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• The audience of this talk is mixed (condensed 
matter theorists and high-energy theorists).  
Early in the talk I will review topological aspects 
of line operators.  I will also try to explain the 
basics of supersymmetric (BPS) line operators. 

• Please do not hesitate to ask questions if there is 
anything unclear.
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Plan of the talk
• Motivations 

• Classification(s) of line operators in 4d (review) 

• SUSY localization, supersymmetric quantum 
mechanics, and brane construction 

• Wall-crossing and operator ordering 

• Summary, conclusions, and future directions
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Motivations
• Wilson and ’t Hooft line operators are the most 

basic non-local operators that exist in a general 
4d gauge theory.  Order parameters for phases. 

• Some properties of these line operators are 
topological, as we will review. 

• With  supersymmetry, very detailed exact 
calculations are possible for BPS line operators.  
Such calculations have many non-trivial physical 
and mathematical implications via dualities.

𝒩 = 2
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Wilson line (loop) operator

•
.  

World-line of an infinitely 
heavy electrically charged 
particle. 

• Order parameter for 
confinement.  Area law due 
to the electric flux tube.  

, .

WR(γ) = TrRP exp(i∮γ
A)

⟨WR⟩ ∼ e−V(L)T V(L) ∝ L
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Topological classification of  
Wilson lines

• Gauge theory with gauge group  with matter 

•  

• Codimension-2 defects for  are topological.  
Wilson lines are classified by the charges for the 

 one-form symmetry (center symmetry). 

• For  with no matter, the charge is the 
“N-ality” (number of boxes in the Young tableau 
mod N).

G

ΓE ≡ {g ∈ Center(G) |g acts trivially on matter}

g ∈ ΓE

ΓE

G = SU(N)
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’t Hooft line operator
• World-line of an infinitely heavy magnetically 

charged particle.  

• Order parameter for gauge symmetry breaking 
(Higgs mechanism).  Area law due to a 
magnetic flux tube.
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⟨TB(γ)⟩ = ∫F= B
2 vol(S2)

𝒟A…e−S
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Topological classification of 
’t Hooft lines

• The global form of the gauge group  is 
restricted by matter. 

• .  

• ’t Hooft lines are topologically classified by the 
charges for the  one-form symmetry.

G

ΓM ≡ π1(G)∨ = Hom(π1(G), U(1))

ΓM
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• Properties as order parameters (area v.s. 
perimeter laws) depend only on the charges for 
the one-form symmetries. 

• For Wilson lines, this is because gluons and 
matter fields can screen the electric charges. 

• For ’t Hooft lines, smooth (Polyakov-’t Hooft) 
monopoles can screen the magnetic charges.
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Wilson-'t Hooft line operators 
in 4d  theories𝒩 = 2

• Constructions of Wilson and ’t Hooft lines can be 
generalized (by using scalars) to define BPS line 
operators in  supersymmetric gauge theories 
[Maldacena][Rey-Yee][Kapustin]. 

• They play significant roles in the 4d/2d (AGT) 
correspondence [Alday,Gaiotto,Tachikawa]. 

• Wilson-’t Hooft lines in 4d map to Verlinde lines 
(topological defects) in 2d Liouville CFT 
[Drukker,Gomis,TO,Teschner][Alday,Gaiotto,Gukov,Tachikawa,Verlinde][Drukker,Gaiotto,Gomis].

𝒩 = 2
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Wilson-'t Hooft line operators 
in 4d  theories𝒩 = 2

• Expectation values can be computed exactly by 
SUSY localization.  Given as a sum over saddle 
points [Gomis,TO,Pestun][Ito,TO,Taki].

• Via Kronheimer’s correspondence between 
monopoles and instantons, SUSY localization for 
’t Hooft line operators is intimately connected to 
instanton counting.
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Classification of 
BPS line operators

• BPS line operators admit more refined 
classification than the topological (one-form 
symmetry) classification [Kapustin]. 

• BPS Wilson lines are classified by 
representations. 

• BPS ’t Hooft lines are classified by the magnetic 
charge  for the Dirac singularity 

.
B

F ∼ (B/2)vol(S2)
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Classification of 
BPS line operators

• General BPS Wilson-’t Hooft line operators are 
classified by  [Kapustin]. 

• : lattice generated by the weights in all 
representations  of the gauge group .  
Electric charges. 

• : dual lattice of .  Magnetic 
charges .

(Λchar × Λcochar)/Weyl

Λchar
R G

Λcochar Λchar
B
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• Let  be the lattice generated by roots and 
weights in the matter representation.  Then 

 .  One-form symmetry 
charges.  

•  . 

• Assumed no discrete theta angles [Aharony et al.].

Λmat

Λchar/Λmat = Γ∨
E

Λcochar/Λcoroot = Γ∨
M
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Coulomb branch of 4d  
theory on 

𝒩 = 2
S1 × ℝ3

• HyperKähler manifold. 

• For a class S theory based on a punctured 
Riemann surface C, the Coulomb branch is the 
Hitchin moduli space on C. 

• VEVs of BPS Wilson-'t Hooft operators 
parametrize the Coulomb branch.
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Set-up: S1 ×λ ℝ3

•  : As we go around the , rotate along 
the 3-axis of  by angle .  Insert line 
operator  around the . 

• Analog of omega deformation for 5d instanton 
counting. 

• Set-up of Gaiotto, Moore and Neitzke who 
studied line operators with spectral networks.

S1 ×λ ℝ3 S1

ℝ3 2πλ
L S1
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⟨L⟩ = Trℋ(L)(−1)Fe−βHe2πiλ(J3+I3)…



Set-up: S1 xλ R3

• Deformation quantization of the Coulomb 
branch. 

• For a class S theoryh, via the AGT 
correspondence, the VEV  is mapped to the 
Wigner transform (Weyl ordering) of the Verlinde 
operator expressed as a difference operator 
[Ito,TO,Taki].

⟨L⟩
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Deformation quantization of 
the Coulomb branch

• Omega deformation quantizes the 
Coulomb branch. 

• 1-dimensional topological sector.  Only 
the ordering of operators matters. 

• Noncommutative product implemented 
by the Moyal product [Ito-TO-Taki].  This 
provides non-trivial checks.
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x3

⟨𝒪1𝒪2⟩ = ⟨𝒪1⟩ * ⟨𝒪2⟩

( f * g)(a, b) ≡ lim
a′ →a, b′ →b

eiℏ(∂b∂a′ −∂a∂b′ )f(a, b)g(a′ , b′ ) , ℏ ∝ λ



Bogomolny equations describe smooth (Pokyakov-’t 
Hooft) monopoles in non-abelian gauge theories. 

We are interested in a situation where there is a Dirac 
monopole singularity. 

Smooth monopoles may screen and reduce the Dirac 
singularity.
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B

Monopole screening/
bubbling



Localization for 't Hooft 
operators

• Recall that the instanton partition function receives 
contributions from torus fixed points on the 
instanton moduli space. 

• Similarly, the 't Hooft operator VEV receives 
contributions from torus fixed points on the 
(singular) monopole moduli space. [Gomis, TO & Pestun][Ito, 
TO & Taki] 

• The fixed points occur in the locus where smooth 
monopoles screen the singular one.
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Monopole bubbling 
contribution

• v = B - coroot : magnetic charge reduced by 
screening 

• Zmono for the 't Hooft operator is the analog of the 
5d instanton partition function for singular 
monopoles. 

• (a,b): Fenchel-Nielsen coordinates of the 
Hitching moduli space (A1 class S theories).
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⟨TB⟩ = ∑
v

eiv⋅bZ1-loop(a, λ; v)Zmono(a, λ; B, v)



Results of localization
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⟨TB⟩ = eπib12

∏4
f=1 sin π(a1 − mf )sin π(a2 − mf )

sin2 πa12∏± sin π(a12 ± λ)

1/2

+e−πib12

∏4
f=1 sin π(a1 + mf )sin π(a2 + mf )

sin2 πa12∏± sin π(a12 ± λ)

1/2

+
∏4

f=1 sin π (a1 − mf + λ
2 )

sin πa12 sin π (−a12 − λ)
+

∏4
f=1 sin π (a2 − mf + λ

2 )
sin πa21 sin π (−a21 − λ)

Example: U(2) SQCD with 4 flavors 
B=diag(1,-1)

Zmono(B,v=0)



Bubbling contribution from 
SUSY quantum mechanics

• It is well known that the instanton partition 
function can be computed using the ADHM 
matrix model/quantum mechanics. 

• Similarly Zmono can be computed as the Witten 
index of a supersymmetric quantum mechanics 
(SQM). 

• Approach taken by Brennan, Dey, and Moore.
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SQM and U(N) SQCD
• The relation between SQM and wall-crossing is 

simpler for U(N) and SO/USp than for SU(N).  
[cf. Brennan, Dey, and Moore] 

• Here we consider gauge group U(N) rather than 
SU(N)[Hayashi, TO, Yoshida]. 

• SQCD: matter hypermultiplet in the fundamental 
representation.
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Brane construction of  
't Hooft operators
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D3 D3

NS5

D1 (smooth  
monopole)

D1

T□

T□
⨂

⨂

D7’s

Here IIB string with D1/D3/D7. 
May T-dualize to IIA with D2/D4/D6.

TB=diag(−1,1) ∼ T□ ⋅ T□



0 1 2 3 4 5 6 7 8 9
D3 x x x x
D7 x x x x x x x x
D1 x x
NS5 x x x x x x
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Supersymmetric quantum 
mechanics on D1-branes
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D3 D3

NS5
D1

⨂ ⨂

D7’s

1

2

4

U(1)

1d  quiver 
supersymmetric  

quantum mechanics

𝒩 = (0,4)



SQM partition function in terms 
of Jeffrey-Kirwan residues
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ZSQM =
1

|W | ∑
ϕ*

JK-Resϕ=ϕ*
(Q*, ζ)

× ∏Zvec∏Zhyp∏ZFermi dϕ1 ∧ ⋯ ∧ dϕrank

Zvec(ϕ, λ) = ∏
1≤i≠j≤r

2 sinh
ϕi − ϕj

2 ∏
1≤i, j≤n

2 sinh
ϕi − ϕj + 2λ

2

Zhyp(ϕ, ϕ′ , λ) =
1

∏n
i=1 ∏n′ 

j=1 2 sinh
ϕi − ϕ′ j + λ

2 2 sinh
−ϕi + ϕ′ j + λ

2

ZFermi(ϕ, ϕ′ , λ) =
n

∏
i=1

n′ 

∏
j=1

2 sinh
ϕi − ϕ′ j + λ

2
[Hwang,Kim,Kim,Park]
[Cordova,Shao][Hori,Kim,Yi] 
cf. Benini et al. for 2d



Wall-crossing  
and operator ordering

• Wall-crossing (dependence on the choice of a 
chamber in the space of FI/stability parameters) 
occurs when the ordering of operators in a 
correlator changes. 

• In the brane construction, this is natural because 
the FI parameters of the SQM are the locations 
of the NS5-branes ('t Hooft operators).

29



Examples
• U(N) SQCD with NF=2N.  N=2 here. 

•
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⊗

⊗ ⊗

⊗x3

1

2

4

Zmono in                = ZSQM(𝜻>0),    Zmono in               = ZSQM(𝜻<0). 

T□ = TB=diag(0,+1) T□ = TB=diag(−1,0)

⟨T□T□⟩ ⟨T□T□⟩

⟨T□T□⟩ ⟨T□T□⟩

U(1), 𝜻

𝜻>0 -𝜻>0



Chamber structure for the 
product of three operators
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𝑇□ 3 ∗ 𝑇□ 2 ∗ 𝑇□ 1

𝑇□ 2 ∗ 𝑇□ 1 ∗ 𝑇□ 3

𝑇□ 1 ∗ 𝑇□ 2 ∗ 𝑇□ 3
𝑇□ 2 ∗ 𝑇□ 3 ∗ 𝑇□ 1

𝑇□ 1 ∗ 𝑇□ 3 ∗ 𝑇□ 2

𝑇□ 3 ∗ 𝑇□ 1 ∗ 𝑇□ 2

ζ1

ζ2



't Hooft operators with higher 
magnetic charges
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D7

⊗

D3

n D1's

NS5

⊗

⋅ ⋅ ⋅

n D1's
TB=(−n,0,…,0)

TB=(0,…,0,n)

⋅⋅
⋅

⋅⋅
⋅

• 't Hooft operator 
corresponding to rank-
n anti-symmetric tensor 
product. 

• B=(0,...,0,n) for 
product of 
fundamentals. 

• B=(-n,0,...,0) for 
product of anti-
fundamentals.



SO/USp gauge theories
• Orientifold 4-plane 

. 

• SO(2n) for . 

• SO(2n+1) for . 

• USp(2n) for . 
• Computed ’t Hooft 

operator VEVs 
[Hayashi,TO,Yoshida].

O4 = O4−, Õ4 −, O4+

O4−

Õ4 −

O4+

33
D6

n D4s

⊗

⋅ ⋅ ⋅

⋅⋅
⋅

O4

D2s



’t Hooft (monopole) operators 
in other dimensions

• 3d: monopole operators.  Their VEVs can be 
computed by matrix models. [TO, Yoshida][Assel, Cremonesi, 

Renwick].  

• 5d: ’t Hooft surface operators in  U(N) 
theory [Yoshida].  VEVs are computed by 2d GLSMs 
and give rise to type A elliptic Ruijsenaars 
operators.

𝒩 = 1*
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Summary and conclusions
• Wilson and ’t Hooft line operators admit a topological 

classification by one-form symmetries.  BPS operators 
admit a more refined classification. 

• The BPS line operators on  are natural 
observables.  Their VEVs can be computed by SUSY 
localization.  Non-perturbative contributions to ’t Hooft 
operators are computed by supersymmetric quantum 
mechanics.  Computed for . 

• Wall-crossing can occur when the ordering of ’t Hooft 
operators changes.

S1 ×λ ℝ3

G = U(N), SO(N), USp(N)
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Future directions

• ’t Hooft line operator expectation values for other 
gauge groups (especially exceptional gauge 
groups) and matter representations. 

• Wall-crossing in instanton counting [Hwang,Kim,Kim,Park]

[Ohkawa][Ito,Maruyoshi&TO].  How much of this can we 
understand using SQMs? [Hwang,Kim,Kim,Park][work in progress: 
Hayashi,TO&Yoshida]
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