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rxx and rxy for the 2-1 transition using a Hall-bar shaped
sample etched in a high-density (n ≠ 2.27 3 1011 cm22),
low-mobility (m ≠ 10.8 3 103 cm2yVsec), MBE grown
GaAsyAlGaAs wafer. These resistivity traces, taken at
several T ’s, are plotted in Fig. 1(a). The transition is typi-
fied by a rxx peak that widens with T and by the accompa-
nying step in rxy . Next, we convert the r’s to s’s using
the standard matrix conversion,

sxxsxyd ≠
rxxsyxd

r2
xx 1 r2

xy
, (1)

and plot the s traces in Fig. 1(b). We then obtain the
conductivity of the topmost LL by subtracting from the
conductivity data the contribution of the lowest, full LL,

st
xx ≠ sxx , (2)

st
xy ≠ sxy 2 e2yh , (3)

assuming, as mentioned, that the only contribution of the
lowest LL is e2yh to the Hall conductivity (throughout this
paper, the index t refers to the contribution of the topmost
LL to the transport coefficients). Next we convert st

xx
and st

xy to new resistivities, rt
xx and rt

xy , which are the
resistivities of the topmost LL. This allows comparison
with the data obtained from the 1-0 transition in the same
sample.
The comparison is made in Fig. 2, where we plot rt

xx
(solid lines) and rt

xy (short-dashed lines) as a function of

FIG. 1. (a) rxx (lower curves) and rxy vs n taken in the
vicinity of the n ≠ 2 to 1 transition, at T ≠ 42, 70, 101, and
137 mK. Note the narrowing of the transitions as T is lowered.
(b) sxx and sxy vs n, calculated from (a). The dashed lines in
both (a) and (b) indicate nc, inferred from the data in Fig. 2(a)
(see text).

n for the 2-1 transition [Fig. 2(a)], and traces of rxx and
rxy vs n obtained from the same sample near the 1-0
transition terminating the QH series, in Fig. 2(b) (here,
of course, rt ≠ r). While for the rxx traces in both
graphs of Fig. 2 we present data at our lowest T range
(T , 150 mK), the rxy traces shown were taken at an
elevated T (¯320 mK) for which reliable data can be
obtained. The difficulties with the Hall component data
at lower T ’s will be discussed below.
A central point that can be observed in Fig. 2 is the

clear similarity of the overall appearance of the traces in
the two graphs. In particular, both sets of rxx traces are
characterized by a T -independent crossing point of the
traces taken at different T ’s which, for the 1-0 transition,
has been identified as the QHE-to-insulator transition point
[10,11]. It is thus natural to associate the 2-1 transition
n, nc, with the crossing point of the rt

xx traces observed
in Fig. 2(a). Adopting this identification of nc, we now
proceed to explore its consequences in the r and s traces
of Fig. 1.
It is immediately obvious that nc (dashed line in Fig. 1)

is not at the rxx peak. In fact, the position of the rxx

FIG. 2. (a) rt
xx (solid lines) and rt

xy (long-dashed line) for
the 2-1 transition, calculated from the data in Fig. 1(a). The
T for the rt

xx data are 42, 70, 101, and 137 mK, and for the
rt

xy trace T ≠ 330 mK. (b) Measured rxx (solid lines) and
rxy (long-dashed line) for the 1-0 transition. The T for the
rxx data are 42, 84, 106, and 145 mK, and for the rxy trace
T ≠ 323 mK. Dashed line in both (a) and (b) indicates the
transition n inferred from the common crossing point of the
rt

xx (or rxx) traces.
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FIG. 1. p„vs 8 traces at various T's for sample 60A/B
(a) and M124U2/B (b). The T's are for (a) 28, 38, 52, 77,
124 mK and (b) 26, 36, 48, 65, 88 mK. In the inset of (a) is a
portion of the KLZ phase diagram (see text) in the disorder —8
Geld plane. The B Beld strength is given by p,, in the units of
h/e'. The solid lines are phase boundaries, and the numbers are
the QHE state. The dotted (dashed) line is a possible trajectory
for the sample in (a) [(b)]. The inset of (b) shows the crossing
point on a larger scale.

authors to the possible formation, near v = 1/5, of a
Wigner-crystal-like ordered phase neglected by KLZ.
In this Letter we report on a systematic study of the

critical behavior near QHE liquid to insulator transitions,
from the v = 1 and 1/3 QHE liquids, which are at
sufficiently large v, that complications due to the Wigner
crystal phase are not expected. We have clearly identified
a critical magnetic field 8, that marks the boundary
between the QHE and the insulating phases in our
GaAs/A1GaAs heterostructures. This distinct 8, exists
for both low mobility [p, = (1 —5) X 10 cm /Vsec]
samples, for which the FQHE is not resolved down
to our lowest attainable T (20 mK), and high mobility
(p, = 5 x 10' cm2/V sec) samples, which exhibit a well-
developed set of FQHE states and for which the transition
to the insulating phase occurs from the v = 1/3 FQHE
state. Our main result is that, at B„p is independent
of sample parameters and of whether the transition takes
place from the v = 1 or v = 1/3 QHE state. Its value,
obtained by averaging over all our samples and runs, is
p = 25.3 + 4.1 kA. The quantum unit of resistance
h/e = 25.813 kA is within the error of this result .
In Fig. 1, we plot a set of 8 field traces of

p taken at various T' s, for both a low mobility
[iu, = 3 x 104 cm2/Vsec, Fig. 1(a)] sample and a high
mobility [p, = 5.5 X 105 cm2/V sec, Fig. 1(b)] sample.

4512

In the traces of each sample, a set of QHE liquid states
is clearly observed. For the sample in Fig. 1(a), the
v = 1 and 2 IQHE states are well developed with p„
vanishingly small over a wide range of B. A dip near
v = 4 is also seen in the traces, although it is not as
well developed. No FQHE states are observed for this
sample. In contrast, for the high p, sample in Fig. 1(b),
the FQHE is observed. In addition to the v = 1/3 state
which is fully developed, a strong dip is also apparent
at v = 2/5, indicating the formation of a FQHE liquid
there as well. For this sample we have chosen to depict
only part of the 8 range above 5 T (near v = 1/2).
This serves to illustrate the remarkable similarity in the
general appearance of the traces from the two samples.
In particular, one can identify the similarity of v = 1 and
2 states in Fig. 1(a) to the v = 1/3 and 2/5, respectively,
in Fig. 1(b). This similarity between the IQHE states at
low 8 and the FQHE states at high 8 ranges in a single
sample has been recently considered in the context of
composite fermions [16]. Here, it may be regarded as an
experimental manifestation of the law of corresponding
states suggested by KLZ.
It is clear from Fig. 1 that this similarity is also seen in

the transition to an insulating phase in the high 8 limit and
that an unambiguous determination of the critical 8,. for
these transitions is evident. In both samples, 8, sharply
separates two distinct 8 field regions, differing by the
T dependence of p in each region. This distinction
can be readily seen in Fig. 2 where we plot p, as
a function of T for several different 8 fields in the
neighborhood of 8, (3.02 T), taken from the sample in
Fig. 1(a). For the 8 ) 8, region a behavior characteristic
of an insulator is observed in the sense that p diverges
as T ~ 0. The behavior in the 8 ~ 8, region, on the
other hand, is typical of a QHE liquid, with p„~ 0 as
T 0. The data are consistent with the existence of a
critical point at 8, where p, const as T 0, and with
the scaling behavior expected near a continuous phase
transition. (A detailed analysis of the scaling behavior
near this transition will be presented elsewhere. ) We thus
identify 8, with the critical point of the QHE liquid to HI
transition. We also note that the overall appearance of the
data in Fig. 2 is greatly reminiscent of the superconductor
to insulator transition in thin films [3].
The unique role of 8, can also be identified in the

current-voltage characteristics near the transition. In
Fig. 3(a) we plot a set of the four-terminal I Vcurves, -
from the sample of Fig. 1(b), at several values of 8 near
8,. The curves, taken at T = 21 mK, are all symmetric
upon reversal of the current and voltage direction and
are not hysteretic. The first trace in Fig. 3(a) was taken
at 8 = 8.7 T, and each consecutive trace represents an
increase of 0.1 T with the last trace at 9.6 T. The
I Vtaken at 8, (= -9. 1 T), as indicated by the dashed
line, separates all traces into two groups, each showing
a different type of behavior. To see this more clearly,
we plot, in Fig. 1(b), the numerical derivative of the I-V

D. Shahar et al., PRL 74, 4511 (1995).
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Thus both ⇢xx and �xx vanish, raising the question of how one should think about this situation.

The key point is that it is dissipationless, since current density is transverse to the electric field.

C. Landau levels in the presence of disorder

To get a basic understanding of the experiment, we start by postulating that the nature of

single-particle states for charged particles moving in two dimensions with a magnetic field and

disorder that is not too strong is as illustrated. We will come to the justification for this later.

extended

E

(E)ρ

localised

On this picture, disorder both broadens the Landau levels and gives states varying character

as a function of energy within each Landau level: states in the Landau level tails are localised

in space, while those at the Landau level centre extend through the sample.

How does localisation explain plateaus? If the chemical potential for electrons lies between

Landau level centres, then we can change the filling factor by a small amount without changing

the occupation of current-carrying states, hence leaving the Hall conductance constant. Also,

dissipation requires excitation between occupied and empty current carrying states, so is ther-

mally suppressed at low temperature.

What happens between plateaus? If the chemical potential moves through the energy of ex-

tended states, we can understand that �xy moves between quantised values, since the occupation

of extended states has changed. Also, it is expected that �xx > 0 within this transition, since

when the chemical potential lies close to the energy of extended states, dissipation is no longer

suppressed.

N(E)

Integer QH:
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Thus both ⇢xx and �xx vanish, raising the question of how one should think about this situation.

The key point is that it is dissipationless, since current density is transverse to the electric field.

C. Landau levels in the presence of disorder

To get a basic understanding of the experiment, we start by postulating that the nature of

single-particle states for charged particles moving in two dimensions with a magnetic field and

disorder that is not too strong is as illustrated. We will come to the justification for this later.

extended

E

(E)ρ

localised

On this picture, disorder both broadens the Landau levels and gives states varying character

as a function of energy within each Landau level: states in the Landau level tails are localised

in space, while those at the Landau level centre extend through the sample.

How does localisation explain plateaus? If the chemical potential for electrons lies between

Landau level centres, then we can change the filling factor by a small amount without changing

the occupation of current-carrying states, hence leaving the Hall conductance constant. Also,

dissipation requires excitation between occupied and empty current carrying states, so is ther-

mally suppressed at low temperature.

What happens between plateaus? If the chemical potential moves through the energy of ex-

tended states, we can understand that �xy moves between quantised values, since the occupation

of extended states has changed. Also, it is expected that �xx > 0 within this transition, since

when the chemical potential lies close to the energy of extended states, dissipation is no longer

suppressed.

N(E)

Integer QH:

Fractional QH:
Naive expectation: Integer, 
fractional QH transitions 
are totally different.  
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Thus both ⇢xx and �xx vanish, raising the question of how one should think about this situation.

The key point is that it is dissipationless, since current density is transverse to the electric field.

C. Landau levels in the presence of disorder

To get a basic understanding of the experiment, we start by postulating that the nature of

single-particle states for charged particles moving in two dimensions with a magnetic field and

disorder that is not too strong is as illustrated. We will come to the justification for this later.

extended

E

(E)ρ

localised

On this picture, disorder both broadens the Landau levels and gives states varying character

as a function of energy within each Landau level: states in the Landau level tails are localised

in space, while those at the Landau level centre extend through the sample.

How does localisation explain plateaus? If the chemical potential for electrons lies between

Landau level centres, then we can change the filling factor by a small amount without changing

the occupation of current-carrying states, hence leaving the Hall conductance constant. Also,

dissipation requires excitation between occupied and empty current carrying states, so is ther-

mally suppressed at low temperature.

What happens between plateaus? If the chemical potential moves through the energy of ex-

tended states, we can understand that �xy moves between quantised values, since the occupation

of extended states has changed. Also, it is expected that �xx > 0 within this transition, since

when the chemical potential lies close to the energy of extended states, dissipation is no longer

suppressed.

N(E)

Integer QH:

Fractional QH:
Naive expectation: Integer, 
fractional QH transitions 
are totally different.  

Interactions: important for 
both I and FQH transitions.



Why interactions are important
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N(E)

1) Finite critical conductivity
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rxx and rxy for the 2-1 transition using a Hall-bar shaped
sample etched in a high-density (n ≠ 2.27 3 1011 cm22),
low-mobility (m ≠ 10.8 3 103 cm2yVsec), MBE grown
GaAsyAlGaAs wafer. These resistivity traces, taken at
several T ’s, are plotted in Fig. 1(a). The transition is typi-
fied by a rxx peak that widens with T and by the accompa-
nying step in rxy . Next, we convert the r’s to s’s using
the standard matrix conversion,

sxxsxyd ≠
rxxsyxd

r2
xx 1 r2

xy
, (1)

and plot the s traces in Fig. 1(b). We then obtain the
conductivity of the topmost LL by subtracting from the
conductivity data the contribution of the lowest, full LL,

st
xx ≠ sxx , (2)

st
xy ≠ sxy 2 e2yh , (3)

assuming, as mentioned, that the only contribution of the
lowest LL is e2yh to the Hall conductivity (throughout this
paper, the index t refers to the contribution of the topmost
LL to the transport coefficients). Next we convert st

xx
and st

xy to new resistivities, rt
xx and rt

xy , which are the
resistivities of the topmost LL. This allows comparison
with the data obtained from the 1-0 transition in the same
sample.
The comparison is made in Fig. 2, where we plot rt

xx
(solid lines) and rt

xy (short-dashed lines) as a function of

FIG. 1. (a) rxx (lower curves) and rxy vs n taken in the
vicinity of the n ≠ 2 to 1 transition, at T ≠ 42, 70, 101, and
137 mK. Note the narrowing of the transitions as T is lowered.
(b) sxx and sxy vs n, calculated from (a). The dashed lines in
both (a) and (b) indicate nc, inferred from the data in Fig. 2(a)
(see text).

n for the 2-1 transition [Fig. 2(a)], and traces of rxx and
rxy vs n obtained from the same sample near the 1-0
transition terminating the QH series, in Fig. 2(b) (here,
of course, rt ≠ r). While for the rxx traces in both
graphs of Fig. 2 we present data at our lowest T range
(T , 150 mK), the rxy traces shown were taken at an
elevated T (¯320 mK) for which reliable data can be
obtained. The difficulties with the Hall component data
at lower T ’s will be discussed below.
A central point that can be observed in Fig. 2 is the

clear similarity of the overall appearance of the traces in
the two graphs. In particular, both sets of rxx traces are
characterized by a T -independent crossing point of the
traces taken at different T ’s which, for the 1-0 transition,
has been identified as the QHE-to-insulator transition point
[10,11]. It is thus natural to associate the 2-1 transition
n, nc, with the crossing point of the rt

xx traces observed
in Fig. 2(a). Adopting this identification of nc, we now
proceed to explore its consequences in the r and s traces
of Fig. 1.
It is immediately obvious that nc (dashed line in Fig. 1)

is not at the rxx peak. In fact, the position of the rxx

FIG. 2. (a) rt
xx (solid lines) and rt

xy (long-dashed line) for
the 2-1 transition, calculated from the data in Fig. 1(a). The
T for the rt

xx data are 42, 70, 101, and 137 mK, and for the
rt

xy trace T ≠ 330 mK. (b) Measured rxx (solid lines) and
rxy (long-dashed line) for the 1-0 transition. The T for the
rxx data are 42, 84, 106, and 145 mK, and for the rxy trace
T ≠ 323 mK. Dashed line in both (a) and (b) indicates the
transition n inferred from the common crossing point of the
rt

xx (or rxx) traces.
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�dc = lim
T!0

lim
!!0

lim
L!1

�(!, T, L)

= 0 without interactions.  

Interactions (even if RG irrelevant)  
are important for finite dc resistance 
at T>0.  

Z. Wang et al, PRB 61, 8326 (2000).  

D. Shahar et al., PRL 79, 479 (1997).



Why interactions are important

2) Dynamical scaling laws. ⇠ ⇠ ��⌫

⇠⌧ ⇠ ��⌫z

� =
B �Bc

Bc

T ⇠ 1

⇠⌧

Resistivity data near QCP: ⇢(B, T ) = ⇢⇤f

✓
�

T 1/⌫z

◆

non-linear IV data: ⇢(E, T ) = ⇢⇤g

✓
�

E1/(1+z)⌫

◆
⌫ ⇡ 2.3, z = 1

z=1: natural from V(r) ~ 1/r.  

Non-interacting problem: z=d=2 (from finite density of states).

Interactions are important even for IQH transitions.
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A quantum system can undergo a continuous phase transition at the absolute zero of temperature as
some parameter entering its Hamiltonian is varied. These transitions are particularly interesting for,
in contrast to their classical finite-temperature counterparts, their dynamic and static critical behaviors
are intimately intertwined. Considerable insight is gained by considering the path-integral description
of the quantum statistical mechanics of such systems, which takes the form of the classical statistical
mechanics of a system in which time appears as an extra dimension. In particular, this allows the
deduction of scaling forms for the finite-temperature behavior, which turns out to be described by the
theory of finite-size scaling. It also leads naturally to the notion of a temperature-dependent dephasing
length that governs the crossover between quantum and classical fluctuations. Using these ideas, a
scaling analysis of experiments on Josephson-junction arrays and quantum-Hall-effect systems is
presented. [S0034-6861(97)00501-1]
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I. INTRODUCTION

A century subsequent to Andrews’ discovery of criti-
cal opalescence1 in carbon dioxide, continuous phase

transitions continue to be a subject of great interest to
physicists. The appeal of the subject is twofold. First, the
list of systems that exhibit interesting phase transitions
continues to expand; it now includes the Universe itself!
Second, the formal theory of equilibrium phase transi-
tions has found applications in problems as diverse as
constructing field and string theories of elementary par-
ticles, the transition to chaos in dynamical systems, and
the long-time behavior of systems out of equilibrium.

Our purpose in this Colloquium is to give a brief and
qualitative account of some basic features of a species of
phase transitions,2 termed quantum phase transitions
(QPTs), that have attracted much interest in recent
years. These transitions take place at the absolute zero
of temperature, where crossing the phase boundary
means that the quantum ground state of the system
changes in some fundamental way. This is accomplished
by changing not the temperature, but some parameter in
the Hamiltonian of the system. This parameter might be
the charging energy in Josephson-junction arrays (which
controls their superconductor-insulator transition), the
magnetic field in a quantum-Hall sample (which controls
the transition between quantized Hall plateaus), doping
in the parent compound of a high-Tc superconductor
(which destroys the antiferromagnetic spin order), or

1Opalescence is the strong reflection of light by a system
(such as an opal) due to fluctuations in its index of refraction
on length scales comparable to the wavelengths of visible light.

A liquid-vapor system near its critical point has large density
fluctuations on length scales that can reach microns. This
causes the system, which is normally transparent, to have a
cloudy appearance.

2Henceforth we shall use phase transitions as a shorthand for
continuous phase transitions.

315Reviews of Modern Physics, Vol. 69, No. 1, January 1997 0034-6861/97/69(1)/315(19)/$12.85 © 1997 The American Physical Society

RMP 69, 315 (1997).

“…z=1 strongly suggests that coulomb interactions  are playing an 
important role…” 

“..a priori validity [of superuniversality].. is still unclear.” 

“In summary,  theorists have their work cut out for them!”



Main points of my talk

Theory of QH transitions: still in a primitive stage!  

Interactions needed for  

1) Finite electrical resistance at criticality. 
2) Correct dynamical scaling laws.   
3) Comparing fractional vs Integer QH transitions.   

Composite fermion (CF) representation readily addresses all 3!

Most studies: neglect interactions.  

What we don’t know yet: interaction effects on ⌫.



QH transitions in electron coordinates

L = L0 + Ldis + Lint

L0 = c†(r)


�i@t + µ� 1

2m
(@ � iA)2

�
c(r)

Ldis = c†(r)V (r)c(r)

Lint = �1

2

Z
d2r0 [n(r)� hni]U(r � r0) [n(r0)� hni]

B = r⇥A
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QH transitions in CF coordinates

2 choices for CF theories: 

1) Halperin, Lee, Read (HLR) - “flux attachment”.  

2) Dirac CF theory (Son) - CFs are “dual” vortices.  

Both motivate a traditional “mean field + fluctuations” approach.

Fluctuations: Dirac and HLR theories are distinct.  

Mean-field theory: identical predictions from HLR and Dirac CF theories.  

PRX 5, 031027 (2015).  

PRB 47, 7312 (1993).



Dirac CFs 
D.T. Son PRX 5, 031027 (2015).  

Idea: non-relativistic electrons in LLL behave similarly to massless Dirac 
electrons. 

l

Dirac electron:

Dirac CF:

Background (EM) gauge field.

Dynamical U(1) gauge field.

LDirac el. = ic̄ /DAc+
1

8⇡
AdA

Lcf = i ̄ /Da � 1

4⇡
Ada+

1

8⇡
AdA

Aµ :

aµ :

Particle-vortex duality



Dirac CFs 
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Dirac electron:

Dirac CF:

Background (EM) gauge field.

Dynamical U(1) gauge field.
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AdA

Lcf = i ̄ /Da � 1

4⇡
Ada+

1
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AdA

Aµ :

aµ :

Particle-vortex duality

hc†ci = B � b

4⇡

h † i = B

4⇡

B = r⇥A

b = r⇥ a



Disorder in Dirac CF theory 

At ! At + V (r)

Ldis = V (r)c†(r)c(r)

Dirac electron:

LDirac el. ! LDirac el. + Ldis

LDirac el. = ic̄ /DAc+
1

8⇡
AdA



Disorder in Dirac CF theory 

At ! At + V (r)

Ldis = V (r)c†(r)c(r)

Dirac electron:

LDirac el. ! LDirac el. + Ldis

Dirac CF: At ! At + V (r)

Lcf ! Lcf + L0
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LDirac el. = ic̄ /DAc+
1
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AdA
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Disorder in Dirac CF theory 

Dirac CF: At ! At + V (r)

Lcf ! Lcf + L0
dis L0

dis = � 1

4⇡
V (r)b(r)

b(r) = r⇥ a(r)

V(r) sources a quenched random b(r).  

aj(r, t) ! aj(r, t) + a0j(r)

P [a0] = e�⇡NF ⌧
R
d2ra0(r)2 NF: density of states at EF.

L0
dis ! a0j(r) ̄�j (r)



Interactions in Dirac CF theory 

Dirac electron:

Lint = �1

2

Z
d2r0 [n(r)� hni]U(r � r0) [n(r0)� hni]

L0
int = � 1

2(4⇡)2

Z
d2r0 b(r)U(|r � r0|)b(r0)

Dirac CF:

b(r) = r⇥ a(r)

Interactions: gauge fluctuations (gauge boson kinetic term).  



Interactions in Dirac CF theory 

Coulomb gauge:

L0
int = � 1

2(4⇡)2

Z
d2r0 b(r)U(|r � r0|)b(r0) b(r) = r⇥ a(r)

a0, aT

U(r) =
e2⇤
r

S0
int = � e2⇤

16⇡

Z

!,q
|q|aT (q,!)aT (�q,�!)

U(r) = U0�(r) S0
int = � U0

16⇡

Z

!,q
q2aT (q,!)aT (�q,�!)



Dirac CF + disorder + interactions

L0
int = � 1

2(4⇡)2

Z
d2r0 b(r)U(|r � r0|)b(r0)

Lcf = i ̄ /Da � 1

4⇡
Ada+

1

8⇡
AdA+ L0

dis + L0
int

L0
dis = � 1

4⇡
V (r)b(r) ! a0j(r) ̄�j (r) aj(r, t) ! aj(r, t) + a0j(r)



CF Mean-field theory



CF mean-field theory

Lcf = i ̄ /Da � 1

4⇡
Ada+

1

8⇡
AdA+ L0

dis + L0
int

Mean-field theory: gauge dynamics only via eqs. of motion.  

Include proper UV regularization in mean-field theory.  

Lcf = L [a] + Lgauge[a,A] + L0
dis + L0

int

L = i ̄ /Da � ada

8⇡
Lgauge =

(a�A)d(a�A)

8⇡}
Massive  
partner



CF mean-field theory

Associated Hamiltonian (also properly regularized): 

Lcf = L [a] + Lgauge[a,A] + L0
dis + L0

int

L = i ̄ /Da � ada

8⇡
Lgauge =

(a�A)d(a�A)

8⇡

H = H1 +H2

H1 = �.(p� a0)� µcf H2 = �.(p� a0)�m�z
� µcf}

Massive  
partner

m � µcf



CF mean-field theory

Mean-field behavior of H1 = �.(p� a0)� µcf

Tuning parameter for transition: average b: b̄(r) = b0

b0 6= 0



CF mean-field theory

Mean-field behavior of H1 = �.(p� a0)� µcf

b0 6= 0

�cf
xy =

⇢
sgn[b0]

4⇡ , b0 6= 0
0 b0 = 0

Contribution from light 
fermion: 

b0<0: Integer QH.  b0>0: insulator.  



CF mean-field theory

Mean-field behavior of H1 = �.(p� a0)� µcf

b0 6= 0 �cf
xy =

⇢
sgn[b0]�1

4⇡ , b0 6= 0
� 1

4⇡ b0 = 0

�cf
xy =

⇢
sgn[b0]

4⇡ , b0 6= 0
0 b0 = 0

Contribution from light 
fermion: 

Total contribution:

b0<0: Integer QH.  b0>0: insulator.  



Laughlin gauge argument: 

States at EF  
localized 

)
�xy =

1

2⇡
⇥ integer

�cf
xy = �1/4⇡

)
States at EF  
must be delocalized.   

States are delocalized at all 
energies at the critical point!

Delocalized states at criticality

b0 = 0

Implies a finite dc resistance of 
CFs at criticality.  



The virtue of the fermion Chern-Simons description is
that it suggests a novel mean-field theory. In this mean-
field theory one lets the averaged b (b̄ = 2φ0ρ̄) cancel
B. (Here ρ̄ is the average electron/composite fermion
density.) After the cancellation the composite fermions
see zero magnetic field hence form a Fermi liquid. This
mean-field theory is the basis of Ref. [1].

In reality b is space-time dependent, hence can not can-
cel B exactly. Attempts to go beyond mean-field theory
have not lead to a conclusive result. On this account HLR
made a bold conjecture. They assert that the cancella-
tion between b and B is not spoiled by the fluctuations
beyond mean-field theory. Moreover they assert that the
sole effect of the fluctuations is to renormalize the Fermi
liquid parameters of composite fermions.

An consequence of HLR’s assertion is that the com-
posite fermion Hall conductance vanish:

σCF
xy (ω = 0,q = 0) = 0. (1)

Eq. (1) lies at the heart of the issue we shall discuss.
At this point it is useful to contrast the mean-field

theory for ν = 1/2 with that for incompressible filling
factors. [14,15] The difference lies in the fact that for in-
compressible filling factors the mean-field theory predicts
integer quantum Hall states, while for ν = 1/2 it predicts
a Fermi liquid. Since the former is incompressible (hence
does not have low energy b fluctuations), the statement
that b cancels part of B is asymptotically exact. The
same can not be said about ν = 1/2, because the mean-
field composite fermion state is compressible.

II. The composite fermion Hall conductance

Now let’s come to the main issue - the validity of
Eq. (1). First let’s recall the following exact relation
between the electron and composite fermion resistivity
tensors (ραβ and ρCF

αβ ):

ραβ = ρCF
αβ + εαβ

2h

e2
. (2)

In the above ρCF
αβ is defined so that σCF

αβ ≡ (ρCF
αβ )−1

αβ
is the conductivity deduced from the statistical-gauge-
propagator-irreducible current-current correlation func-
tion of composite fermions. [1,16] As usual, in the pres-
ence of long-range interaction, the irreducible current-
current correlation describes the particle response to the
total (i.e. external+internal) field.

The physics of Eq. (2) is the fact that the Hall voltage
seen by the composite fermions differs from that seen by
the electrons by an amount equals to 2 h

e2 ×I. This differ-
ence comes from the fact that in the composite fermion
representation (Fig.2) there is a flux current Iφ = 2hc

e
I
e

in addition to the charge current I. This flux current gen-
erates an extra transverse voltage equals to 1

c Iφ = 2 h
e2 I.

I

FIG. 2. Hall conduction from the composite fermion point
of view

As a result the longitudinal (VL, V CF
L ) and Hall

(VH , V CF
H ) voltages seen by the electron and the com-

posite fermion are related by

VL = V CF
L

VH = V CF
H + 2

h

e2
I. (3)

After dividing both sides of Eq. (3) by I one obtains
Eq. (2).

Next, we discuss another argument that is important
for setting up the issue concerning Eq. (1) - the particle-
hole symmetry. [2] In the absence of disorder, particle-
hole symmetry emerges at ν = 1/2 after the projection
onto the lowest Landau level. The presence of such sym-
metry implies that

σxy =
e2

2h
. (4)

A caricature of the proof [2] goes as follows. Upon the
particle-hole conjugation the electron conductivity tensor
transforms as

σxx(ν) = σh
xx(1 − ν)

σxy(ν) =
e2

h
− σh

xy(1 − ν). (5)

In the above σh
αβ is the conductivity tensor of holes. The

physical meaning of Eq.(5) is clear - after particle-hole
conjugation the new vacuum is a full Landau level and
the total current is the sum of the Hall current carried
by the full Landau level and the current carried by the
holes. At ν = 1/2 we have ν = 1− ν = 1/2 and particle-
hole symmetry. As the result σh

αβ(1 − ν) = σαβ(ν), and
hence Eq. (4) holds.

In the presence of disorder particle-hole symmetry can
at most hold on average. If the probability distribution
of the disorder potential satisfies P [V (x)] = P [−V (x)]
we say that the disorder is particle-hole symmetric. It
is important to note that while Eq. (2) holds for general
disorder, Eq. (4) is only true when the disorder is particle-
hole symmetric. In either case when there is disorder we
need to interpret σαβ and σCF

αβ as the disorder-averaged
conductivities. [2]

Putting Eqs.(2) and (4) together we obtain

e2

2h
=

ρxy

ρ2
xx + ρ2

xy
=

ρCF
xy + 2 h

e2

(ρCF
xx )2 + (ρCF

xy + 2 h
e2 )2

. (6)

2

⇢cfab = ⇢ab + 4⇡✏ab

Finite electrical resistance at criticality

Exact relationship between CF and electrical linear response:

Finite CF resistance implies finite electrical resistance at T>0.  

Not obvious in electron 
coordinates!

4

Thus both ⇢xx and �xx vanish, raising the question of how one should think about this situation.

The key point is that it is dissipationless, since current density is transverse to the electric field.

C. Landau levels in the presence of disorder

To get a basic understanding of the experiment, we start by postulating that the nature of

single-particle states for charged particles moving in two dimensions with a magnetic field and

disorder that is not too strong is as illustrated. We will come to the justification for this later.

extended

E

(E)ρ

localised

On this picture, disorder both broadens the Landau levels and gives states varying character

as a function of energy within each Landau level: states in the Landau level tails are localised

in space, while those at the Landau level centre extend through the sample.

How does localisation explain plateaus? If the chemical potential for electrons lies between

Landau level centres, then we can change the filling factor by a small amount without changing

the occupation of current-carrying states, hence leaving the Hall conductance constant. Also,

dissipation requires excitation between occupied and empty current carrying states, so is ther-

mally suppressed at low temperature.

What happens between plateaus? If the chemical potential moves through the energy of ex-

tended states, we can understand that �xy moves between quantised values, since the occupation

of extended states has changed. Also, it is expected that �xx > 0 within this transition, since

when the chemical potential lies close to the energy of extended states, dissipation is no longer

suppressed.

N(E)



Mean-field exponents

Numerical study of H = H1 +H2

⇠ ⇠ |b0|�⌫ ⌫ = 2.56± 0.02

Previous work (Chalker-Coddington model): ⌫ = 2.593± 0.01
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We study the critical properties of the noninteracting integer quantum Hall to insulator transition
(IQHIT) in a “dual” composite-fermion (CF) representation. A key advantage of the CF representation over
electron coordinates is that at criticality CF states are delocalized at all energies. The CF approach thus
enables us to study the transition from a new vantage point. Using a lattice representation of CF mean-field
theory, we compute the critical and multifractal exponents of the IQHIT. We obtain ν ¼ 2.56" 0.02 and
η ¼ 0.51" 0.01, both of which are consistent with the predictions of the Chalker-Coddington network
model formulated in the electron representation.
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Introduction.—The integer quantum Hall (QH) to insu-
lator transition (IQHIT) is one of the most studied topo-
logical phase transitions in condensed matter physics [1–6].
Without interactions, the existence of a QH plateau requires
quenched disorder, and a magnetic field tunes the system
from a QH state to an Anderson insulator. A beautiful
representation of the IQHIT known as the Chalker-
Coddington model (CCM) involves percolation of droplets
of QH and insulating phases [7]. The CCM has been
amenable to large scale numerical studies of critical
exponents of the noninteracting IQHIT [8].
Nevertheless, all electron representations of the IQHIT

suffer with a drawback: it is difficult to include electron-
electron interaction effects, which are necessary to account
for very basic aspects of the IQHIT. Interactions are
necessary to ensure a nonzero finite temperature electrical
resistivity [9]. Moreover, interactions determine dynamical
scaling laws and superuniversality (the issue of whether or
not integer and Abelian fractional QH transitions belong to
the same universality class). Thus, there is a need for
alternate formulations of the QHIT, which can more easily
address such questions.
In this Letter we present a first step in devising alternate

formulations of the QHIT, making use of a dual
composite-fermion (CF) representation, building on pio-
neering ideas of flux attachment [10–17] and particle-
vortex duality [18,19]. As we show below, in a mean-field
approximation, the CF formulation of the IQHIT belongs
to the same universality class as the one studied in electron
coordinates. However, it offers several distinct advan-
tages: most interestingly, delocalized states occur over all
energies [20,21] at the IQHIT in the CF representation
enabling a finite dc conductivity as T → 0. Furthermore, a
CF theory can more readily incorporate interaction effects,

and can treat integer and fractional QHITs on equal
footing [22].
The phase diagram of the IQHIT is realized in the CF

representation as follows. First, the integer QH state of
electrons with σxy ¼ e2=hmaps onto an integer QH state of
CFs but with opposite Hall conductivity. Second, the
electron insulator is a CF insulator. It only remains to
show that the critical exponents obtained in the CF
representation are identical to those predicted by the CCM.
Using a tight-binding regularization of a CF Hamiltonian,

we compute two critical exponents ν and η describing,
respectively, the divergence of the localization length and
wave function multifractalilty. We find ν ¼ 2.56" 0.02
and η ¼ 0.51" 0.01, both of which are in excellent
agreement with established results obtained from the
CCM [23–34]. Thus, we establish that the IQHIT as viewed
in CF coordinates is governed by the same fixed point as the
CCM. This observation opens new possibilities in studies
of the IQHIT, where interaction effects may be included
more readily.
IQHIT in the idealized CF model.—2D electrons in a

perpendicular magnetic field B can be transformed, via an
exact mapping (“flux attachment”) [12,13] to CFs that
couple to the sum of the external and “statistical” flux
Bþ bðrÞ [14,15]. When two quanta of flux are attached
to each electron, there is an exact identity relating the
CF density to the statistical flux: bðrÞ ¼ −4πnðrÞ. CF
mean-field theory results from “smearing the flux” and the
identity is satisfied only on average: hbðrÞi ¼ −4πhnðrÞi.
With a quenched random potential VðrÞ that varies on
length scales large compared to the magnetic length, the
linear response is a random density δnðrÞ ¼ χVðrÞ, where
χ ¼ m=2π is the uniform compressibility [35]. Thus, in CF
mean-field theory, there is a slaving [20,36] between VðrÞ
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Also: composite fermion multifractality identical to predictions of 
Chalker-Coddington model for electrons.  



Abelian Fractional QH transitions (mean-field)

Mean-field theory almost identical to Integer case.  

Lcf = L [a] + Lgauge[a,A] + L0
dis + L0

int

L = i ̄ /Da � ada

8⇡
Lgauge =

(a�A) d (a�A)

8⇡m

Fermions again undergo an integer QHIT.  

Transitions from filling fractions ⌫ =
1

2m� 1
! 0 m = 1, 2, 3, · · ·

H. Goldman, E. Fradkin PRB 98, 165137 (2018).  



Finite electrical resistance at criticality

Exact relationship between CF and electrical linear response:

Critical resistance depends on m.  

All critical exponents same as in the Integer QHIT.

⇢cfab = ⇢ab + 4⇡m✏ab

Transitions from filling fractions ⌫ =
1

2m� 1
! 0 m = 1, 2, 3, · · ·



Mean-field summary

Transitions as viewed in CF mean-field theory are trivially superuniversal: 

Conductivities are different, but z=2, nu ~ 2.6 for all transitions.  

Main message: at criticality, the CFs have a finite conductivity. 

Next: gauge fluctuation effects.



II. Gauge Fluctuations



Basic roadmap
Key points:   
1) non-zero dc conductivity at criticality of CFs. 
2) finite static compresibility of CFs at criticality.  

1) sets the key dynamical scaling relations. 
2) establishes the superuniversality of the transitions with 1/r interactions. 

To establish 1) and 2): disorder averaged theory: gauged NLSM.  



Before disorder averaging

Lcf = L [a] + Lgauge[a,A] + L0
dis + L0

int

Lgauge =
(a�A)d(a�A)

8⇡
L0
int = � 1

2(4⇡)2

Z
d2r0 b(r)U(|r � r0|)b(r0)

Start with the integer QH transition. 

Disorder average free energy via replica trick:

log [Z] = lim
n!0

Zn � 1

n

L + L0
dis = i ̄ /Da+a0 � ada

8⇡



Disorder averaging

Lcf = L [a] + Lgauge[a,A] + L0
dis + L0

int

Start with the integer QH transition. 

Replicate and integrate out disorder:

S = Sgauge + S0
int +

Z
d2x TrQ2 � Tr log


G�1

0 +
i

2⌧
Q+ gv · aT

�

g: gauge coupling.

EFT for Q: non-linear sigma model.Qab
t,t0(x) ! Qab

!n,!m
(x)



nonlinear sigma model

S = Sgauge + S0
int +

Z
d2x TrQ2 � Tr log


G�1

0 +
i

2⌧
Q+ gv · aT

�

Idea: double expansion of above: 1) saddle point for Q (NLSM).

2) expansion about g=0 (gauged NLSM).

1) saddle point for Q (NLSM) with g=0.  Q2 = 1,Tr [Q] = 0

S = Sgauge + Sint + S[Q]

S[Q] = �i⇡NFTr [@⌧Q] +
⇡�xx

4
Tr [@iQ]2 + iStop Stop =

⇡�xy

4
✏ijTr [Q@iQ@jQ]

Q 2 U(2n)/U(n)⇥ U(n) n ! 0



nonlinear sigma model

S = Sgauge + S0
int +

Z
d2x TrQ2 � Tr log


G�1

0 +
i

2⌧
Q+ gv · aT

�

2) expansion about g=0: (gauged NLSM).

�S = ig⇡�xxTr [aj ·Q@jQ]� g2⇡�xx

2
Tr

⇥
ajQajQ� a2j

⇤

no corrections to topological term!  Only         affected by 
gauge fluctuations at the critical point.  

�xx

Idea: double expansion of above: 1) saddle point for Q (NLSM).

2) expansion about g=0 (gauged NLSM).



Topological term is related to        : �xy Stop =
⇡�xy

4
✏ijTr [Q@iQ@jQ]

Dirac CFs: massive modes generate        .  �xy

m Massive modes unaffected by 
gauge fluctuations.  

Why        is not gaugedStop

L = i ̄ /Da � ada

8⇡

Gauge fluctuations don’t change dc Hall conductivity of Dirac CFs.



Topological term is related to        : �xy Stop =
⇡�xy

4
✏ijTr [Q@iQ@jQ]

HLR theory: Hall conductance entirely from modes Fermi energy.

HLR theory:        is gaugedStop

Topological term is gauged and dc Hall conductivity runs at 
criticality due to gauge fluctuations.  

µcf



Back to delocalized states

Laughlin gauge argument: 

States at EF  
localized 

)
�xy =

1

2⇡
⇥ integer

�cf
xy = �1/4⇡

)
States at EF  
must be delocalized.   

Dirac CFs are delocalized at critical point even with gauge fluctuations.  

Finite density of delocalized states: Debye screening.  

Finite conductivity from delocalized states: Dissipation.  



Implications



Superuniversality from Debye screening

Finite compressibility of CFs makes fluctuation corrections from CS terms 
irrelevant at criticality.

Coulomb effects + finite compressibility: RG irrelevance of CS.  
IQH and FQH transitions are equivalent.  

Lgauge + Lint =
1

2
�0a

2
0 +

i�

4⇡
a0qaT + aT [q + · · · ] aT

from

' aT
⇥
q +O(�2q2/�0)

⇤
aTLeff

�0 = NF (density of states at Fermi energy).

Lgauge from Lint



Screening and dissipation at criticality

1/r interactions: 

Transverse gauge boson inv. propagator:

}
Kubo formula.

z=1 scaling 

Dynamical scaling due to overdamped transverse gauge boson.  

S0
int = � e2⇤

16⇡

Z

!,q
|q|aT (q,!)aT (�q,�!)

D�1
ret = � e2⇤

8⇡
|q|+ ig2!�cf

xx

The result is self-consistent.  



Screening and dissipation at criticality

short-range interactions: 

Transverse gauge boson inv. propagator:

}
Kubo formula.

z=2 scaling 

Dynamical scaling due to overdamped transverse gauge boson.  

S0
int = � U0

16⇡

Z

!,q
q2aT (q,!)aT (�q,�!)

D�1
ret = �U0

8⇡
q2 + ig2!�cf

xx



Towards a scaling theory

Full theory will have 3 running couplings: 

1)�xx

2)�xy

3)e2⇤

At the QHIT in the Dirac CF theory only 2 of them run: 
1)�xx

3)e2⇤

D�1
ret = � e2⇤

8⇡
|q|+ ig2!�cf

xx

Even though both couplings are order 1 at critical 
point, we can deduce z: 

We also know that transitions are 
superuniversal.  



How to determine 

Finite-size scaling of gauge boson spectral function.

⌫

Finite-size scaling: �xx(B,L) =
e2

h
F(�L1/⌫) � =

B �Bc

Bc

L[aT ] = aT
⇥
|q|+ ig2!�xx

⇤
aT



Summary

Theme: Composite fermion viewpoint of QH critical points.  

1/r interactions


