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WHERE IS A PLACE OF THE THEORY OF FQHE?

For a long time the theory of FQHE survived without a Hamiltonian

- Adiabatic transport (the standard avenue of the theory): the ground state (say
Laughlin wf) and the adiabatic properties (a gapped spectrum) suffices.

Ψ ∼
N
∏

i>j

(zi − zj)
βe−

B
4
∑

i |zi |2 , ν= β−1 − filling fraction

- E.g., e may consider a system in multiply-connected geometry. Then the ground state
is a bundle whose base is moduli space.

- A Hamiltonian is not necessary;

- For anything else, like optical properties of the bulk, and even dynamics on the edge
one needs to know excited states.

A Hamiltonian is necessary!
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HYDRODYNAMICS

- The Hamiltonian could be obtained from the basic physical fact:

Electronic states in the Quantum Hall regime is incompressible fluid

- Incompressibility follows from the main property of the Lowest Landau Level: all
states there are holomorphic!

- This fact alone allows to establish dynamics of the QH states beyond just the ground
state!

- Incompressible flows is a geometrically governed dynamics requires minimal
knowledge of microscopic
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A SEARCH FOR A HAMILTONIAN IS BASED ON THE BASIC FACTS

Fractional quantum Hall (interacting states on the Lowest Landau Level) form:

- Liquid

- Incompressible (viz. all states are Holomorphic)

- Dissipation-free liquid (inviscid), and non-resistive (at small T)

- Ultra quantum

- Flows are chiral

Quantum hydrodynamics is a natural approach.

A minor obstacle on the way is that the Hydrodynamics had never been
successfully/systematically quantized
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INCOMPRESSIBLE HYDRODYNAMICS

- Incompressible hydrodynamics is the universal theory which does not appeal to
microscopic knowledge;

- Major (and remarkable) property: Once we know a stationary state and this state is
adiabatic the Hamiltonian and everything else could be obtained in a unique manner.

- Hence, the Laughlin w.f. alone is sufficient to built the Hamiltonian

Ψ ∼
N
∏

i>j

(zi − zj)
βe−

B
4
∑

i |zi |2 , ν= β−1 − filling fraction
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INCOMPRESSIBLE FLOWS ARE GROUP ACTION

How it can be? Why just one state is sufficient?

Because,

Flow of incompressible fluid is the Group Action

Group is area-preserving diffeomorphisms SDiff or W∞

|Ψ(t+ dt)〉= Gdt|Ψ(t)〉 ⇒ Gdt = 1+ idtH

Coadjoint orbit of SDiff - a long standing problem in mathematics.

The rest of the talk is a practical recipe how to do that
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AREA-PRESERVING DIFFEOMORPHISMS

Introduced to QHE-physics by Andrea,
and also by Girvin, McDonald and Platzmann

ρ̂k =

∫

: e−ik·rρ̂(r) : d2r

ρ̂k =
∑

i

e−
i
2 kz†

i e−
i
2 k̄zi

z†
i = 2∂zi

, k= kx + iky

[ρ̂k, ρ̂k′] =
�

ν
2π

�

ik× k′ρ̂k+k′

Operators acting in the Bargmann space
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HYDRODYNAMICS OF FQHE

Hydrodynamics of FQH states ≡ Hydrodynamics of Fast Rotating Superfluid

Rotating superfluid is a dense array of
quantum vortices (vortex matter)

In this correspondence vortices are identified with electrons (with attached magnetic flux)

Vortices↔ Electrons

ρ̂ =
ν

2π
(∇× v̂)

H = [gap]

∫

v̂2

2
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HAMILTONIAN

H = [gap]
∑

k 6=0

1
2

v̂−kv̂k = [gap]
∑

k6=0

1
2k2
ρ̂−kρ̂k,

ρ̂ =
ν

2π
(∇× v̂), ρ̂k =

ν

2π
(ik× v̂)

[ρ̂k, ρ̂k′] =
� ν

2π

�

ik× k′ρ̂k+k′
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u(z, t) = ux − iuy = −iΩz̄+ i
N
∑

i=1

Γ

z− zi(t)

Kirchhoff equations: iżi = Ωzi −
N
∑

i 6=j

Γ

zi(t)− zj(t)

Onsager quantization: Γ =
h

mAtom

- Quantization {zi, z̄j}P.B.→ [zi, z̄j] = 2`2δij, z̄i = 2`2∂zi

- Stationary quantum flow: −ħh∂zi
|Ψ〉=

�

Ωz̄i − x
∑

j6=i
Γ

zi−zj

�

|Ψ〉

- Solution is Laughlin’s w.f. Ψ ∼
∏N

i>j(zi − zj)2βe−
B
4
∑

i |zi |2 , β = Γ
ħhΩ
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EULER EQUATION FOR INCOMPRESSIBLE ROTATING FLUID

∂tv̂+ (v̂ · ∇) v̂+∇p= Ω× v̂, ∇ · v̂= 0,

1
V

∫

(∇× v̂)dV = 2Ω,

The stationary flow happens to be the Laughlin’s wave function (PW 2012)

Ψ ∼
N
∏

i>j

(zi − zj)
2βe−

B
4
∑

i |zi |2

Not particularly useful: We want to express H not in terms of operators but by their
expectation values ρ̂k→ 〈ρk〉= ρk and replace [ , ] by Poisson brackets { , }.
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STRUCTURE FACTOR

sk := 〈0|ρ̂kρ̂−k|0〉=
∫

eik(r1−r2)|Ψ(z1, z2, . . . , zN)|2d2z3 . . . d2zN

s−1
k =

2
k2
−
�

1
2ν
− 1

�

+
k2

24ν
+ . . . ,

sk =
1
2

k2 +
1

4ν

�

1
2
− ν

�

k4 +
1

8ν2

�

3
4
− ν

��

1
3
− ν

�

k6 + . . .
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LINEAR RESPONSE THEORY

The Hamiltonian in harmonic approximation

H ≈ [gap]
∑

k 6=0

s−1
k ρ−kρk

s−1
k =

2
k2
−
�

1
2ν
− 1

�

+
k2

24ν
+ . . .

Then we can write equation of motion as

ρ̇k = {H,ρk},

{ρk, ρk′}=
� ν

2π

�

k× k′ρk+k′

However, harmonic Hamiltonian changes under SDiff and does not generate SDiff flow. We
need to find higher order correction in ρk and in gradients to make it invariant.
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THE HAMILTONIAN

Density of electrons=vorticity ρ =
ν

2π
(∇× v)

Hsemi =

∫

�

1
2 v2 −

odd viscosity
︷ ︸︸ ︷

Γ 2

8πρ logρ
�

Hquantum = −ν
∫

ρ logρ + 1
2 logDet(−∆ρ)
︸ ︷︷ ︸

gravitational anomaly

.

∆ρ = ρ∂z∂z̄ − Laplace-Beltrami operator with metric ds2 = ρdzdz̄

Polyakov formula: logDet(−∆ρ) = −
1

12π

∫

(∇ logρ)2
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STRESS, MOMENTUM AND ANGULAR MOMENTUM
Momentum flux and stress

H −→ Πij = vivj + pδij +
ν

4π
Tij

Stress in complex coordinates

σ = logρ

Tzz = −
1
2
∂zvz

︸ ︷︷ ︸

odd-viscosity

+
1

12

�

−
1
2
(∂zσ)

2 + ∂ 2
z σ

�

︸ ︷︷ ︸

Schwarzian[σ]=effect of grav. anomaly

Tzz̄ = −
π

2ν
(ρ − ρ̄) +

1
48
∆σ

︸ ︷︷ ︸

trace anomaly

Trace anomaly yields the momentum of the stationary flow (ground state)

P=
2
π
∇× Tzz̄

and angular momentum (or spin)

L=
2
π

Tzz̄
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HAMILTONIAN

H =
∫∫

ρ(r) log 1
|r−r′ |ρ(r

′) +

∫

�

( 1
2 − ν) logρ +

1
12π

(∇ logρ)2
�

The structure function sk = 〈ρkρ−k〉 follows from the Hamiltonian ρ = ρ̄ +
∑

k eikrρk

sk =
1
2

k2 +
1

4ν

�

1
2
− ν

�

k4 +
1

8ν2

�

3
4
− ν

��

1
3
− ν

�

k6 + . . .

{ρk, ρk′}=
� ν

2π

�

k× k′ρk+k′

Now one can compute optical properties, like inelastic light scattering as a linear response
to a smooth variation of the density, etc.
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