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Introduction

@ Chern Simons theories coupled to dynamical matter fields
are of interest for several reasons.

@ First, in parity non invariant theories, the one derivative
Chern Simons Lagrangian generically dominates the two
derivative Yang Mills kinetic term and so governs gauge
dynamics at low energies.

@ Second, the Chern Simons coupling, % does not flow under
the renormalization group, so fine tuning matter masses to
zero often results in conformal dynamics.

@ Third, Chern Simons matter theories host anyonic
excitations with ‘non half integer’ spins whose S matrices
display unusual crossing properties

@ Fourth, some of these theories have conjectured AdS/CFT
dual descriptions in large N limits.

@ Fifth, some of these theories they enjoy invariance under
(conjectured) strong weak coupling Bose Fermi duality even
without sypersymmetry.
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Introduction

Sixth, and most importantly for this talk, several exact results are
available for two interesting limits of these theories.

@ (1) When the mass of the matter fields is taken to infinity,
our theories reduce to pure Chern Simons theory which has
an intricate, beautiful and very thoroughly understood exact
solution.

® (2) When all matter fields are in the fundamental, and N and
k are taken to infinity with

NN

A —
k+sgn(K)N &

held fixed, the theory is once again exactly solvable.
Several interesting dynamical quantities have been exactly
computed in this limit.
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Review of Pure Chern Simons Theories: SU(N)x

® SU(N) Chern Simons theories are defined by the action

0 i
S— 4“ / d3x HVP tr (YuOuy, — 3 —=YuYu¥p) (1)

where y,, are SU(N) matrix valued fields, where the UV
divergences that arise in this path integral are regulated by
adding an infinitesimal Yang Mills term.

@ Equivalently these theories are defined by the action

ix v, 2f
S= 47T/dSX et ptr(}/,uauyp - §yMyVyP) (@)

k= K+ sgn(k)N. (3)
and UV divergences are regulated in the dimensional
regulation scheme. k is called the level of the Chern Simons
theory. We refer to x as the renormalized level of this theory.
Despite first appearances, path integral gauge invariant if k
(and so k) are integers.
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Review of Pure Chern Simons Theories: SU(N)x

@ Note that the metric of the manifold makes no appearance
in the action. Follows that the action is topological, atleast
classically (and it turns out also quantum mechanically).

@ Equation of motion: F = 0. Implies that all onshell
configurations are locally pure gauge and so are given by
maps from the base manifold to group manifold SU(N).

@ For instance consider SU(N) Chern Simons theory on
Yg X S' with Wilson lines in representation Ry, R, ... R, at
points on ¥4 but winding the Sy The representations are constrained to be
integrable’, see below. | € phase space is that of >4 to the group,
with a monodromy (whose equivalence class is determined
by the representation R;) around the m™ puncture. Witten
demonstrated that the quantization of this phase space
yields the Hilbert Space of ¥4 conformal blocks in SU(N)x
WZW theory. All states have zero energy, so the £, x S
path integral equals the dimensionality of the space of these
conformal blocks.
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Counting SU(N) conformal blocks

@ The Verlinde formula that counts the dimensionality of the
space of these conformal blocks can, for the case of
SU(N), be massaged into the following relatively simple
form

Nsing = N N N7 Z H‘W _Wj‘z ngXRp w;) (4)

{w;} i<

@ Here w; are the eigenvalues of the SU(N) holonomy, that
are discretized (by the sum over fluxes in the path integral to
obey)

N
HW, =1, and |w|=1 Vi
i1 (5)

K __ K ) . T
Wi = wy, W # w;, Vi,j

Formula only holds when the maximum row size in the
Young Tableaux for each Ry, is < k “unitary.ar.integrable

Shiraz Minwalla



Review of U(N)k « theories.

@ Unlike their SU(N) counterparts, U(N) Chern Simons
theories are characterized by two levels k and k’. Roughly
these are the levels of the SU(N) part and the U(1) part of
the gauge group respectively (in the normalization in which
fundamental fields carry unit U(1) charge).

R ik [ 2i
Sly,al = o /tr <ydy 3y3> +

Consistency forces k' to take the form

ik
47N,/Uy d(try). (6)

k' =k +gN

@ In this talk we will be particularly interested in the case
g = 0 which we call the Type | theory, and g = —1, which
we call the Type Il theory. For Type | theory k' = « while for
Type Il theory k' = k
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Counting U(N)x « conformal blocks on S?

@ Once again the partition function of the U(N)y x theory on
Yg X S, in the presence of Wilson lines, is given by the
space of U(N)x x» WZW blocks. The dimensionality of this
Hilbert space is, once again, counted by the Verlinde
formula, which can be simplified in this particular case to

Nsing = (/‘Jqu T AN N Z H|W/ wj| ZQH\Rp w;)

{W/} i<j
(7)

where

wil =1 Vi, w=w Vi, |

(HW/> = N+1 vm

(8)



Counting Type | U(N) conformal blocks on S?

@ The formula of the previous slide simplifies at g = 0, i.e. in
the Type | theory, to

n
Nsing = NZ H‘W/*VV/"ZHE\PD(W/)
p=1

{w;} i<

(9)

wy, = (-1)N*T vm

@ For concreteness let us specialize to Type | theory.

® (9) is a very particular discretization of the Weyl integral
formula of classical group theory. In the large N limit the
spacing between two eigenvalues, 5 — — 0 the
discretization spacing — 0 so (9) reduces to the classical
Weyl formula except for one constraint;

2rN 2x
P
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[dU]¢cs from conformal blocks

@ In equations, in the t'Hooft large N limit

o> T iwi— w Hm,g w) %/[dU]CSH\Rp w)

{wj} i<j

@ Here [dU]¢s is the usual Haar measure subject to the
constraint

N
’
p(oz)§2ﬂ_|)\|, = lim Z a— qj) (10)

N—oco N

(€' are the eigenvalues of U and p(«) is the eigenvalue
distribution function).
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Level Rank Duality of Chern Simons Theories

@ Pure Chern Simons theories enjoy invariance under a
remarkable strong weak coupling duality called level rank
duality. The ones we will use are summarized in this table

Type I-Type | | U(N)k, i < U(|K|)en, er
Type II-SU(N) | U(N)xk <— SU(IK|)en

Table: Here ¢ = —sgn(k) and xk = k + sgn(k)N.

@ Part of the level rank duality map is a map between
representations. Roughly the rule is that Young Tableaux
are transposed (rows «» columns). In particular,
fundamentals map to fundamentals, while n index
symmetrical tensor map to n index antisymmetrical tensors
under level rank duality. Not difficult to convince oneself, for
instance, that (9) with only fundamental and and
antifundamental insertions is level rank selfdual
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Matter Chern Simons Theories

@ So far we have studied only pure Chern Simons theories.
These are beautiful and completely solvable theories;
nonetheless they lack the richness of genuine quantum field
theories precisely because they are topological and so have
no local degrees of freedom

@ In this talk we study Chern Simons theories minimally
coupled to matter. The theories we study have all the
richness of standard quantum field theories. The price we
pay for this richness, however is that these theories are
generically not solvable.

@ For this reason, in much of this talk we will focus on theories
with fundamental matter that turn out to be effectively
solvable in the t'Hooft large N limit. Before describing the
simplification of the large N limit, however, we first present
the simplest theories we study and understand some simple
properties of these theories even at finite N and k.
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Regular Fermion and Critical Boson Theories

@ The simplest and best studied large N matter CS theories.
So called Quasi Fermionic theories. This talk: single matter
ﬂavour. (Generalization to finite number of flavour Ny also solvable and studied. Ignore in this talk.

Generalization to Ny of order N not solvable using our large N techniques).

@ Atleast order by order in 1/N, theories appear sensibly
defined by path integral using actions

' . Ng
SU(NB)ks + /[D;z”D/ ¢+ oB <()(') 4+ — yp g')

n
in the dimensional regulation scheme.

@ Refer to these as the ‘regular fermion’ and critical boson
theories reSpeCtively. Can also interchange fermionic SU and bosonic U theories- or study

U U theories with shifted U(1) levels. All very similar at large N
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Regular Boson and Critical Fermion Theories

@ More general regular boson and critical fermion theories

R - 47 - 2r)?2 -
SU(Npg), /D/,(')D/’() \ sz(m | b4(<)())2 ! ( 2) (XGB | 1)((')())3.
) KB h‘B
(11)
' 47 21)? A7)
Sre(¢) 4 / JE ¢+ +yEC }y4g2 \( 2) Xk, J =
. RF K KF
(12

@ Theories well defined? Two potential issues. 1) Stability of
vacuum (leading N). 2) Existence of RG fixed point for XGB
and x{ (3 functions first subleading order in 1/N). Both
issues studied in detail at large N. Upshot: theories well
defined in window of \ atleast at large N. Will come back to
this point.
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Duality and notation

@ As most of you know these two classes of theories are
conjecturally dual.
@ Notation

N
kg = sgn(kg)(Ng + |kg|), A = .

(and B+« F)

@ Conjectured duality map (e.g. for CB and RF theories)

i ki N
kg = —sgn(kp)Ng, Np = |kp|, my' = <|F|k+F> mg?
F
@ Equivalently
KB = —KF, /\/: = /\B — Sgl](/\B). */\BH’ICBFi = m;_—“

@ Level and rank duality map believed to be exact. Mass map
known only at leading order in large N. Note large N results
nontrivial function of effective t'Hooft coupling .
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CB and RF theories: Phases 1

@ The CB and RF theories are conformal at m§' = mg = 0.
Stable particle like excitations do not exist in conformal
theories.

@ Motivates the study of massive phases where gauge
charged particle like excitations appear meaningful.

® Mass term only relevant operator. Phase diagram with two
distinct massive phases (sign of deformation) separated by
a second order phase transition.

@ Bosonic side. Positive mass deformation mg' > 0. SU(Ng)
spins in the paramagnetic phase, gauged. Elementary
excitations the SU(Np)x, spins created by the boson ¢?.

@ Negative mass deformation mg' < 0. CS gauged SU(Ng)x,
spins in the ferromagnetic phase. Higgs phenomenon. Use
unitary gauge to put ¢ in N,gh direction. ¢ degrees of
freedom eaten up. SU(Ng — 1), CS gauge fields coupled
to a massive fundamental W, boson plus massve neutral
Z,, boson. ‘Vector Excitations’.
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RB and CF theory: Phases 2

° mgi > 0 maps to mgkg > 0. Two phases, massive fermions
with masses of opposite signs. Low energy theories
topological.

U(NF) (ke kr) <> SU(NB)kg

U(NF)(/}FA/N(F) <> SU(NB — 1)kB

ke = sgn(ke)(|ke| — 1), <  means level rank dual to

@ Excitations on both signs are the elementary fermions.

@ How do the elementary charged excitations map across
duality?

@ Claim. First phase the fermions map to the elementrary
bosonic spins. Second phase the fermions map to the W,
bosons.
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Matching spins

@ Puzzle. ¢ W, and 1 excitations appear to have spin 0,
sgn(kg) and “F respectively. Does this falsify matching?

@ Answer. Intrinsic (or classical ) spins are additively
renormalized by a statistical Chern Simons (analogy E x B)
contribution. Sgtqt = %’q) Physical requirement

B B F F
Sintrinsic T Sstat = Sintrinsic T Sstat (13)
@ It turns out (group theory)

s sen(ks) _ sen(ke)
Sstat — Sstat — 2 - 2

@ Follows that (13) works provided

B

1
Sintrinsic — é (Sgn(mF) Sgn(kF)) .

But easy to see its true in both phases.
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Excitations: number of components

@ There is an obvious issue with the discussion of the last 5
slides. How can (for instance) thhe ¢ particles map to
particles in the unHiggsed phase when there are N ¢
particles but N v particles?

@ One - perhaps cop out - answer to this question is that CS
theories on R? need to be carefully defined (what are the
boundary conditions on gauge fields at infinity? Are there
WZW type edge modes on Z™ and Z7). A safe (if bit boring)
way to define the theory is by regarding R? as S? in the limit
of an infinitely large radius.

@ With this definition single particle states dont exist. Gauss
law. Contradiction disappears at level of states with few
particles. One might, however, suspect that the
contradiction will return when the number of particles
becomes much larger than Ng or Ng. Will return when we
quantitatively study thermodynamics on S2.
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® We would like to study these matter Chern Simons theories
more quantitatively. But they are complicated quantum field
theories. How do we do this?

@ Well known that ‘vector’ like large N limits are easy to solve,
but ‘matrix’ like large N limits are typically intractable. Large
N SU(N) gauge theories always have gauge bosons which
are matrix like fields. Typically hard to solve.

@ Exceptions. Pure Chern Simons theory in d = 3 or pure YM
in d = 2. As we have reviewed above, solvable at finite N.
So also at large N. Price you pay for this: the theory has no
local degrees of feedom.

@ Now consider CS theories coupled to matter in the
fundamental rep. Now genuine QFT. Realized in 2011
theory still solvable at large N. Rest of the talk: will review
some of the lessons learnt from this study.
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Large N: List of results

The computations that have successfully been performed in the
large N limit are

@ Existence and StabilityBeta function and Quantum Effective
action of RB and CF theories.

@ Correlators and duality2, 3 and 4 point functions of gauge
invariant opearators at conformal points in these theories.

@ Hilbert Space and dualityThe computation of the S? thermal
partition function of these theories

@ Statistics and Crossing S matrices
@ Duality from SusyOne Boson and one Fermion

@ Quantum Hall?The study of these theories in a uniform
magnetic field as a function of chemical potential
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Beta function for xg

The RG flows of xg can be plotted as follows

+—— 44O — 5Pt 4@ >—>—>

Figure: The points 2 and 1 coincide at Ag = 0. They split up at small
Ag. At \r = 0, the point 2 is exactly centred between 1 and 3.
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Stability of Vacuum for RB and CF theories

@ Since ¢ has a floppy potential, there is a chance that the
gauge invariant operator ¢¢ develops a quantum effective
potential with run away behaviour.

@ To test for this we simply compute the exact quantum
effective potential for ¢¢. Have done this computation at
leading order in Ng but for all Ag.
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Quantum Effective Potential: Result

@ Classically

- )2
4mby z o2 4 (27) <x68 + 1) (5¢)°

U((_)()) = m%(_)() + 5
KRB /.'B

@ Quantum mechanically we find

Moo + +412(F0)2 + B2V (x5 — 6,)(39)° forog <0,

Mo ++422(50)? + B (6 — 01)(69)°  forog >0,
(14)

Ueti(9) =

@ The constants ¢ and ¢» are given by

4 1 4 ( 1
¢1_3<(2—MB|)2_1>’ ¢2—3<)%—1>~ (15)
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Quantum Effective potential: boundedness

@ Classically ¢¢ takes values from 0 to co. Quanum
mechanically the operator is defined with a subtraction and
the renormalized operator varies from —oo to cc.

@ Potential bounded from below only when

P1 < Xg < ¢2 (16)

Range non empty because ¢4 < ¢».

@ Effective potential for is unbounded from below at large
negative values of ¢¢ when xg is too large and from
unbounded from below at large negative positive values of
$¢ when xg is too small. However there is an interval x8
whithin which there is no run away direction.
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Phase Diagram

Turns out FP 1 is in the stable range at small Az but not at large
Ag. FP 3 stable neither at small nor large A\g. FP 2 is stable at
both small and large A\g. Phase diagram for FP 2 takes following
form (quantiatively known as function of xg which itself is
unknown). Space of phases topologically a circle. Single second
order and sinlge first order phase transition between un Higgsed
and Higgsed phases massive phases. 2nd order phase
transition governed by quasi fermionic theory.

Agby Agbs

Figure: Blue curve= second order phase transition. Green curve first

order ihase transition. Two curves at different values ‘of xi.



Conformal limit 1

o At m:® = 0 and m' = 0 the CB and RF theories are
conformal. Similarly for the RB and CF theories with all
massive parameters set to zero.

@ Incredibly simple spectrum of single trace operators. Made
up entirely of the traceless symmetric ‘currents’

JS s=0,1...00

ut-.-ps?

Schematically

JS = Z(‘)...z)au...em. JS = Ze)...e)ziz)...e)u

Turns out

@ §°(\) known for s > 1. Conjectured for s = 0.
@ Note: gauge invariant operator spectrum also includes
SU(NB) baryons dual to U(NE) monopoles Both op
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‘Quasi Fermionic’: Conformal limit 2

@ Obey the nonlinear current algebra (which captures weak
breaking of higher spins symmetry)

}
0.J° = D Css.5(A) S J32+— D Csisyispis (M) ST SRS

@ All coefficients known. Partial large N eoms (fewer
equations than variables). Full (nonlocal) large N eoms from
conjectured holographic AdS, Vasiliev dual.

@ The three point functions (J®1J%2J%) are explicitly known as
functions of \ at leading order in the large N limit. Some
(very few) four point functions also explicitly known.
Intriguing interplay with inversion formula.

@ All these quantities are known in explicit detail
independently for the regular fermion and critical boson
CFTs. Match perfectly under conjectured duality map.
Powerful calculational evidence for duality at N.
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Properties of Jy

® As one example | present the two point functions of the
scalar dimension 2 opearators, Jy = o maps to J(')E = 4~%
in momentum space

@ At leading order in large N

(D(@)do(~q)) = (27)%5°(q - ¢) (—4quy> 1

kB tan(’TT’\B)'
(J§(a)dg (=) = (27)%5%(q - q') <—L:rFq’) tan (72’\/:) ;

(17)

@ Two point functions match under duality. Similar simple
results are available for all 2 and 3 point functions. All
results agree perfectly under duality.
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Thermal partition function

@ | will now present, and then interpret in great detail, the
results of thermal partition functions of our theories at large
N.

@ The aim of this exercise is to find a simple effective
description of the Hilbert Space of large N Matter Chern
Simons theories, and to answer, in part, the confusion of
‘number of components’ we encountered above.

@ Most of the analysis of the next few slides is taken from
work, yet to be published, in collaboration with A. Mishra, N.
Prabhakar and T. Sharma
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x S' Partition Function: Structure

@ Inthe limit N — oo, kK — oo, Vo — oo, with all ratios of these
quantities, as well as the temperature T, chemical potential
w, and all masses and couplings held fixed, the S? times S’
partition function Zg2, g1 is given by an integral over the
unitary matrix U, the zero mode of the holonomy around the
time circle

°

Ze g = / [dU]cs e V21 (18)

@ where [dU]¢s is the usual Haar measure subject to the
constraint

(19)

B
AN
[\
Al
>
‘Q
||
§
o
Q
|
£

( Recall we encountered [DU] s early in this talk).



S2 x S' Partition Function: Theories

® v|[p] in (18) above depends on details of the matter Chern
Simons theory under study. In this talk we focus on theories
whose matter content includes a single fundamental fermion
or boson.

@ For each theory, computation reveals that the quantity v|[p]
is given by the extremization, over two auxilliary variables,
of a so called off shell free energy. Schematically

vlp] = ming F(()

® Next few slides: present the explicit expressions for the
offshell free energies for each of the four theories described
above.
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S? x S' Partition Function: RF offshell free energy,

@ In the case of the Regular Fermion theory, F[(;] is given by

~ 5 NeT?
FRF(CF,C): F

5 5 (A 5 . A \2
- {8)\%(333(3 (c,%f(zAFc+mF))

BAReC? + 82

- 3/00 dé €/7T da pr(a) (log (1 + e‘g—ﬂ—ia) +log (14 e—€+ﬁ+io¢)):| .
F i (20)

Here Nk is the gauge rank, \r is the t'Hooft coupling, ¢ and
Cr are auxilliary variables that have to be extremized over

(Cr has the interpretation of the thermal mass in units of
temperature) and

~ mg
MFE="7

=
—Hl=

@ Note that only the third line of (22) depends on p(6) or u
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S? x S' Partition Function: CB offshell free energy

@ In the case of the Critical Boson theory, F[(;] is given by

Fes(cs, S)

 NpT? . o A
- 6877 Bcgmgﬂ@@ (& — 1) + 6| Msles (S — 1AE)7 — &3

+ 3/ dé é/ do pB(Ol) (|0g(1 _ e—é+ﬂ+ia) + |0g(1 _ e—é—ﬂ—ia))
Ca -7

(4l — €s)?(lAl + 285)
e(|/”L‘ CB) 2|)‘B|
Here Ng and A\ are the gauge rank and t’ Hooft coupling,
S and ¢g are auxilliary variables that have to be extremized
over (Cg has the interpretation of the thermal mass in units
of temperature) and

(21)

cri

T

cri

p==, mz

@ Note that only last two lines of (22) depends.on p(f) or



S? x S' Partition Function: CF offshell free energy,

@ In the case of the Regular Fermion theory, F[(;] is given by

A 5 NET? 5 s 4 s 4nlp\2
Fer(Cr,C,CF) = g {—SAf:Cs—SC(C,Z_-— (2>\,.-C— WCF) >+
0 RF

52 (47 CF V2 4nlr  Ja (4nle\2 | X 4mlEN3Y |
2( 1057 22 TO6R 0 J4 (TRAF 76 (050 3
BARC ( KF ) + 3(2)\;: KF 2\F ( KF ) - 8k ( KF ) G

- 3/00 de €/ﬂ da pr(r) (log (1+ A7) +log (1 + e—gﬂ“‘a))} .
F ™ 22)

Here

@ Note that only the third line of (22) depends on p(6) or u
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S? x S' Partition Function: RB offshell free energy

@ In the case of the Critical Boson theory, F[(;] is given by

FRB(CB,SN,O')

A < L a
— GBW [ 3¢365 + N353 — 4X3(S + 68)° + 6|As|Cs(S + 58)?

+ 3(M265 + 2Agbs6% + (X6 + 1)A263) — &5

+ 3/ de e/ dCE pB |Og( —e+ﬁ+|0¢) + |Og(1 — e_é—ﬁ—ia))
ol +2¢
@(|M‘ _ CB)(‘M| ) (‘:U’| B) ) (23)
2|Ag|
Here b
~ N m R o
b4 ; mpg = ?B oB = TB

@ Note that only last two lines of (22) depends on p(6) or

Shiraz Minwalla



S? x S Partition Function: Interchanging Orders

@ In summary, for all four theories

252Xs1 = /[dU]CS mil’lci |:6_V2F(</’p)] 5 (24)

@ At leading order in the large N limit, the integral over U
reduces to a saddle point extremization over p(¢). The
extremization over (; and p(6) can be performed in any
order, so (24) can be rewritten as

Zgr g = Ming, {/[dU]CgeWF(C""')} : (25)

@ To evaluate Zg, g1 We must thus
Step (1): Evaluate /(¢;) = [[dU]cse™ "2 (Cr) at fixed ;.
Step (2): Extremize I((;) over (;.

@ Step | is universal (indep of details of contact interactions).
Step 2 is non universal and accounts for these interactions.
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The computation for Step 1

@ In Step 1 for fermions we are required to evaluate

Ir = /[dU]cs Zfis(U)

N,_—T Vo

Zis(U)=e

[ [ 66 7, doc pr(e) (1o (140571 41og (Hewm))}

(26)
The exponent of Zﬁs(U) includes all terms in FF(C,) that depend on either p or 1.

@ Similarly, in Step 1 for bosons we are required to evaluate

Is = /'[dum ZE5(U)

NgT?Vo oo ga » . —eé—f—ia —é+itio
ZB (U) e T "CB deef - dapr( \)(\og (1 e ) flog (1 e )) .
NS
Ng T2V, o) —eg)2(lpl+2
e B20(p|—cs) w Lg pys e

(27)
Once again the exponent of Zg(U) includes all terms in FB(Q,) that depend on either p or .. Note both /¢

and /g depend on no contact data and no auxilliary parameters other than,cg.
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Partition function in terms of /g and /¢

@ Let us suppose that we have mananged to evaluate /g(cg)
and Ie(cg). The final free energy is then given by a
relatively simple extremization. For instance, in the case of

the RB theory
°

2
by A A
—NgV,8 (ﬁ(m%—cg)adr% o2+ 5B (E+4)0%-a32(5+0p)3 6| )\B|CB(S+GB)2>

Zpg = |e

IB(CB)]
cg.o,S

(28)

@ Where, in our notation, [A(«)], denotes the extremization of
A(«) over the variables a.
@ Extremizing (29) over S gives the equation

(S +o8) (|A6l(S +08) — cg) =0.

This equation has two solutions for S; the one that
describes the so called unHiggsed phase is S = op.
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Gauged versus ungauged: |

@ In the unHiggsed phase (29) simplifies to

—NgVaB( 5= 04;\5[,2,;3 53
e [e B ( e S ) /B(CB)‘| (29)
Cp,o0
@ Now notice that the ungauged scalar large N matter theory

- - 4mby 2m)?
sblol = [ ox ((8,1,@(8%) +mgde) + :—B“(M)Z + (:2)
h B

(% + %}(a'w)s) (30)
can be recast, with the aid Lagrange Multipliers cg and o, as

N, Ngbs X NpAZ 4
s= /d3 [a 0" ) (¢¢)+2—B(m57 2)o + M02+%(x§+5)a3] @1
iy e

™

It follows that the thermal partition function of this theory is

2

h 2 2 byrg 2, 2B, B
[ N5L2‘><ﬁ(mﬂ cg)o 74750' f %(X6 }
e

)n3> ,
Zeﬁ = U.H Fock (e ’ HCB )
cg /
{cs.0}

(32)
where 7{£°% is the free Fock space of a scalar of mass cg
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Gauged versus ungauged: 2

@ Comparing (29) and (32) we see that the partition function
of the CB theory has exactly the same form as the partition
function of the ungauged theory (30) but with the
replacement

tr4 Fook <ef‘jHCB) — Ig(cB)
cB

@ (32) expresses the fact that the Hilbert Space of a vector
like large N matter theory is a Fock Space with all states
receiving forward scattering or mean field type
renormalizations.

® We have thus discovered that the Hilbert Space of Matter
Chern Simons theories is that of an ‘Ig or Ir system
corrected by forward scattering interactions. Over the next
25 or so slides we focus our attention on thoroughly
understanding /g and Ig, returning to the full partition
function only at the very end of the talk,
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Simplification of /¢

@ Recall that
Ik = [16Ules ZEs(U)

NFT Yo joode & [T dapr(a)(log 14e ¢ A~ 'a)+|og (1+efe+‘+'°‘) :|
Zis(U) = e { el )
(33)
@ It is not difficult to verify
ZEs(U) = Trpy (Ue (H //Q>) . (34)

Where the trace is taken over Hys the free Fock Space of
free fermions of mass cr = C¢ T propagating on a (very
large) S2.

@ Consequently

Ir = / [dU]cs Triy (Ue‘ﬂ(H‘“Q)) (35)
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Simplification of I

@ Recall that

s = / [dU]es ZE5(U)
ZB(U) = & "o Jiy 80 217 dapr(e) (1o (107 A1) g (107 ) )

2
NgT=V.
B 20

2w (

X

) (141 —2g)? (14| +2¢g)

|| —cs GEYY

(36)

@ This can be rewritten as

‘ (H—pQ _NeTV2 (|4 —cp) URI=ER(AI+280)
Is = /[dU](,‘s TrHys (Ue (H=p )> e ghll

(37)
The second term in the trace is a new element missing in
the case of fermions.
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Toy Model for I¢

@ Let us momentarily consider a quantity similar to /.
Tr = / [dU] Trp (Ue—ﬁ(H—“@) (38)

where dU is the usual unmodified Haar measure.

@ Jr has a simple and familiar Hilbert Space interpretation.
The free fermion Fock Space can be decomposed into a
sum over irreducible representations of U(Nf). The integral
over U in (39) simply projects this Fock Space onto the
U(NF) singlets.

@ In other words

7[: = TrHSing (e‘ﬂ(H_”o)> (39)

where Hs;g is the projection Hys to U(NF) singlets.

@ Question: Does I have an interpretation similar to /=? And
whats the story with Ig?
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[dU]¢cs from conformal blocks

@ We have already seen at the beginning of this talk that (36)
and (37) have similar interpretations. Recall that, e.g. for
the case of Type | theory in the large N limit

HLN Z H ‘W/ - WJ‘Z H XRp (W/') — /[O’U]CS H XR, (W,’)
p=1 ‘ p=1

{wi} i<

@ It follows that the quantity /- above does indeed admit the
interpretation we proposed: it is the partition function of the
Fock Space restricted to the WZW singlet sector.

@ While thats great, it raises the obvious question: what about
the Bosons? What is the origin of the extra factor for bosons
in step 1?7 We now turn to this question
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6(p — cg)... from conformal blocks

Consider a Type | U(N) Chern Simons theory coupled to
fundamental bosons on S2. Let a parameterize the positive
energy solutions of the Klein Gordon equation, with mass
cg, on S2. Clearly the U twisted partition function over the
free bosonic Fock Space is given by a product of partition
functions, one for every free particle state

Explicitly

T+ (Ue--)

() ()

(40)

Note that

1 o0

1 . e*.'«f(Ea*}l)Wl,a o ;
n=
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Truncation for Bosons

@ Now the partition function of the bosonic Fock space
restricted to WZW singlets is not given simply by

,.LNZ [T 1w — wjPTe (e (42)

{w;} i)

@ Terms with n > kg in (41) are non integrable insertions.
Conformal blocks involving such insertions should vanish.
(42) does not correctly account for this fact (see comment in

red before (4)), which must thus be inserted by hand.
@ The correct truncation of the free boson Fock space to
WZW singlets is given by

{z;} pairs fa=1

| 7w D
=1 a | kg

kg




Implication of the Truncation

@ It is not difficult to prove that

Np 1 Ns 1
Qy) = = (1+(=1"")
H‘IW,‘}/ kg H‘IZ/}/ (44)
= exp ( —trin (1 —yU) +1In(1 - y"'))
@ In the large N limit it follows that
InQ(y)=—trin(1 —yU)+xO(y — 1) Inw.. (45)

@ In the physical problem of interest y = e #(E-#), The
second term in (45) is thus nonzero only for states with
E < u. Such states exist only if cg < p. Adding up the
contribution of all such states (accounting for the density of
states) reproduces the extra term in (37) with all factors.
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The Bosonic Exclusion Principle

® We have learnt something important here. In large N matter
Chern Simons theories, no single particle bosonic state can
be occupied more than kg times. We call this the ‘Bosonic
Exclusion Principle’. It is the direct level rank dual of a more
obvious result for fermionic theories, namely that no single
particle fermionic state can be occupied more than Nk.

@ Recall that ordinary free boson theories are ill defined at
values of the chemical potential greater than the mass, as
all states with energies between the mass and the chemical
potential are infinitely occupied in such theories. The
bosonic exclusion principle cures this singularity in matter
Chern Simons theories, rendering Bosonic theories with
chemical potential larger than the mass well defined.
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Ir and Ig at large volume

@ Let us recap. The partition function of large N matter Chern
Simons theories is given by an expression of the same form
as their ungauged counterparts, with the replacement of the
Fock Space partition function to its WZW singlet projected
counterpart.

@ ltis clear that the WZW singlet constraint has a huge effect
on the partition function of the theory at small values of the
sphere volume. But one might naively expect its impact to
disappear in the large volume limit. This is indeed what
happens for the Gauss Law constraint. Interestingly enough
this expectation is incorrect.
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‘Saddle Point’ at large Volume

@ At finite N and k Ig is given by the formula (43) (/r is given
by a similar formula). The key simplification of the large
volume limit is that the summation over choices of
eigenvalues in that formula is dominated by a single
eigenvalue configuration (this is a sort of saddle point
approximation for the summation in that formula).

@ The eigenvalue configuration that dominates the sum is

w; = e,

27{N1 N-3 N-5 N-5N-3 N1}

faik == 2 2 0 2 T2 T2 T2
(46)
This configuration is the correct ‘saddle point’ for all cases;
the SU(N), Type Il and Type | theories and for fermions and
DOSONS. There s a one to one map between integrable representations and the collection of

discretized eigenvalues that are summed over in the Verlinde formula. (46) is the eigenvalue configuration

that maps to the Identity representation
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Factorization at large volume

® At general values of the volume, the formula (43) expresses
the partition function as a sum over products. As we have
explained, at large volume the sum local to a single term,
leaving us with a simple product, one term for each single
particle state.

Np
= 1
a—za a __
Ig HZBZB , Zg= (H 1 e—B(Ea—#)W,) o
a i=1 B
(47)
N5 1
sa
% = (11 1 — e B(Eatn) W,->
=
(the eigenvalues that apear in (47) are those listed on the

previous slide)
°

)

Ks

ks
ZEZZ\E(U) rB(Ea—p) st rB(Ea—p) (48)
r=0



g numbers and quantum dimensions

@ d° is the so called quantum dimension of the n box
symmetric representation. As mentioned above it equals the
character of this representation evaluated on our special
‘saddle point” unitary matrix This connection works for every representation, not

justthe completely symmetric representation. EXp“Cltly

s_ (M) _ [n]q!
= <m>q  [mlg![n — mlg!

[mlq! = [1]ql2]q - - [Mq (49)
r/2 _ ~—r/2
[rlg = ;/12212

with g = e
@ Similar expressions hold for fermions. Using identities

involving q factorials, the bosonic and fermionic expressions
can be shown to be level rank dual.
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Product but not Free

@ Ignoring details, for the moment, an immediately striking
aspect of the large volume limit is that the partition
factorizes (its a product of partition functions, one for each
single particle state).

@ This feature may appear to suggest that our system is free
in the infinite volume limit (whats going on in one single
particle state does not affect the partition function of another
single particle state).

@ While this suggestion sounds initially reasonable, it is not
correct. We can see this by noting that the coefficients of
e~ #(Er—1) in the expansion of Z, above are not integers. It
follows that the different Z, are not partition functions over
independently defined Hilbert Spaces.
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Explanation of the Product Structure

® We believe that this product structure is a manifestation of

an interesting universality in the fusion rule algebra in the
large insertion limit.

Consider any generic collection of integrable
representations of the WZW algebra R; ... Rj.

Let us now sequentially fuse our representations with each
other. Once this process is completed let us suppose we
are left with ng, representations of type R; for each
integrable representation R;.

In the limit that n is the largest number in the problem, we

believe that
NR

i

n,qj de

dr

i

Independent of the details of the participating
representations R;.
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Explanation of factorization

@ This universality explains the factorization of our partition
functions as follows

@ The coefficient of e "#(En—1) in Z, is actually proportional to
the number of sea particles in the representation conjugate
to the n box symmetric representation.

@ The conjecture of the previous slide explains why this
number is independent of the precise state of the ‘sea’,
explaining why the product structure of single particle

@ The universality described in our conjecture is tightly
connected to the fact that the unitary matrix U localizes on
the same universal matrix in the V> — oo limit, independent
of the temperature, chemical potential and masses together
with the fact that dg = xgr(U).
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Implications of Factorization

@ Recall that
kg

=% (’:f) o rB(Es1) (50)
q

m=0

® Inthe limit \g -~ 0qg — 1 and

(m),~ ()

m)q m
Also in this limit kg so the upper limit on the summation in
(50) — oo. We thus reproduce usual Bose statistics.

@ (50) can be thought of as a one parameter deformation of
usual Bose thermal ‘statistics’; one that changes the details
of occupation probabilities at low occupation numbers, and

imposes the Bose Exclusion Principle at high occupation
numbers.
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New Single particle Thermal Statistics

@ As a consequence we obtain a one parameter deformation
of many of the familiar rules of free statistical physics that
we learn about as undergraduates.

@ For instance, in the t'Hooft Large N limit we find the
following formula for the average occupation number of any
given single particle state at temperature T and chemical

potential
FIB(E, M)
L2V I B ol IO P |
= — tan cot ,
2|xg|  m|Agl efle=an) 4 1 2

@ Generalizing the familiar free boson result

1

ng(e, p) = eBc—an) _ 1

@ Similar results apply for fermions and respect duality
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Putting it all together: 1

@ Armed with our thorough physical understanding of /3 and
I=, we now return to the comparison of the formulae

2
) by A\ A
~NaV2s (5= (m -+ 22802 3B (x4 )0

3> Is(cB)

cB,0,S

Zpg = |€

for the RB theory and

5 byx 22 4
’V —NgV» f(%(szfcg)(‘H»%B(rQA—?(XBBJr*)ﬁS) . -|
Zeff = |e “ : 8 : tl'rH/c:nck (e jHCB)
B

for the related effective ungauged scalar theory
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Putting it all together: 2

@ We see that the full partition function of the RB theory is
precisely the partition function of Fock Space projected
down to WZW singlets, corrected by the mean field or
forward scattering interactions of the ungauged effective
scalar theory.

@ Starting with the RB theory it is possible to integrate out the
gauge fields (this is how we originally solved these theories
at large N). However this process yields a highly nonlocal
(and at first sight extremely ugly) scalar effective action .

@ The fact that this highly nonlocal theory was solvable at
large N always suggested that the effective scalar theory
was simpler than it appeared. We now see in what sense
that is true. Atleast as far as the partition function is
concerned, the entire effect of the ugly looking nonlocal
interactions is to impose (nonlocal but beautiful) WZW
constraint on free fock space. The apparent ugliness
probably had to do with our choice of gauge,
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‘Quasi Fermionic’: Scattering of Excitations

@ The (non gauge invariant) two point functions (¢¢),,

(W, W,) and (y¢)) have all been computed as functions of
at leading order in large N. Answers contain (gauge
invariant) poles. Pole masses of proposed dual excitations
match across duality.

Worry: how about the apparent mismatch of statistics
between Bosons and Fermions? To address this we
computed the exact (large N) S matrix of fermionic and
bosonic excitations - defined by the sum over diagrams and
implementing the LSZ procedure.

Scattering has the following 4 inequivalent channels.

FF — FF (sym), FF — FF as, FA— FA(adj), FA — FA(sing)
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‘Quasi Fermionic’: Statistics

@ Direct computation.

gBoson _ aPsym + bPas, gfermion _ bPsym + @Pas-

@ Lesson: the difference between Bose and Fermi statistics is
compensated for by the fact that the duality map is not
straightforward in gauge indices. A state symmetric in
gauge indices maps under duality to a state antisymmetric
in gauge indices. Allows for the two states to have identical
statistics in ‘non hidden’ indices.

@ This is (in my opinion) an important qualitative insight into
how this duality works at the partonic level. Gives a physical
‘explanation’ of the well known map between
representations of Wilson loops under level rank duality.
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Anyons and Statistics

Note that the resolution of the Bose Fermi dichotomy is not
that the scattering particles are ‘neither bosons nor fermion
but anyons. To see clearly consider the non relativistic limit.
Problem equivalent to scattterig of a non relativistic particle
of a flux tube of magnitude

_ Ca(R1) + c2(R2) — &2(R)

Vv =

R

27v is the effective anyonic phase seen by the S matix.
Turns out v = O(1/N) in both FF — FF channels.
Scattering of two identical fundamentals effectively non
anyonic.

Infact at large N the only effectively anyonic scattering
channel is AF — AF in the singlet sector. There is an
interesting related issue - the usual rules of S matrix
crossing symmetry are violated in this sector. No time to
discuss. Prob related to subtleties at infinity. {see-below).
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One Boson one Fermion and Susy

@ Theories describing the interaction of one fundamental
boson with one fundamental fermion.

@ Lagrangian long and complicated. 3 highly relevant
parameters. 4 aproximately marignal parameters. Marginal
at large N. Flow at finite N. Full space of flows and fixed
points not worked out. Definitely includes N = 2 fixed point.

® The N = 2 susy theory has only 3 relevant operators.
Elaborate 2 dimensional phase diagram. Recently fully
worked out. Generic low energy behaviour massive (4
distinct massive phases). 2 parameter fine tuning allows for
massless low energy dynamics, including quasi bosonic
CFT dynamics as well as fixed points governing the
interaction of one quasi fermionic and one quasi bosonic
theory.
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Schematic Phase diagram

0<A<$ 1<A<1

Figure: Schematic of the phase structure of the N = 2 theory. This
phase diagram is known in full quantitative detail at large N.
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Connection to SUSY

@ The main point of interest here is that the A/ = 2 susy
theory is known to enjoy invariance under a version of
Giveon Kutasov type duality (Benini et al duality). Fantastic
evidence that this duality persists for finite N.

@ The phase diagram above demonstrates that Bose Fermi
duality (both quasi bosonic and quasi fermionic) can be
understood as consequences of this susy duality. If you take
two dual CFTs, and follow flows seeded by dual operators,
the IR theories will also be dual.

@ These arguments strongly suggest that duality is not
somehow a large N artifact but persists also at finite (but
large) N. As you know there is also independent evidence
that the duality actually persists all the way down to N and k
equals unity.
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Quantum Hall from Background B fields

@ Consider, e.g. regular fermions in background magnetic
field (of the U(1) global symmetry of this theory).

® We work at zero temperature but sometimes at nonzero
value of the chemical potential. What we actually compute
is the fermion two point function of the theory, dressed with
a background open Wilson line to make our quantity
background gauge invariant.

@ Our correlator is not SU(Ng) gauge invariant, but we expect
the locations of its singularities (e.g. poles) to be physical as
in the discussion above.
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® Using standard large N techniques we are able to
demonstrate that our two point function obeys a nonlinear
integral equation.

@ Quite remarkably it turned out to be possible to find a
completely exact and reasonably explicit solution to this
equation. The Moyal star product - and noncommutative
solitons - play a leading role in this solution. | now describe
its key features.

@ At leading order in large N it turns out that the only
singularities of our propagators are poles (no cuts).

@ Working first at zero chemical potential, the poles are
located at E = x;} and —y, .
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Solution at zero chemical potential

"3 2
1 o
(x,))P=c2+2b(v+ 5 + £ en(gs) (51)
2 2
- son(mp) — AF
g=2, s= 5
Where cr is a solution to the equation:
mg =sgn( m,:)\/C,ZE + Arb sgn(mg)
> 1
2 1)+ A -
+ZO o2 +2b(n+1) + Aeb]'/? b/d SO 1 2bx) 1

Flc|
(52)
s is full fermion spin. B.S Zeeman effect. Landau Levels of ‘free
relativistic particle of spin s and mass ¢’ in a magnetic field.
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Turning on a chemical potential

@ The procedure for obtaining our solution is modified only
slightly at nonzero chemical potentia. At some point in the
computation we had to do an integral over a frequency
variable w. Turns out that the only effect of turning on a
chemical potential is to change the contour of the w integral.

@ If we assume that  lies in the window between ¢, (M) and
(+(M + 1) we find a similar solution to the one described
above, but with a modified equation for cr (the new equation
depends on M). The new solution works only when the
assumptions under which the equation is derived is obeyed,
i.e. inarange plfy < 1 < -
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Turning on a chemical potential

° /1% is the lowest potential upto which it is consistent to
assume that the M™ Landau Level is totally filled. On the

other hand /l,g”O;VL is the highest potential upto which it is
consistent to assume that the M Landau Level is
completely empty.

@ |t follows that

o1 = p1ip = 1giomn
is the ‘thickness’ in energy space of the M Landau level.
When .M is positive it follows that the M Landau Level -
which is perfectly degenerate in the free theory - broadens
out as you start filling the level.

@ When 6uM is negative, on the other hand we have a ‘first
order phase transition’ type situation. In this case there is a
range of u over which both solutions (completely filled and
completely empty) are consistent. The system will pick out
the state with the lower free energy.
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Gaps in Landau Levels

Actually determining 6uM requries explicit solutions for the
quantities c,":”. In general we have only been able to solve
these equations numerically. Our paper contains lots of
plots.

Easy to find 6. perturbatively in Ar. Our result

me
\/m 4 2b(M + 1)

ouM = —2X\eb | 1 - +0(\2) (53)

Note the sign of this quantity is opposite to that of Ab. Note
also that the bracket behaves very differently at small b
depending on the sign of mg.

Many generalizations of this computation: e.g. finite
temperature free energy - may well be possible to compute.
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Summary of Magnetic Field

@ Exact solution of theory at leading order in large N in
presence of magnetic field. Spectrum as a function of i, has
gaps and bands. Inside a gap the system is
‘incompressible’. Changing p inside a gap does nothing.
Know the locations of all bands and gaps.

@ When §u > 0 have no solution in band. Integral over w hits
a pole. Deform contour above - completely fill Landau Level.
Deform contour below, LL completely unfilled. Natural
prescription for partially filled level: f times the contour
above + (1 — f) times the contour below. Adopting find
system is ‘compressible’ within the band (single particle
energies vary continuously from the lower to the upper end
of each band as f varies from 0 to unity).

® Have presented only the leading large N solution. Possible
that there are IR singularities at subleading order in 1/N
that somehow modify physics within the band leading to
creation of mass gaps. What is this good for2
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Discussion

@ Large N Chern Simons theories with fundamental matter
are remarkable theories. They are simple enough that they
can be exactly solved. But they also exhibit a fair degree of
richness in their dynamics.

@ The study of these theories has taught us many lessons
that go beyond these theories. E.g. Dualities appear to be
ubiquitious in non supersymmetric D = 3 theories.

@ However the results obtained from our study have thrown up
several new questions, for which we do not have clear
answers. For instance, what is the precise definition of S
matrices in Anyonic theories? What are the correct crossing
symmetry rules at finite N and k?

@ | think it would be very interesting to persue the ‘exact’ large
N solutions of our theories in magnetic field backgrounds,
so search for, for instance, fractional quantum hall type
mass gaps in the middle of our bands.
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Discussion

@ Duality was first speculated upon in these theories by the
study of their Vasiliev bulk duals. Perhaps it is time to return
to this study.

@ |t would be interesting if the new ‘free thermal statistics’ of
this talk showed up in a real two dimensional material in an
experimental context, though | have no clue of how or where
this might happen.

@ All Large N computations in this theory have been
perfomred in a particular light cone gauge. It would be
useful to reproduce and generalize some of these results in
another gauge, e.g. the Ay = 0 gauge. This could allow for
new computations like the thermal partition function on a
genus g surface

Shiraz Minwalla



Discussion

@ The WZW singlet condition is intimately connected to the
mathematical structure of quantum groups. It would be
interesting if this connection had dynamical implications,
perhaps in governing the structure of interaction matrix
elements on the almost free structures encountered in ths
talk.

@ It would be very interesting to see how far this
understanding persists away from the large N limit and also
from the large volume limit. It would be fantastic if we could
rewrite the Index of superconformal Chern Simons matter
theories in a language similar to this talk (i.e. free theory
subject to an effective constraint, which may be a
deformation of the WZW singlet condition).
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Discussion

@ The Bose condensate encountered in our analysis is an
extremely simple stabilization of the run away instability of
free theory. The sharp cut off at k¢ plus the Bose exclusion
principle gives this phase all the properties of a Fermi Sea. |
would be very intersted to know of any other situation in
which such a stabilized Bose condensate has been
encountered.

@ It would be interesting to investigate the dynamical
implications of the Bose condensation principle. Cut off
lasers? Connection with quantum groups.

@ |t would be interesting to better understand how the path
integral ‘knows’ that mixed ‘correlators’ of non integrable
and integrable Wilson lines must vanish, even in the case of
pure Chern Simons theory (see remark in red before (4)). It
would also be satisfying to reproduce the phase (—1)N*1in
(8) directly from the Blau and Thompson path integral.

Shiraz Minwalla



Discussion

o Finally, perhaps we are buiding up to a point where we get
to understand these theories well enough so that we have a
realisitic chance of shooting for a proof of the Bose Fermi
duality. Recall in this context that no nontrivial strong weak
coupling duality in higher than two dimensions has ever yet
been proven.
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