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Quantum Critical Points and Quantum Critical Regions
[Quantum Phase Transitions, S. Sachdev, 2011, Cambridge Univ. Press]

• Quantum Critical Points (QCP) are associated to transitions between
phases of matter at zero temperature. 

• Occur when one (or several) coupling takes a particular critical value, 
which can in turn be tuned by varying certain external parameters (e.g. 
magnetic field, doping, pressure, etc…)

• At this particular locus, the Ground State dramatically changes (usually
associated to some Symmetry Breaking Pattern). 

• Hence, they depend exclusively on the properties of the GS, and 
thermal fluctuations don’t play any role !

(For instance, don’t confuse with magnetic orders destroyed by thermal 
fluctuations upon heating up the system (Curie transition at finite T))



• Prototypical example: Quantum Ising model

QCP

Quantum Ferromagnet Quantum Paramagnet



• What are the relevant degrees of freedom at the QCP? 

Interested on 2nd order phase transitions:

Typical energy scale vanish
(gap, scale of fluctuations, stiffness, masses, etc)

Divergent correlation length
(exponential to power law)

Scale invariant theory of gapless degrees of freedom

Dispersion relation determined by the critical exponent



But experiments are at finite temperature so… is this useful at all?

• Yes! At finite T, there’s a Quantum Critical Region (QCR)

• Quantum fluctuations still dominate over
thermal fluctuations on the QCR. 

• Scaling behavior dictated by the QCP 
extends over the QCR, up to a given
(dynamically generated) scale

• This affect thermodynamic properties, 
transport coefficients, etc. Experiments 
detect the QCR !

Crossover :



So far we haven’t talked about FERMIONS…

• In metallic systems, there are FERMIONIC degrees of freedom, whose ground state is 
characterized by the presence of a FERMI SURFACE (FS)

• Strong constraints associated to the FS lead to a dramatic simplification of the dynamics of 
fermions at low energies: Fermi Liquid Theory [Landau]

• Pauli’s exclusion principle strongly suppress the phase space 
of allowed states participating on scattering processes at low 
energies

• It may involve large renormalizations, but they do not change 
drastically the analytic structure of the physical observables:

• Adiabatic Continuity: most metallic systems are described in 
the IR by a theory of weakly coupled fermionic quasiparticles. 



• In a more “modern” approach [Polchinski, Shankar] :  

Renders 4-fermi (and 
beyond) interactions 
IRRELEVANT

• Transport functions determined completely by the 
(almost free) effective theory: 

• There’s a MARGINALLY RELEVANT interaction, usually induced by phonons  :  BCS

Pairing instability 
to a SC state

Dimensional transmutation

BCS , Eliashberg
Exponentially suppressed



• Fermi Liquid Th + BCS mechanism : successful description of many 
observed metallic samples. One of the biggest achievements of the 
Wilsonian RG! 

• How does it breaks? 

• Is it possible for a metallic system to present different scaling behavior?

• Alternative dissipation dynamics, scaling for the resistivity?

• Are there alternatives to the BCS mechanism for superconductivity? Non-
exponentially suppressed critical temperatures?  

But, first of all, do we actually need to find an alternative?
Why should we look for Non-Fermi Liquids?



• Usual phenomenology observed in 
High Tc Superconductors, e.g.  
Cuprates at optimal doping.

• Strange Metal behavior above the SC 
dome signals the presence of a QCP 
at T=0. Planckian dissipation!

• Generically, a superconducting phase 
takes on before reaching T=0

• Underlying metallic state is a key 
ingredient for the onset of SC at high 
critical temperatures. 

• Moreover, in some cases the SC dome can be shrunk by applying external 
magnetic fields, so uncovering more of the QCR. (Observation of a naked 
QCP?) 



• A recipe to cook a Non-Fermi Liquid:

• Add singular interactions, such that quantum corrections modify the 
analytic structure of the fermionic quasiparticles

• Find a way to get singular (at low energies) contributions to pairing, 
which may enhance the critical scales

A QCP provides the key ingredient to get both effects: GAPLESS BOSONS!

QCP + FS Non-Fermi Liquid Critical Point

• Presence of a given QCR stands as a plausible explanation for the anomalous scaling 
observed in Strange Metallic States (e.g. anomalous scaling of the resistivity with T)



Our Task:

• Find a NFL critical point by coupling the FS to gapless bosons in the 
vicinity of a QCP. [JAD, Kachru, Raghu, Torroba]

• Characterize the QCR (finite T). In particular, it will demand to develop 
a mechanism for solving certain IR divergencies associated with the 
presence of gapless bosonic modes [JAD, Torroba, Solis]

• Explore the implications for Superconductivity? [JAD, Torroba, Solis]



The model at T=0: The QCP

kF

n

• We will concern about models in d=2 spatial 
dimensions

• Spherical Fermi surface of radius kF (Fermi 
momentum) . This is usually the largest scale in the 
game.

• Near the FS, the quasiparticle energy only depends 
on the perpendicular component of the 
momentum 



• Gapless boson: • Yukawa Interaction:

massive

Overdamped

Is the relativistic boson dispersion relation robust at low energies?

Moral:
At low energies, dynamics of the relevant 
modes is governed by Landau Damping

Consider overdamped 
bosons right from the outset 

of the problem



• Introduce the so-called Debye Mass

• This scale will act as the natural UV cutoff in our Effective Field Theory

• As the model is tuned to criticality, there is no mass term

= Debye Mass

z = Dynamical exponent 

Relativistic boson          : 

Overdamped boson      :
(Landau damping) 

Our Model: FS interacting with a (gapless) z=3 boson

(Quite common! Bosons associated to order parameters tend to display non-relativistic dispersions )



Fermionic excitations, transforming in the 
fundamental of the SU(N)

Overdamped adjoint scalars with 
z=3 dynamical exponent

Relevant coupling g is kept fixed as N goes large 

• Yukawa interaction is RELEVANT in d=2. The model is STRONGLY COUPLED
• Final ingredient: allow the fields to transform in a non-trivial representation 

of a flavor SU(N), in order to solve the theory within a large N expansion

Solve the associated large-N Schwinger-Dyson equations  



• At leading order in N , the (1-loop exact) solution of the Schwinger-Dyson equations is

• Dynamically generated scale below which the system flows to a non-trivial fixed point 
with NFL scaling

• The Yukawa coupling flows to a finite (O(1)) value given by the zero of the beta 
function. Therefore the model flows to an interacting fixed point with NFL dynamics



• The QCP just described is scale invariant. In particular, for the bosonic 
variables, the scale transformation is

• Note we haven’t considered boson self-interactions. In particular, a quartic 
interaction is allowed by symmetries, so there is no reason to not include it 
in our effective action.

• However, under the scale transformation,  

• The interaction is IRRELEVANT at the fixed point thus being consistently 
ignored in the description of the QCP. We will come back to it at finite 
temperatures!



Heating up the QCP

• So far we have found the fixed point at T=0, describing the QCP. It displays 
NFL scaling by means of a fermionic dynamical exponent zf = 3/2

• This occurs below a dynamically generated scale 

• The naïve intuition about the finite T 
physics is that a QCR displaying the 
same anomalous scaling should 
extend above the QCP. As there are 
no additional scales in play, one 
would expect the crossover to occur 
at temperatures  of the same order

Crossover    :  



Q: Is the naïve intuition actually accurate?

A: NO

Q: Why is that? You said there’s no additional scales in the game!

A: Because, once turning on T, the model is plagued of IR divergencies. 

• Of course, these divergencies compromise the perturbative 
expansion of the theory

• So one has to find a mechanism to resolve them. On doing that, 
a new scale is generated, thus drastically changing the naïve 
picture just described



• No damping

• Eff. 2d : IR divergent

• Destroy zf = 3/2

• Dominate at high T

• Landau damping

• Regular

• Induce zf = 3/2

• Dominate at low T

COMPETENCE

This will lead to a richer structure for the QCR!



IR divergencies and its resolution

• In these sort of models, IR divergent amplitudes arise from the 
exchange of static (zero frequency) bosonic modes 

LOG DIVERGENT AS



• IR divergences of this kind appear also at any higher loop diagram involving 
running static modes, so plaguing the whole perturbative series. 

• For the model to be sensible, we need to resolve them:

1st attempt : A perturbative mass (FAILED) 

It is a possibility for a mass term to be generated by fermions running in a loop, that 
would solve our problem already at 1-loop. We know it does not happen at T=0, but 
maybe there’s a chance at finite T…

However…

It is just a correction to the Landau damping (already present at tree level) , so it 
doesn’t do the job



2nd attempt : Non-perturbative resolution 
(FAILED) 

• It is not new that, in many cases, one could get rid of the divergencies by resuming an 
infinite set of diagrams. It usually leads to a finite result with non-analytic dependence 
on the coupling

• This mechanism proved to be useful for similar models in higher dimensions. So it is a 
natural choice here.

o Regulate the integrals, for instance by working in 
dimensional regularization 

o Write down the SD equation by summing the 
rainbow diagrams and solve it

o Cross fingers and take the limit

o Is the result finite??? 

RECIPE

!!!

This method is not suitable . IR divergencies 
on d=2 are too strong to be cured this way…



• So far we’ve been neglecting the 4-boson self-interaction. That is just 
fine as long as the bosonic dynamics are governed by the z=3 scaling, 
for which this is an irrelevant term in the EFT.

• However, at finite T , one has to be more careful, as the effective action 
for the static mode does not have this property!

• At low energies and momenta, there’s a large gap between the zero 
frequency mode and the remaining ones. So we can focus on the 
effective theory for this mode, now including the quartic interaction

3rd attempt : Thermal mass generated by self-interactions  



• Now, under a scale transformation which leaves the kinetic term invariant

• This is the case of “dangerously irrelevant” interaction becoming relevant 
in a particular situation. Physically, one could understand this as a 
consequence of the effective theory for the first mode being on one less 
dimension. 

• Being now relevant, we can no longer ignore its effects. Moreover, this 
interactions generate a mass term which is enough to render the model 
finite! 

RELEVEANT !!!



• The self-consistent Thermal Mass:

Problem Solved!



Solving the model at finite T

• By including the thermal mass, the integral SD equations are now finite

• We are thus in place to solve the model, that is, computing the fermionic 
self-energy

Thermal component:

• Contribution of static modes only
• Resolved by the thermal mass
• This is the new feature which arises at 

finite T
• Introduces a new scale together with new 

scaling behavior!
• Vanishes at T = 0

“Quantum” NFL component:

• Comprises quantum effects inherited 
from the QCP

• Preserves the QCP scaling (zf = 3/2)
• Limits continuously to its T=0 

counterpart 



The “Quantum” Self-Energy:

• Goes continuously to the QCP at T=0

• Anomalous scaling with Temperature, dictated by the QCP



The Thermal Self-Energy:

• A new (T-dependent) scale:

• Violates the QCP scaling!



This is the main point in this story!

• With the appearance of a new dynamically generated scale, one 
would expect a new crossover in the scaling behavior as a function of 
the temperature

• That might affect considerably the structure of the QCR, breaking 
our naïve intuition. In fact that’s what happens! 

• Some regions on parameter space will be governed by the new NFL 
scaling. It is no more caused by quantum effects, but thermal ones.  
So it is called Thermal NFL



• Lets establish some hierarchy of the relevant parameters 

• Then we get three well defined regimes as T increases 
QC NFL

+
FL

Th NFL
+

QC NFL
+
FL

Th. NFL
+
FL



• Now we can develop a better intuition about the QCR

NAÏVE TRUE 



• Recall our hierarchy 

• The QCR is smaller in comparison with 
the naïve intuition

• This occurs because IR singularities (or 
its consequences after being resolved) 
are strong enough to dominate over the 
QCP dynamics above a certain scale 
smaller than

• A new “phase” dominated by static 
boson exchange extends over the QCR

• It presents anomalous scaling with a 
different exponent  



• NFL superconductivity displays new features caused by both quantum 
and thermal effects

• Quantum: Dual effect of interactions mediated by gapless bosons

Gapless boson 
fluctuationsDestroy 

quasiparticles

QC NFL scaling
=

BCS irrelevant

Boson 
Exchange 

Singular contribution to 
BCS vertex 

(enhancement)

COMPETENCE

CRITICAL N

Already 
considered in 
color SC
[D.T. Son]

What about Superconductivity?



• Perturbative RG at zero temperature:

Real for



• Fixed points collide at N=8 

• Correlation length diverges non-analytically

SC phase takes 
over before 

reaching T=0

Quantum Critical metallic 
phase with finite BCS 

coupling

Berezinskii-
Kosterlitz-Thouless

Transition



Thermal effects:

• Static boson contributions are usually excluded by appealing to 
Anderson’s theorem (disorder doesn’t affect superconductivity)

• Not possible to do that in models with N>1

• Lead to additional suppression of SC, together with scale separation

Remnant of IR 
divergencies

(log suppression)

Overall scale 
suppression

Incoherence due to 
Quantum Critical 

Fluctuations

(Recall the BCS case:                     )

Benchmark of NFL 
superconductivity!



• Numerical calculations 
confirmed the analytical 
expectations 

Final T-N phase 
diagram



Summary and conclusions:

• The theory of Non Fermi Liquid metals stands as a plausible theoretical 
approach to the phenomenology of both Strange Metallic normal 
states and the on-set of Superconductivity beyond BCS.

• We worked out a particular example under analytical control, so 
amenable to extract precise predictions for the anomalous scaling.   

• Look for further examples of this kind may lead to a better 
understanding of the underlying physics and competing effects (maybe 
more realistic ones? Models with z=2 order parameter?)

• Besides SC:  Strong incoherence may suppress SC completely. 
Engineering of materials with large N? Naked QCP’s in the lab?

THANK YOU VERY MUCH! 


