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Background.



Background.

Key question in theoretical physics: understanding the dynamics of strongly coupled QFTs.
Perturbation theory is inadequate, hard to say anything at all.

Example: the strong force is asymptotically free.

▶ at short distances interactions are weak and Feynman diagrams capture all the physics.

▶ at long distances the theory is strongly coupled and this is where the interesting questions arise.

⋆ phenomenologically: virtually all experiments are low energy from the point of view of the strong
force.

⋆ theoretically: long standing questions (χSB, confinement, etc.) are about the vacuum.

Conclusion: what we really want to understand is the macroscopic limit of a QCD theory.
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UV: gluons and quarks

IR: ??

RG flow



Background.

Two things can happen. The infrared theory is gapless, or it is gapped.

Gapless means that there are massless degrees of freedom at low energies. Gapped means
everything is massive.

The macroscopic behaviour of the theory crucially depends on this. If gapped, “trivial”
dynamics at energies below the gap. If gapless, interesting phenomena at any energy.
Example: electromagnetism is a long-distance interaction because the photon is massless.

Famous 106$ prize: prove that Yang-Mills is gapped.
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Gapped:

Yang-Mills

Trivial

Gapless:

QFT with spont.
broken symmetry

Goldstone bosons



Background.

A gapped QFT need not be completely trivial in the infrared. There are no propagating
degrees of freedom but there might be multiple vacua with topological degrees of freedom.
Generically, a gapped theory becomes a topological quantum field theory (TQFT) at long
distances.

A gapless QFT need not be just Goldstone particles. There might be massless degrees of
freedom that do not come from broken symmetries. Generically, a gapless theory becomes a
conformal field theory (CFT) at long distances.

For a given QCD theory, we wish to know whether the theory is gapped or gapless. If
gapped, we want to know which TQFT governs its macroscopic limit. If gapless, we need
to figure out the corresponding CFT.
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Background.

In 3 + 1d there are several systems where the answer to these questions is at least
somewhat understood.

▶ N = 0: large-N, lattice, etc.

▶ N = 1: Seiberg duality.

▶ N = 2: Seiberg-Witten.

In 2 + 1d also several examples (with and without SUSY).

In 1 + 1d : today.
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2d QCD.



2d QCD.

Lagrangian of 1 + 1d QCD:

L = g−2 tr F 2 + ψ̄Dψ, Dµ := ∂µ + iAa
µt

a
R

▶ g is the coupling constant (dimensions of mass).

▶ F = dA+ [A,A] is the field strength of a gauge group G .

▶ ψ is a spinor transforming according to representation R generated by matrices tR .

Variations and extensions. Mass terms mψ̄ψ, scalar fields ϕ, chiral quarks (Rℓ,Rr ), etc.
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2d QCD.

Our main question: given QCD with (G ,R), is the theory gapped? And what are the
low-energy effective degrees of freedom?

Before we tackle the general case let me give you two examples to illustrate what the final
answer looks like:

Spin(7) + 7

Gapped
Two vacuum states

Spin(7) + 8

Gapless
Ising model
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2d QCD.

How do we determine the macroscopic dynamics for general (G ,R)?

Recall that g has positive mass dimension, so the gluon kinetic term is classically irrelevant.
The key assumption is that this is also true quantum-mechanically. The intuition is that 2d
gluons do not propagate so they do not affect the low-energy dynamics.

Refinement of this idea: the Hamiltonian of QCD (after gauge-fixing and with appropriate
ordering prescription) contains a mass term for the gluons.

Conclusion: the low-energy dynamics is entirely captured by the fermionic term

Leff = ψ̄Dψ
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[Kutasov, Schwimmer, Komargodski, Ohmori, Roumpedakis, Seifnashri, Cherman, Jacobson, Tanizaki, Ünsal...]



2d QCD.

This is useful because Leff = ψ̄Dψ turns out to be a rational CFT, so we have powerful
techniques at our disposal.

What is the chiral algebra of Leff? First, we write the free fermion term as a
Wess-Zumino-Witten model:

ψ̄∂ψ ≡ SO(dimR)1

Next, we gauge the symmetry G ⊂ SO(dimR). This yields a gauged WZW model:

Leff ≡ SO(dimR)1
GI (R)

The quotient denotes the gauging by G , whose level I (R) is given by the Dynkin
embedding index of G ⊂ SO(dimR).
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2d QCD.

We can use the effective description

Leff ≡ SO(dimR)1
GI (R)

to determine whether QCD is gapped or not.

A unitary CFT is trivial if and only if its energy-momentum tensor is zero. Hence, QCD is
gapped if and only if TSO/G ≡ 0.

Vanishing EM tensor defines a conformal embedding of CFTs. The set of gapped QCD
theories is in bijection with conformal embeddings of the form GI (R) ⊆ SO(dimR)1.
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2d QCD.

Luckily for us, conformal embeddings of WZW models have been fully classified. [Goddard,

Kent, Olive, Nahm, Schellekens, Warner, Bais, Bouwknegt, Arcuri, Gomes...]

By looking at the classification of conformal embeddings we get the list of gapped QCD
theories. These are:

▶ Any G and adjoint fermions R = adj.

▶ G = S(U(N)× U(M)), G = SO(N)× SO(M), G = Sp(N)× Sp(M), and bifundamental
fermions R = ( , ).

▶ G = U(N), G = SO(N), G = Sp(N), and rank-2 fermions R = , .

▶ Some isolated theories (e.g., G = Spin(9) and fermions in the spinor representation).

▶ Combinations of the above.

Any theory not in this list is gapless.
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2d QCD.

Important remark: the low-energy effective description of QCD as a gauged WZW model
was derived under the assumption of the gluon kinetic term being irrelevant. While quite
reasonable (and provable in some cases), it may turn out to be false.

That being said, one can still use the gauged WZW model to determine some aspects of
QCD, even if the assumption is wrong:

▶ For example, the classification of gapped theories is still correct. The idea is that TSO/G can
be shown to create massless states in the full QCD theory, so the spectrum can be gapped only
if TSO/G ≡ 0, whose solutions are classified as above.

▶ The symmetries and anomalies (both perturbative and non-perturbative) of QCD are also fully
captured by the gauged WZW model.

▶ Even the non-invertible symmetries (see Ohmori’s talk) of QCD are captured by the gauged
WZW model.
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2d QCD.

QCD with (G ,R)

Gauged WZW

SO(dimR)1
GI (R)

QCD is gapped

⇐⇒
Gauged WZW model is gapped

⇐⇒
TSO/G ≡ 0

⇐⇒
GI (R) conformally embeds into SO(dimR)1

⇐⇒
(G ,R) ∈ list above

D. Delmastro Infrared phases of 2d QCD. 12 / 20
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Infrared dynamics.

We have determined that the macroscopic degrees of freedom of QCD with content (G ,R)
are captured by the gauged WZW model

Leff =
SO(dimR)1

GI (R)

This effective theory describes the infrared CFT for gapless theories and the infrared TQFT
for gapped ones. In other words, it contains the information about the massless particles, if
any, together with their interactions; and also the topological degrees of freedom (multiple
vacua), if any.

In order to extract these degrees of freedom more explicitly we need to understand gauged
WZW models in more detail.
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Infrared dynamics.

There exists a very explicit algebraic description of gauged WZW models that goes under
the name of the Goddard-Kent-Olive coset construction. It deals with rational CFTs
presented as the quotient of two other rational CFTs:

A

B

The chiral degrees of freedom of the quotient of A/B are the so-called branching functions
χb
a(q), defined as the coefficients of the expansion

χa(q) =
∑
b

χb
a(q)χb(q)

where χa, χb are the chiral characters of A and B, respectively, and q is the modular
parameter.
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[Goddard, Kent, Olive, Schnitzer,
Karabali, Park, Yang, Gawedzki,
Kupiainen...]



Infrared dynamics.

If the theory is gapped, χb
a is an integer (q-independent) and it counts the number of

vacua.

If the theory is gapless, χb
a depends on q and the the coefficient an in the expansion

χb
a(q) ∼ a0 + a1q + a2q

2 + a3q
3 + · · ·

counts the number of states at “energy” L0 = n.

One can derive the full modular data of the coset, together with other properties of interest,
such as scaling dimensions, OPEs, quantum numbers under the various symmetries, etc.

For a general QCD theory (G ,R), the macroscopic degrees of freedom are determined by
the branching functions χb

a of the embedding of GI (R) into SO(dimR)1.
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Examples.

A model that has received a lot of attention recently is adjoint QCD, i.e., with a quark in
the adjoint representation R = adj. Very close to being SUSY (but is not).

This is in the list above, so gapped (known since the 90s). [Kutasov, Klebanov, Dalley...]

Infrared described by the coset
SO(dimG )1

Gh

The coset describes a TQFT. The branching rules of the coset were studied in the 80s. For
example, there are 2rank(G) discrete vacua. [Kac, Wakimoto...]

One can extract lots of interesting physics from this coset (see Ohmori’s talk and their
paper [Komargodski, Ohmori, Roumpedakis, Seifnashri]).
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Examples.

Take SU(2) gauge theory. The R = 3, 5 representations are in the list, so gapped.

SU(2) plus a quark in the 7 is not in the list, hence the theory is gapless.

These massless particles are described by the coset

SO(7)1
SU(2)28

It turns out that this coset is equivalent to the fermionic tricritical Ising model (c = 7/10
in the minimal series). The branching functions χb

a(q) are Virasoro (super)characters.

Infrared operators:

bosons: ϕ(0,0), ϕ(1/10,1/10), ϕ(3/5,3/5), ϕ(3/2,3/2)

fermions: ϕ(0,3/2), ϕ(3/2,0), ϕ(1/10,3/5), ϕ(3/5,1/10)

whose properties are well-understood (scaling dimensions, OPEs, etc.)
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Examples.

’t Hooft model, i.e., G plus NF quarks in the fundamental representation.

Generically, not in the list. Exception: G = SO(N) or G = U(N), and NF = 1. The rest
are all gapless.

The infrared degrees of freedom are described by the coset

SO(νNFN)1
GNF

, ν =

1 orthogonal
2 unitary
4 symplectic

By level-rank duality, this coset can be written as an ungauged WZW model:

SO(νNFN)1
GNF

≡ HN , H =


SO(NF ) orthogonal

U(NF ) unitary

Sp(NF ) symplectic

Note that H is the flavor symmetry of the gauge theory. The infrared CFT HN is in fact
the minimal CFT that matches the ’t Hooft anomalies for H.
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Examples.

G + adj

Gapped
2rank(G) vacua

SU(2) + 7

Gapless
Tricritical Ising CFT

G + NF

Gapless
HN WZW model

for flavor symmetry
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Summary.



Summary.

Our goal was to understand the low-energy dynamics of QCD in 1 + 1d , where the theory
is strongly coupled and macroscopic phenomena emerge.

We gave a classification of the gauge groups and quark content that result in a gapped
theory. Any other theory not in the list is necessarily gapless.

We identified the low-energy degrees of freedom of an arbitrary theory, either as a CFT for
gapless theories or a TQFT for gapped ones.

This low-energy effective theory was given in the form of a gauged WZW model SO/G ,
which is a rational CFT.

Occasionally, this coset SO/G is equivalent to other rational CFTs that are more common,
such as minimal models or ungauged Wess-Zumino-Witten models.

Dynamical properties about QCD can be extracted from this rational CFT (such as critical
exponents), and vice versa.
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Fin.



Extra slides.



Full classification of gapped theories.

g R g R
∀g adjoint su(2) 5

so(N) so(9) 16
u(N) F4 26
so(N) sp(4) 42
sp(N) su(8) 70
u(N) so(16) 128
u(N) so(10) + u(1) 16

su(M) + su(N) + u(1) ( , ) E6 + u(1) 27
so(M) + so(N) ( , ) su(2) + su(2) (2, 4)
sp(M) + sp(N) ( , ) su(2) + sp(3) (2, 14)

su(2) + su(6) (2, 20)
su(2) + so(12) (2, 32)
su(2) + E7 (2, 56)
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Symmetries and anomalies in 2d .

Weyl and Majorana conditions are compatible. Minimal fermion: chiral and real ψℓ, ψr .

Continuous flavor symmetry: if we have NF flavors, h = hℓ ⊕ hr , where
▶ ψℓ/r is real, hℓ/r = so(NF ),
▶ ψℓ/r is pseudo-real, hℓ/r = sp(NF ),
▶ ψℓ/r is complex, either hℓ/r = u(NF ) or su(NF ) (depending on ABJ flavor-gauge anomaly).

’t Hooft anomaly for currents (either flavor h or gauge g):

∂ · ⟨jajb⟩ ∝ tr(taRt
b
R) ≡ I (R)δab

Recall: in 3 + 1d the anomaly is

∂ · ⟨jajbjc⟩ ∝ tr(taR{tbR , tcR}) ≡ A(R)dabc

The anomaly is non-zero if and only if h = su(NF ) and R is complex. Also A(R) = −A(R̄).
By contrast, in 1 + 1d , I (R) ̸= 0 for any group and any R, and I (R) = I (R̄).
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Symmetries and anomalies in 2d .

In 1 + 1d , continuous symmetries cannot break spontaneously. There are no Goldstone
bosons.

For any d , a continuous symmetry that has an ’t Hooft anomaly implies that there are
massless particles in the spectrum. In d = 2, any chiral symmetry is anomalous
(cf. I (R) ̸= 0). Hence, any 2d QFT with a chiral symmetry is gapless.

If h is a chiral symmetry, there are no Goldstone bosons but there are Wess-Zumino-Witten
currents. Idea: h cannot break, hence it is present in the infrared. But the infrared is
conformal, and unitary CFTs with flavor symmetry h always contain an hk subsector for
some level k .

Conclusion: in 1 + 1d , a continuous chiral symmetry h automatically implies gaplessness,
and the massless particles include (among others) an hk CFT.

Example: ’t Hooft model with NF fundamental quarks flows in the infrared to HN WZW
CFT, plus perhaps a flavorless CFT, where H = U(NF ), SO(NF ),Sp(NF ).
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