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Introduction and Motivation

• Broad goal: Use 2 + 1d TQFT∗ as a simple toy model /
stepping stone to understand global structure of space of QFTs,
T .

• Natural questions: e.g., which theories arise from Lagrangians?
Which groups act naturally on T ?

• All these questions can be asked in the simpler arena of TQFT.
∗For the rest of this talk, unless otherwise specified, TQFT := 2+1d TQFT.
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Introduction and Motivation (cont...)

• A related but harder problem in the same spirit is to understand
the space of CFTs via the bootstrap.

• These types of diagrams have complicated solutions in CFT.

• Above diagram reappears in TQFT as a solution to a finite
system of polynomial equations ⇒ simpler problem with natural
Galois group action.
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Introduction and Motivation (cont...)

• As we will see, this picture leads to a natural partitioning of

the space of TQFTs, Ttop, into orbits of the Galois group.

• Since the orbits are discrete, there is no immediately natural

notion of a “small” deformation; e.g., unitary theories sometimes

go to non-unitary ones and vice versa.

• At the same time, this Galois group action has certain nice

physical properties: it preserves 1-form symmetries, it preserves

certain averaged link invariants / measures of topological en-

tanglement entropy [M.B. and Radhakrishnan (2019)]; useful in

classification of TQFTs [Rowel, Strong et. al] and study of

gapped boundaries [Kaidi, Komargodski et. al.]
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Partial Summary of our Claims

• We found many results that indicate the Galois action is, in

some sense, well controlled (too many to discuss at length; I’ll

discuss some aspects of those with a “∗”):

• On symmetries: unitary 0-form symmetries and 2-groups are

preserved under the Galois action (i.e., these structures are iso-

morphic before and after the Galois action); up to a mild as-

sumption, the same is true for anti-unitary 0-form symmetries

and 2-groups. Allows for a refinement of symmetries associated

with Galois orbits and an often easier way to understand if two

theories are part of the same orbit.
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Partial Summary of our Claims (cont...)

• 0-form gauging: 0-form symmetry gauging interacts with

Galois conjugation in a controlled way:

(q(CG))G = q′(CG) . (1)

• Drinfeld center (for the experts): Roughly, Galois conjuga-

tion “commutes” with taking the Drinfeld center:

Z(q(C)) = q′(Z(C)) . (2)

• Global structure of TQFTs*: Product structure / primality

of TQFTs preserved under Galois
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Partial Summary of our Claims (cont...)

• Subspaces of TQFTs*: Space of discrete gauge theories
closed under Galois conjugation + related statements.

• On dualities*: For broad classes of theories (e.g., discrete
gauge theories), duality structure is preserved under Galois con-
jugation.

• 1-form gauging and Galois invariance*: Galois invariance
is preserved by 1-form symmetry gauging (and more general
Rep(G) condensation). The story for 0-form gauging is more
complicated (interesting generalization of ’t Hooft anomalies).

• Simplicity of unitary Galois invariant TQFTs*: Theories
with nteger quantum dimensions, can be constrained and (up to
a conjecture) classified; Much less wild than non-unitary theories.
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2+1d TQFT and MTC Review

• TQFTs on some spacetime manifold, M, are QFTs that (up
to minor subtleties) don’t depend on the metric on M. We will
focus on theories that also don’t depend on a spin structure.

• Will be useful to have a more algebraic (and non-Lagrangian)
approach to TQFT. Reasons: (1) Lagrangian descriptions con-
tain redundancies (e.g., Toric code TQFT = Z2 discrete gauge
theory = Spin(16)1 CS theory = U(1) × U(1) CS theory) (2)

often easier to prove general statements.

• But will also want to keep in mind Chern-Simons theory:

S =
k

4π

∫
M

Tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
, (3)
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2+1d TQFT and MTC Review (cont...)

• Basic observables of CS theory are Wilson lines:

WR(C) = TrRP exp
(∫
C
A

)
. (4)

Correlators compute various topological invariants of M.

• Wilson lines topological ⇒

WRi ×WRj =
∑
k

Nk
ijWRk

, Nk
ij ∈ Z≥0 , (5)

For given k, there are a finite number of Ri.

9



2+1d TQFT and MTC Review (cont...)

• These lines also have interesting (non-degenerate) anyonic

braiding
Tuesday,	June	1,	2021 9:13	AM

• This basic structure is encapsulated in an algebraic object called

a modular tensor category (MTC).
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2+1d TQFT and MTC Review (cont...)

• Start from finite abstract collection of objects / anyons (gen-

eralizations of Wilson lines), {`i}, w/ comm. / assoc. fusion

`i × `j =
∑
k

Nk
ij`k , Nk

ij ∈ Z≥0 . (6)

• The Nk
ij = dim(V kij) are dimensions of certain Hilbert spaces

called “fusion spaces.”

• If ∀`i,j,
∑
kN

k
ij = 1, the theory is Abelian with fusion rules

those of a finite Abelian group. If not, the theory is non-Abelian.

Abelian part gives the 1-form symmetry.
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2+1d TQFT and MTC Review (cont...)

• Fusions should be associative, so

Tuesday,	April	27,	2021 5:42	AM
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2+1d TQFT and MTC Review (cont...)

• Above is a TQFT version of CFT “bootstrap” diagram and

satisfies:
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2+1d TQFT and MTC Review (cont...)

• Where R is depicted as

Tuesday,	April	27,	2021 5:42	AM

Can also be used to define self-statistics/twists, θ`i, of the anyons.

• Together F and R characterize an MTC. However, they have
an ambiguity arising from choosing a basis for fusion spaces.

• After quotienting out by this ambiguity, the solutions become
discrete [Ocneanu; Etingof et. al.], and MTCs are rigid.
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Galois Conjugation

• Galois groups arise in the context of certain special field exten-

sions, E/N . In our context, we are mostly interested in them as

arising from roots of polynomials with coefficients in N . The Ga-

lois group, Gal(E/N) then arises as the automorphisms of E/N

that fix N pointwise.

• For example, N = Q and E = Q(i). This field extension arises

from solutions to

x2 + 1 = 0 , (7)

and Gal(E/N) ' Z2 is just complex conjugation:

g(a+ ib) = a− ib , a, b ∈ Q . (8)
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Galois Conjugation (cont...)

• Pentagon / hexagon equations are polynomials with coeffi-
cients in Q, so natural that TQFT data takes values in algebraic
number field, Q(F,R), with Galois group Gal(T ) [Davidovich,

Hagge et. al.]. Key point: things constructed algebraically
from F,R transform nicely.

• Turns out can prove modular data is in a cyclotomic field
(therefore corresponding Galois subgroup is abelian) [de Boer

and Goeree (1991); Coste and Gannon (1994); · · ·].

• By construction, Gal(T ) preserves fusion algebra. It therefore
relates theories with isomorphic 1-form symmetries.

• For MTC data that depends on fusion spaces, Gal(T ) is basis
dependendent. When needed, can prove we can pick a nice basis.
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Galois Conjugation (cont...)

Example 1: Semion ' SU(2)1 CS theory

• The non-trivial fusion rules are

s× s = 1 . (9)

• Can take

F ssss = −1 , Rss1 = i . (10)

• Alternatively

θ1 = 1 , θs = i . (11)

• Therefore, Gal(SU(2)1) = Z2 acts via complex conjugation. It
takes us to (E7)1.
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Galois Conjugation (cont...)

• The un-normalized S-matrix / Hopf-link takes the form

S̃ab =
θa×b
θaθb

. (12)

• Quantum dimensions are all equal to one

da = S̃a1 = 1 . (13)

Example 2: Double semion ' SU(2)1 × (E7)1 CS theory '
twisted Z2 discrete gauge theory.

• Fusion rules generate Z2 × Z2

(s,1)×(s,1) = (1, s̄)×(1, s̄) = (1,1) , (s,1)×(1, s̄) = (s, s̄) . (14)
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Galois Conjugation (cont...)

• Can take

θ(1,1) = 1 , θ(s,1) = i , θ(1,s̄) = −i , θ(s,s̄) = 1 . (15)

• Again Gal(SU(2)1× (E7)1) = Z2 acts via complex conjugation

and exchanges

θ(s,1) ↔ θ(1,s̄) . (16)

• This action maps the theory to itself; it can be undone by the

application of a time-reversal symmetry. All quantum dimensions

again equal to one.
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Galois Conjugation (cont...)

• Note that there is a Lagrangian subcategory∗, Rep(Z2) '
{(1,1), (s, s̄)}, of Wilson lines that is itself Galois invariant. This

is an important fact we will return to later.

Example 3: Fibonacci ' (G2)1 CS theory

• The non-trivial fusion rule has the form

τ × τ = 1 + τ . (17)

∗This is a subset of bosons, closed under fusion, with trivial mutual braiding
satisfying dim(Rep(Z2))2 = dim(SU(2)1 × (E7)1). In this case S̃Rep(Z2) =(

1 1
1 1

)
.
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Galois Conjugation (cont...)

• The non-trivial MTC data can be taken to be

F ττττ =

(
ϕ−1 ϕ−1/2

ϕ−1/2 −ϕ−1

)
, R1

ττ = ξ−2 ,

Rτττ = ξ
3
2 , ϕ =

1

2
(1 +

√
5) = ξ−1 + 1 + ξ , ξ = exp

(
2πi

5

)
.

• We have modular data

S̃ =

(
1 ϕ

ϕ −1

)
, θ1 = 1 , θτ = exp

(
4πi

5

)
. (18)

• The quantum dimensions are d1 = S̃11 = 1 and dτ = S̃τ1 =
1+
√

5
2 .
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Galois Conjugation (cont...)

• For simplicity, let us restrict to a Z×5 Galois group acting on

the above modular data and quantum dimensions. Acting with

4 ∈ Z×5 takes (ξ, θτ) → (ξ4, θ4
τ ) = (ξ−1, θ−1

τ ) and takes dτ → dτ .

This is a map taking (G2)1 → (F4)1. OTOH, taking ξ → ξ3

takes (ξ, θτ)→ (ξ3, θ3
τ ) and dτ → 1−

√
5

2 < 0. This is a non-unitary

theory.

Upshot: Galois transformations can be “wild,” but, as we have

hinted above, there is also order.

• General abelian picture: have a space of theories correspond-

ing to abelian finite groups, organized by rank, partitioned into

different Galois orbits. Captured by abelian CS theory.
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Galois Conjugation (cont...)

• Non-abelian picture: space of fusion categories that can be

completed into MTCs, organized by rank, partitioned into differ-

ent Galois orbits. Unclear how much captured by CS theory.
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Galois Conjugation and Global Structure of TQFTs

• Perhaps the most basic question we can ask about the global
structure of a TQFT is if it is a “product” theory or not.

• What should we mean by this? We have notions of fusion and
braiding... The rough idea is that if T = T1×T2, then T1 and T2
are separately closed under fusion and transparent under braiding
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Galois Conjugation and Global Structure of TQFTs
(cont...)

• A theorem of [Müger (2003)] gives a necessary and sufficient
condition for such factorization: S̃T contains a non-degenerate
sub-S matrix, S̃T1

.... Repeated application of this criterion yields
a “prime factorization.”

• In the examples, we saw that prime theories were mapped
to prime theories and composite to composite under the Galois
action... Is this generally true? Yes.

• This follows from the fact that the S-matrix is quadratic in the
braiding:

S̃ab = TrRb̄aRāb . (19)
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Galois Conjugation and Global Structure of TQFTs

(cont...)

• So, if Det(S̃T1
) = ζ 6= 0, then, acting with Galois element

q ∈ Gal(T ) yields

q(Det(S̃T1
)) = (Det(S̃q(T1))) = q(ζ) 6= 0 . (20)

• By Müger’s theorem, this means the factorization persists.
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Some Galois-closed Subspaces of TQFTs

• Since Galois actions preserve the fusion rules, abelian theories
are mapped to abelian theories. This space is therefore closed.

• In the examples, we saw that the twisted Z2 discrete gauge
theory is mapped to itself under Galois action. This fact suggests
at least three questions that will occupy the rest of the talk:
(1) Are discrete gauge theories always mapped to other discrete
gauge theories under Galois action? (2) Can we say something
more general about Galois-invariant TQFTs?

• More indirectly, it will suggest a third question: (3) if we
start with a Galois-invariant theory and gauge a (bosonic) 1-
form symmetry, do we end up with something Galois invariant.
This is because gauging Rep(Z2) takes us to a Z2 SPT which is
also Galois invariant.
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Some Galois-closed Subspaces of TQFTs (cont...)

• Regarding (1): a G discrete gauge theory, TG, always has a

set of Wilson lines that are closed under fusion (there are also

magnetic fluxes and dyons). The set of such lines is generated

by those labeled by irreps of G. We have

dWRi
= S̃WRi

W1
= |Ri| . (21)

• The Wilson lines are a set of bosons with trivial mutual braiding

and form a Rep(G) subcategory. This is a Lagrangian subcate-

gory

(dim(Rep(G)))2 :=

∑
i

|Ri|2
2

= |G|2 = dim(TG) . (22)
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Some Galois-closed Subspaces of TQFTs (cont...)

• This is enough to decide something is a discrete gauge theory.

• This is roughly because 0-form gauging & Rep(G) 1-form sym-
metry gauging (for abelian G; or general Rep(G) “condensation”
for non-abelian G) are inverses of each other and the 1-form
gauging results in projecting out all lines carying flux (anything
with magnetic charge braids non-trivially with at least one WRi)
while the Wilson lines are identified with the vacuum.

• It is then easy to show that this space of theories is closed
under Galois action. The point is that

dWRi
∈ Z , λ(WRi,WR,j) =

S̃WRi
WRj

S̃W1WRj

= 1 , dim(TG) ∈ Z , (23)

and so they are unaffected by the Galois action.
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Some Galois-closed Subspaces of TQFTs (cont...)

• Can say more using Tannaka-Krein reconstruction. In particu-

lar, one can prove that acting with q ∈ Gal(TG) yields

q(TG) = T ′G , (24)

i.e., another discrete gauge theory with the same gauge group,

G (possibly with a different DW twist).

• In general, there can be other Lagrangian subcategories Rep(Hi)

for Hi 6= G. Then the theory can also be thought of as an Hi
discrete gauge theory. These are dualities. Since the number

of Lagrangian subcategories can’t change under Galois action,

the duality structure of theories before and after conjugation is

isomorphic.
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Galois invariant TQFTs

• Regarding our question (2), we saw that the twisted Z2 discrete
gauge theory is invariant under the Galois action. A similar story
holds in some other simple and famous examples like Toric code
TQFT (a.k.a. untwisted Z2 discrete gauge theory). What can
one say more generally?

• Well, the twisted Z2 discrete gauge = SU(2)1 × (E7)1. Can
get Galois-invariant theories from products over Galois orbits.

• But this yields an immense and uncontrolled space if we con-
sider non-unitary examples like

T = (G2)1 × · · · , (25)

where the ellipses contain non-unitary theories with dτ = 1−
√

5
2 .

We will naively need to involve every prime theory.
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Galois invariant TQFTs (cont...)

• Let us therefore restrict to unitary theories.

• Here things are already under better control: the quantum

dimensions must be integers.

• To see this, we should first spell out what we mean by a unitary

theory. At the level of the MTC, we require that it is possible

to write F and R as unitary matrices and have all da > 0.

• Recall that the da satisfy

da × db =
∑
c

(Na) c
b dc . (26)
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Galois invariant TQFTs (cont...)

• Since (Na) c
b is a non-negative integer matrix, the Perron-

Frobenius theorem tells us that there is a unique eigenvector

with positive entries and that it corresponds a maximal norm

positive eigenvalue (the FP dimension). This means that da is

the FP dimension in a unitary theory.

• The quantum dimensions are algebraic integers (they are max-

imal eigenvalues of a polynomial over the integers) and it follows

that any Galois action on the quantum dimensions satisfies

|q(da)| ≤ da , ∀q ∈ Gal(T ) , ∀a ∈ T . (27)

• If the theory is Galois-invariant then q(da) = db for some b.
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Galois invariant TQFTs (cont...)

• Since q must be invertible, we require that

q−1(db) = da . (28)

But imposing (27) on this inverse action means that da = db.

Therefore, db ∈ Q. In fact, the rational root theorem implies

that db ∈ Z.

• Can we constrain such theories further?

• Theories with integer quantum dimensions are believed to be

quite constrained. All known examples are in a class of theories

called “weakly group theoretical.”
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Galois invariant TQFTs (cont...)

• A result of [Natale (2018)] building on work of [Drinfeld et.

al. (2010)] shows that any “weakly group theoretical” TQFT

can be constructed from gauging 0-form symmetries of theories

built out of 8 different classes of abelian theories (some of these

classes are infinite).

• We can say more by using a result of ours I won’t explain:

Theorem (M.B., Radhakrishnan): If we start from a unitary

Galois-invaraint TQFT and gauge a bosonic 1-form symmetry

(or, more generally, condense some Rep(G)) the resulting theory

is also Galois invariant.
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Galois invariant TQFTs (cont...)

• Natale’s result, combined with the above theorem, implies that

all Galois-invariant weakly group theoretical TQFTs can be got-

ten by gauging zero-form symmetries of theories involving prod-

ucts of arbitrary numbers of abelian (untwisted) discrete gauge

theories, theories along with Spin(8)1, and certain abelian theo-

ries with Zp × Zp fusion rules (with p an odd prime).

• If indeed all integeral theories are weakly group theoretical,

then we have shown that all unitary Galois invariant theories are

of the above type. This is considerably simpler than the non-

unitary case!
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Conclusions

• Galois conjugation is a phenomenon that is simultaneously
“wild” and “tame.” It allows us to explore the space of TQFTs
in interesting yet well-organized ways.

• Can we use Galois invariance to define interesting equiva-
lence classes of Galois-non-invariant theories? Will this lead to
progress on classification of TQFTs?

• Saw that Galois invariant unitary TQFTs were better controlled
than non-unitary siblings. Can this be fully proven and extended?

• How does Galois theory work in higher-dimensional TQFT.
For example, in 4D, we know that discrete gauge theories play
a much more prominent role... In 3D these have very nice prop-
erties.

37


