full saturation 1) at the input node (black dots), and the color encodes the phase relative to the reference voltage (see legend).
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citation and identification of ` = 0 modes. And third, a high
order of rotation symmetry prevents ` 6= 0 modes to have non-
vanishing weight at the origin of the disk, which would im-
pede the identification of ` = 0 modes. These considerations
favour the {3, 7} tessellation, which exhibits a seven-fold ro-
tation symmetry with respect to a site at the centre, and which
covers a disk with radius r0 = 0.94 with only 85 sites, see
Fig. 3a.

The lattice regularization of the continuum Laplace-
Beltrami operator is given by the graph Laplacian matrix,
which is fully determined by the connectivity or topology of
the lattice sites17,35. Eigenvectors of that matrix, therefore, cor-
respond to eigenmodes of the Laplace-Beltrami operator, and
the absolute value of the angular momentum ` can be system-
atically determined by a Fourier transform of the eigenvector
components on the outermost sites. Due to the discreteness
of the lattice, this analysis is only reliable for modes with
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We extract the angular momentum dispersion for the chosen
tessellation, and in Fig. 2b compare it to the corresponding
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This reordering is a universal feature of the spatial curvature
and does, therefore, not rely on the details of the tessellation,
as long as it adequately approximates the continuum.
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In our experiments, the tessellation is realized as an electric
circuit network (right half of Fig. 3a) with a node at each
site. Nodes are coupled capacitively among each other and
inductively to ground. The boundary conditions are imple-
mented by additional capacitive coupling of the nodes in the
outermost shell to ground. E�ectively, this corresponds to
adding one more shell with all nodes shorted to ground, i.e.,
it represents the lattice equivalent of the Dirichlet boundary
conditions. A generic electric circuit network is described by
Kircho�’s law

Ia =
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where Ia and Va are the input current and voltage amplitude
(for angular frequency !) at node a, respectively. The matrix
J(!) is called28 the grounded circuit Laplacian, and generally
depends on !. In the continuum limit, the input current I at
some position is related to the divergence of the current density
j via I = r · j, with j = �E = �rV , � the conductivity, E
the electric field due to an applied voltage V , and r the del
operator (for brevity, we dropped the subscript “g” indicating
the geometry). Hence, I = r · (�rV ) = ��V , establishing
the interpretation of J as the restriction of the continuum
Laplace operator to the grounded circuit. The impedance to
ground of node a, Za(!) = Va/Ia, is fully determined by
J and its resonances correspond to eigenmodes of J with
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in red, and photograph of the electric circuit (right half). b, Measurement of impedance to ground Za of the circuit at node a as a function
of input frequency f for di�erent nodes (see inset legend and panel a for an identification of the nodes). Each impedance peak indicates an
eigenmode at that corresponding frequency, which can be excited at the corresponding input node. The highest six frequencies are indicated by
vertical grey lines and the corresponding eigenmodes are shown in panel c. c, Measurement of the voltage profile of the first six eigenmodes
(only one mode is shown for each pair of degenerate modes). The saturation encodes the magnitude as a fraction of the voltage (white denotes
0 and full saturation 1) at the input node (black dots), and the color encodes the phase relative to the reference voltage (see legend).
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conventionally denoted by the Schläfli symbol “{p, q}”, where
a hyperbolic lattice is obtained for (p� 2)(q � 2) > 4. In con-
trast to the Euclidean case, hyperbolic tessellations uniquely
fix the distance between neighboring sites.

We analyze and compare several di�erent tessellations in
supplementary text S336. For a given coverage r0 of the disk,
a good approximation of the continuum is naturally achieved
by tessellations that feature small area per vertex (i.e., which
tile the hyperbolic plane densely)17. However, for our exper-
iments, three di�erent aspects of the modelled lattice are im-
portant. First, for a fixed number of vertices, tessellations with
larger area per vertex cover a larger fraction of the Poincaré
disk, leading to stronger signatures of the negative curvature.
Second, a vertex at the origin of the disk allows for easy ex-
citation and identification of ` = 0 modes. And third, a high
order of rotation symmetry prevents ` 6= 0 modes to have non-
vanishing weight at the origin of the disk, which would im-
pede the identification of ` = 0 modes. These considerations
favour the {3, 7} tessellation, which exhibits a seven-fold ro-
tation symmetry with respect to a site at the centre, and which
covers a disk with radius r0 = 0.94 with only 85 sites, see
Fig. 3a.
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Beltrami operator is given by the graph Laplacian matrix,
which is fully determined by the connectivity or topology of
the lattice sites17,35. Eigenvectors of that matrix, therefore, cor-
respond to eigenmodes of the Laplace-Beltrami operator, and
the absolute value of the angular momentum ` can be system-
atically determined by a Fourier transform of the eigenvector
components on the outermost sites. Due to the discreteness
of the lattice, this analysis is only reliable for modes with
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We extract the angular momentum dispersion for the chosen
tessellation, and in Fig. 2b compare it to the corresponding

Euclidean {3, 6} tessellation with the same number of sites.
As in the continuum, a strong spectral reordering is observed.
This reordering is a universal feature of the spatial curvature
and does, therefore, not rely on the details of the tessellation,
as long as it adequately approximates the continuum.
Implementation in an electric circuit
In our experiments, the tessellation is realized as an electric
circuit network (right half of Fig. 3a) with a node at each
site. Nodes are coupled capacitively among each other and
inductively to ground. The boundary conditions are imple-
mented by additional capacitive coupling of the nodes in the
outermost shell to ground. E�ectively, this corresponds to
adding one more shell with all nodes shorted to ground, i.e.,
it represents the lattice equivalent of the Dirichlet boundary
conditions. A generic electric circuit network is described by
Kircho�’s law

Ia =
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Jab(!)Vb, (3)

where Ia and Va are the input current and voltage amplitude
(for angular frequency !) at node a, respectively. The matrix
J(!) is called28 the grounded circuit Laplacian, and generally
depends on !. In the continuum limit, the input current I at
some position is related to the divergence of the current density
j via I = r · j, with j = �E = �rV , � the conductivity, E
the electric field due to an applied voltage V , and r the del
operator (for brevity, we dropped the subscript “g” indicating
the geometry). Hence, I = r · (�rV ) = ��V , establishing
the interpretation of J as the restriction of the continuum
Laplace operator to the grounded circuit. The impedance to
ground of node a, Za(!) = Va/Ia, is fully determined by
J and its resonances correspond to eigenmodes of J with
eigenvalues � / 1/!235. Note that this relationship could be
changed to � / !2 by exchanging the roles of capacitors and
inductors in implementing the connections between the nodes
resp. to the ground.

Three types of experiments are performed. First, an
impedance analyzer is used to measure Za as a function of
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Figure 4. Time-resolved measurement. a, Schematic illustration of the wave propagation after exciting a Euclidean (top) and hyperbolic
(bottom) drum with a short and spatially localized pulse. The waves travel along geodesics originating from the source (red lines) and wave
fronts at di�erent times are concentric circles perpendicular to the geodesics (black circles). b, Broadband excitation pulse (blue) which is
fed as a current pulse into node 31 at the boundary, and the voltage response measured at the same node (orange). The time corresponding
to the instantaneous phases in panels d-f is marked by a red vertical line. c, Frequency spectrum of the excitation pulse shown in panel b,
demonstrating the wide range of frequencies contained in the pulse. d, Instantaneous phases of the pulse propagating on the hyperbolic drum
(see legend) at time t = 2.032µs. The nodes are indicated by black dots, and concentric hyperbolic circles with center at node 31 are shown
in black to illustrate the hyperbolic metric. e, Instantaneous phase ' vs. the hyperbolic distance dH of every node from the source of the signal.
f, Instantaneous phase ' vs. the Euclidean distance dE of every node from the source of the signal. The shaded region in panels e,f indicates
the approximate spread of the instantaneous phase as a function of dH and dE, respectively.

frequency f = !/2⇡ for each node a. The data for three
input nodes are shown in Fig. 3b. Second, these eigenmodes
are resonantly excited and their voltage profile is measured
using lock-in amplifiers. For the modes at the highest six fre-
quencies, both magnitude (relative to the voltage at the input
node) and phase (relative to a reference signal) are shown in
Fig. 3c. In the final experiment, the circuit is stimulated by the
broadband voltage pulse shown in Fig. 4a fed into the circuit as
a current pulse at a node close to the boundary. Subsequently,
the voltage is measured as a function of time at each node. We
observe the pulse to propagate in the Poincaré disk (the full
time dependence is shown in Supplementary Movie S1 and
discussed in supplementary text S536). A snapshot of the in-
stantaneous phase profile is shown in Fig. 4b, which visualizes
the propagation of the pulse.

Discussion of the experimental data
We proceed with discussing the results of these three measure-
ments. Comparing the impedance of input node 1 (blue curve)
to nodes 14 and 18, see Fig. 3b, we clearly observe the spectral
reordering discussed in the previous section: there are four
additional peaks for input node 14 and 18 located between the
two highest-frequency peaks for input node 1. This implies
that the second ` = 0 mode (i.e. the first mode with n > 0)
is the sixth eigenmode. The explicit values of ` and n for
specific modes can be deduced from the voltage profiles of the
eigenmodes obtained in the second experiment, see Fig. 3c.

We further plot (orange squares in Fig. 2b) the extracted
dispersion of the Laplacian frequencies �n,`

H
with the angular

momentum |`|, obtained by a circular Fourier transform of the
measured signal. We observe an almost perfect match with the
theoretically predicted values (blue dots in Fig. 2b) for the first

few measured modes. However, higher modes are increasingly
di�cult to excite and detect, due to the finite resolution in fre-
quency and space. We remark that the boundary sites of the
present experimental realization of a hyperbolic lattice could
be used to probe holographic dualities. For each eigenmode
of the system, only its angular distribution on the boundary is
important (cf. the angular momentum dispersion in Fig. 2b),
yielding a novel and universal one-dimensional physical sys-
tem on the boundary. We leave a detailed examination of these
intriguing edge modes to future studies.

Finally, we discuss the time-resolved measurements. We
excite the densest region of the frequency spectrum (Fig. 3b)
using a current pulse (Fig. 4b) of mean frequency 500 kHz
(Fig. 4c). By exciting a large number of modes, we approx-
imate the continuum response. The propagation of the pulse
through the circuit network leads to the profile of instantaneous
phases depicted in Fig. 4d, where the phase fronts can be easily
identified by the positions of equal instantaneous phase. Since
the connectivity of the nodes implements the metric of the
Poincaré disk, these phase fronts form concentric hyperbolic
circles, highlighted by black circles in Fig. 4d. This agrees
with the theoretical expectation that the signal emanates from
the excited node along geodesics, which are the generalization
of “straight lines” in curved space (red lines in Fig. 4a).

Wave fronts are perpendicular to these geodesics and thus
constitute concentric circles (black circles in Fig. 4a) up to
corrections due to boundary reflections. In Fig. 4d-f, we have
chosen an early time during the excitation such that contribu-
tions from such reflections do not have a significant impact
on the measured phases. Finally, when plotting the phase vs.
hyperbolic (dH) and Euclidean (dE) distance in Fig. 4e and f,
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It may be worth to study HOW systems heat up!



