Conformal boundary conditions for free fields

Lorenzo Di Pietro (Università di Trieste)

24/09/2021, GGI

Conformal boundary conditions

Preserving d-1 dim. conformal symmetry.

Describe "surface critical behavior"

Observables: correlation functions of boundary operators. Critical exponents different from bulk.

Question: Given a bulk CFT, what are the possible conformal boundary conditions?

Not much known besides rational 2d CFTs.

Exploring the set of possible boundary conditions

• RG intuition hopeless problem, the answer is ~ as rich as the space of one-lower dimensional CFTs

 Possible loophole: the IR fixed point might generically decouple from the bulk

Conformal boundary conditions for free conformal field theories: free bulk, interaction with bdry d.o.f.

- Boundary phase transitions in systems described by free fields in the bulk;
- Rich enough: interesting classification problem;

Simple enough: worth trying to attack;

Make it amenable to numerical bootstrap

Applications:

• Free scalar: goldstone phase, \mathbb{Z}_2 breaking transition in 4d bulk;

 Maxwell: new way to construct & study 3d abelian gauge theories

Introduction: Free Bulk & Free Boundary

In the bulk: free scalar CFT

$$\Box \phi = 0 \qquad \qquad \phi(y, \vec{x}) \underset{y \to 0}{\sim} (\hat{\phi}(\vec{x}) + \dots) + y(\widehat{\partial_y \phi}(\vec{x}) + \dots)$$

Stationary action (w/out interactions on the boundary):

$$\hat{\phi}(\vec{x}) = 0$$
 or $\widehat{\partial_y \phi}(\vec{x}) = 0$ Neumann

Introduction: Free Bulk & Free Boundary

Similar for free Dirac CFT $\gamma^{\mu}\partial_{\mu}\Psi(y,\vec{x})=0$

$$\widehat{\psi_{\pm}}(\vec{x}) = \left. \frac{\mathbb{1} \pm \gamma^y}{2} \Psi(y, \vec{x}) \right|_{y=0}$$

$$\widehat{\psi_+}(\vec{x}) = 0$$
 or $\widehat{\psi_-}(\vec{x}) = 0$

or <u>free higher-form CFT</u>, e.g. in 4d $\partial^{\mu}F_{\mu\nu}=0=\partial^{\mu}\tilde{F}_{\mu\nu}$

$$\hat{J}_a(\vec{x}) = \frac{1}{g^2} \left. F_{ya}(y, \vec{x}) \right|_{y=0} , \hat{I}_a(\vec{x}) = \frac{1}{4\pi i} \epsilon_{abc} \left. F^{bc}(y, \vec{x}) \right|_{y=0}$$

$$\hat{J}_a(ec{x}) = 0$$
 or $\hat{I}_a(ec{x}) = 0$

Introduction: Free Bulk & Free Boundary

In all these cases: \widehat{O}_1 and \widehat{O}_2 , one set to zero; only 1 boundary primary in the **boundary OPE**.

Boundary theory: Mean Field Theory for the remaining operator. (MFT = GFF = Wick contractions)

Adding boundary interactions: Scalar Example

Starts an RG, endpoint: conformal b.c. with both

$$\hat{\phi} \neq 0 \qquad \widehat{\partial_y \phi} \neq 0$$

Interacting boundary condition for free fields:

• Both \widehat{O}_1 and \widehat{O}_2 in the set of boundary operators, and they appear in the boundary OPE of the bulk free field

$$(\widehat{O}_1 + \text{desc.})$$

 $(\widehat{O}_2 + \text{desc.})$

Scaling dimensions $\hat{\Delta}_1$ and $\hat{\Delta}_2$ fixed by e.o.m.

Boundary theory is **not MFT**

Example (1):

[D, Gaiotto, Lauria, Wu]

interacting conformal b.c. for 4d Maxwell CFT

$$S_{\text{bulk}} = -\frac{i}{8\pi} \int \left[\tau(F^{-})^{2} - \bar{\tau}(F^{+})^{2} \right] , \quad \tau \equiv \frac{\theta}{2\pi} + i \frac{2\pi}{g^{2}}$$

$$\hat{J}_a(\vec{x}) = \frac{1}{g^2} \left. F_{ya}(y, \vec{x}) \right|_{y=0} , \hat{I}_a(\vec{x}) = \frac{1}{4\pi i} \epsilon_{abc} \left. F^{bc}(y, \vec{x}) \right|_{y=0}$$

Start with Neumann + 3d CFT with U(1) symmetry

$$\int d^{d-1}\vec{x} A_a(\vec{x}) J_{CFT}^a(\vec{x})$$

$$\hat{J}_a = J_{\text{CFT }a}$$

 $\hat{J}_a = J_{ ext{CFT}\,a}$ Modified Neumann

au coefficient of a bulk operator: **exactly marginal**

$$B(au,ar{ au})
ightarrow p \hat{J}_a + q \hat{I}_a \quad {
m MFT} + {
m 3d} \; {
m CFT} \; T_{p,q}$$

 $T_{p,q}$ from $T_{0,1}$ through $SL(2,\mathbb{Z})$ [Witten]

Example (2):

[D, Lauria, Niro]

attempts with 4d free scalar

Calculable coupling to 3d CFT

use large N

- Large N vector models: φ^I N free fields; with O(N)-invariant quartic interaction: interacting CFT, solvable in 1/N expansion
- Singlet scalar operator of dimension 1 (free scalar) or 2 (critical scalar): $\varphi^I\varphi^I$, σ .

Dirichlet + free:

$$g \, \widehat{\partial_y \Phi} \, \varphi^I \varphi^I$$

Neumann + critical:

$$g'\,\widehat{\Phi}\,\sigma$$

No fixed point with bulk-boundary interactions.

Boundary RG with two dual descriptions: g' = 1/g

New connection between critical/free theory.

Example (3):

[Behan, D, Lauria, Van Rees]

examples with 3d free scalar

Coupling to **Minimal Models** on the 2d boundary

Dirichlet + $\mathcal{M}_{m+1,m}$ in the large m limit

$$g\mathcal{O}_{(1,3)} + g'\mathcal{O}_{(1,2)}\widehat{\partial_y\phi}$$

$$\Delta_{(1,3)} = 2 + O(m^{-1}), \quad \Delta_{(1,2)} = 1/2 + O(m^{-1})$$

Perturbative fixed point with $g_*, g_*' \sim 1/m$

Beyond perturbation theory?

Numerical Conformal Bootstrap

Conformal Bootstrap to look for interacting boundary conditions.

General approach [Liendo, Rastelli, Van Rees]

In our setup: simplicity in the bulk allows us to concentrate on the boundary correlators. Akin to bootstrapping a non-local conformal theory. [Behan]

Idea: numerical bootstrap applied to boundary 4pt functions of \widehat{O}_1 and \widehat{O}_2 .

Conformal Data that enters: $\Delta_{\mathcal{O}}$, $\lambda_{11\mathcal{O}}$, $\lambda_{22\mathcal{O}}$, $\lambda_{12\mathcal{O}}$

Input from the free bulk theory: constraints among the OPE coefficients.

E.g. free scalar theory:
$$\widehat{O}_1 \equiv \widehat{\phi}, \ \widehat{O}_2 \equiv \widehat{\partial_y \phi}$$

3pt function from resummation of boundary OPE. Compatibility with bulk OPE limit:

$$\lambda_{11\mathcal{O}} = F_1(\lambda_{12\mathcal{O}}, \Delta_{\mathcal{O}}, b_1/b_2)$$
$$\lambda_{22\mathcal{O}} = F_2(\lambda_{12\mathcal{O}}, \Delta_{\mathcal{O}}, b_1/b_2)$$

 b_1/b_2 constrained by unitarity in a known interval.

Convenient parametrization:

• $\hat{ au}_{ab}$ lowest spin 2

$$\widehat{\Delta}_{\widehat{ au}} \geq d-1$$
 measures "non-locality"

• b_1/b_2 can be traded with a_{ϕ^2} : $\langle \phi^2 \rangle = \frac{a_{\phi^2}}{n^{d-2}}$

$$-2^{2-d} \le a_{\phi^2} \le 2^{2-d}$$

unitarity interval to scan

Results for 4d scalar

[Behan, D, Lauria, Van Rees]

Results for 3d scalar

[Behan, D, Lauria, Van Rees]

Results for 3d scalar

"Minimal Model" b.c. up to $\,m=4\,$

Summary:

- Interacting boundary conditions for free fields;
- Examples: Maxwell theory with BCFT manifold; 4d scalar and large N duality; 3d scalars and mm's.
- Bootstrap approach: rigorous results for free scalar in 4d and 3d;

To do list:

- Apply bootstrap approach to Maxwell case;
- Free fermions in the bulk;
- Compare with boundary criticality in experiments/ simulations of systems described by free scalars (e.g. superfluids).

Thank You