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WHERE IS A PLACE OF THE THEORY OF FQHE?
For a long time the theory of FQHE survived without a Hamiltonian

- Adiabatic transport (the standard avenue of the theory): the ground state (say
Laughlin wf) and the adiabatic properties (a gapped spectrum) suffices.

N
U~ l_[(zi _Zj)ﬁe_% Zill® = g1 — filling fraction

i>j

- E.g., e may consider a system in multiply-connected geometry. Then the ground state
is a bundle whose base is moduli space.

- A Hamiltonian is not necessary;

- For anything else, like optical properties of the bulk, and even dynamics on the edge
one needs to know excited states.

A Hamiltonian is necessary!
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HYDRODYNAMICS

- The Hamiltonian could be obtained from the basic physical fact:

Electronic states in the Quantum Hall regime is incompressible fluid

- Incompressibility follows from the main property of the Lowest Landau Level: all
states there are holomorphic!

- This fact alone allows to establish dynamics of the QH states beyond just the ground
state!

- Incompressible flows is a geometrically governed dynamics requires minimal
knowledge of microscopic
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A SEARCH FOR A HAMILTONIAN IS BASED ON THE BASIC FACTS

Fractional quantum Hall (interacting states on the Lowest Landau Level) form:
- Liquid
- Incompressible (viz. all states are Holomorphic)
- Dissipation-free liquid (inviscid), and non-resistive (at small T)
- Ultra quantum

- Flows are chiral

Quantum hydrodynamics is a natural approach.

A minor obstacle on the way is that the Hydrodynamics had never been
successfully/systematically quantized
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INCOMPRESSIBLE HYDRODYNAMICS

- Incompressible hydrodynamics is the universal theory which does not appeal to
microscopic knowledge;

- Major (and remarkable) property: Once we know a stationary state and this state is
adiabatic the Hamiltonian and everything else could be obtained in a unique manner.

- Hence, the Laughlin w.f. alone is sufficient to built the Hamiltonian

N
U~ l_[(zi —Zj)ﬁe_g % ‘Zf‘z, y = B! — filling fraction

i>j
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INCOMPRESSIBLE FLOWS ARE GROUP ACTION

How it can be? Why just one state is sufficient?

Because,

Flow of incompressible fluid is the Group Action

Group is area-preserving diffeomorphisms SDiff or W,

[P(t+dt)) = Gg|¥(t)) = Gy =1 +idtH

Coadjoint orbit of SDiff- a long standing problem in mathematics.

The rest of the talk is a practical recipe how to do that
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AREA-PRESERVING DIFFEOMORPHISMS

Introduced to QHE-physics by Andrea,

and also by Girvin, McDonald and Platzmann

A N

[P Pr]l= (ﬁ) ik x K i

Operators acting in the Bargmann space
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HYDRODYNAMICS OF FQHE

Hydrodynamics of FQH states = Hydrodynamics of Fast Rotating Superfluid

Rotating superfluid is a dense array of
quantum vortices (vortex matter)

In this correspondence vortices are identified with electrons (with attached magnetic flux)

Vortices «— Electrons

v
s v K9
p 2n( V)

H= [gap]f

NP
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HAMILTONIAN

1, 1, .
H = [gap] Z 5 V¥ =[gap] Z oz P-Pro
k#0 k0

v v
5= V(U x% 5 — ik x 0
P 2n( xV), P 27r(l x %)
Ao V. A

[P Pr]l= (ﬂ) ik x K P
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N
u(z, t) = u, —iu, = —iQz + iZ

i=1

z—z(t)

. i r
Kirchhoff equations: iz; =Qz;— ) ————
i#i zi(t) - Z](t)
h

Matom

Onsager quantization: I'=

- Quantization {z;, % }pp — [2;, %]=2(%6

z,=20%0,

ij>

- Stationary quantum flow: -9, |¥) = (Qii =X Qs %) [¥)

- Solution is Laughlin’s w.f. ¥ ~ l_[N (5, —2)* e~ Zilail

>j

ﬂ:

T

nQ
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EULER EQUATION FOR INCOMPRESSIBLE ROTATING FLUID

v+ (- V)V+Vp=Qx¥, V-v=0,

: J(v x V)V = 20,

The stationary flow happens to be the Laughlin’s wave function (PW 2012)

N
B

i>j

Not particularly useful: We want to express H not in terms of operators but by their
expectation values P, — (px) = px and replace [ , ] by Poisson brackets {, }.
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STRUCTURE FACTOR

s 7= (01pxP—0) = J M| (7, 2,

o z)PdPz, .. APy

1 1 /1 1 3
=_k2+_(__ )k4+_(__
Sk 2 4y \ 2 v 812 \ 4

(A=)
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LINEAR RESPONSE THEORY

The Hamiltonian in harmonic approximation

H~[gap] Y s¢'pxpx
k#£0

3_1_3_(i_1)+k_2+
k2 2y 24y 7

Then we can write equation of motion as

pk = {H’pk}5
s

k X k/ ’
27r) Pr+k

{Pw P} = (

However, harmonic Hamiltonian changes under SDiff and does not generate SDiff flow. We
need to find higher order correction in p, and in gradients to make it invariant.
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THE HAMILTONIAN

. .. v
Density of electrons=vorticity p = 2—(V X V)
T

odd viscosity

——
%emizj( \ ——plng)

'jiaquantum = _vf P 10gp + % log Det(_Ap) .
—

gravitational anomaly

— . . . 2 — -
A, = pd,0; — Laplace-Beltrami operator with metric ds* = pdzdz

Polyakov formula: logDet(—A,) = ——— J(V log p)?

14/16



STRESS, MOMENTUM AND ANGULAR MOMENTUM
Momentum flux and stress

v

47V
Stress in complex coordinates
o =logp
1 1 1 s s
T,=— EHZVZ +E (—E(HZO') +3d 0
—
odd-viscosity Schwarzian[ o ]=effect of grav. anomaly

T.=—"(p—p)+—Ac
2z 2y P P 48

trace anomaly

Trace anomaly yields the momentum of the stationary flow (ground state)
P= 2 V xT,
- T 22

and angular momentum (or spin)
2
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HAMILTONIAN

o= “p(r)log ﬁp(r%J (= ogp + 13- (Viogo))

The structure function s, = {p;p_;) follows from the Hamiltonian p =5 + Y, " p,

1 1 /1 1 (3 1
skz—k2+—(——v)k4+—(——v)(——v)k6+...
2 4y \ 2 8v2 \ 4 3

v /
{Pw P} = (Z_)k XK Py
i

Now one can compute optical properties, like inelastic light scattering as a linear response

to a smooth variation of the density, etc.
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