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Quantum Hall transitions

D. Shahar et al., PRL 74, 4511 (1995).
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Integer vs fractional QH transitions

Integer QH:
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Integer vs fractional QH transitions

Integer QH:
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Fractional QH:

Naive expectation: Integer,
fractional QH transitions
are totally different.




Integer vs fractional QH transitions

Integer QH:

extended

Kocaliseﬂ

N(E)

Fractional QH:

Naive expectation: Integer,
fractional QH transitions ><

are totally different.

Interactions: important for
both I and FQH transitions.




Why interactions are important

1) Finite critical conductivity  D. Shahar et al., PRL 79, 479 (1997).
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extended Interactions (even if RG irrelevant)
N(E) are important for finite dc resistance
at T>0.
localised
E Z. Wang et al, PRB 61, 8326 (2000).




Why interactions are important

2) Dynamical scaling laws. f ~ 0 Y 5=

~ NVZ T "
5’7‘ 6 57’

0
Resistivity data near QCP:  p(B,T) = p* f (Tl/’/z>

. . 0
non-linear IV data: p(E,T) = pg <E1/<1+z)y> v~ 23, z=1

Non-interacting problem: z=d=2 (from finite density of states).

z=1: natural from V(r) ~ 1/r.

Interactions are important even for IQH transitions.
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Continuous quantum phase transitions
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“...z=1 strongly suggests that coulomb interactions are playing an
important role...”

“..a priori validity [of superuniversality].. is still unclear.”

“In summary, theorists have their work cut out for them!”



Main points of my talk

Theory of QH transitions: still in a primitive stage!

Most studies: neglect interactions.

Interactions needed for

1) Finite electrical resistance at criticality.
2) Correct dynamical scaling laws.
3) Comparing fractional vs Integer QH transitions.

Composite fermion (CF) representation readily addresses all 3!

What we don’t know yet: interaction effects on /.



QH transitions in electron coordinates
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QH transitions in electron coordinates

L = £O + »Cdz's + »Cint

Lo = CT(T) {—i@t + pu— L (8—2’A)2 c(r) B=V x A

2m
Lais = ¢! (r)V(r)e(r)
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QH transitions in CF coordinates

2 choices for CF theories:
1) Halperin, Lee, Read (HLR) - “flux attachment”. prB 47, 7312 (1993).

2) Dirac CF theory (Son) - CFs are “"dual” vortices. PRXS, 031027 (2015).

Both motivate a traditional "mean field + fluctuations” approach.

Mean-field theory: identical predictions from HLR and Dirac CF theories.

Fluctuations: Dirac and HLR theories are distinct.



Dirac CFs

D.T. Son PRX 5, 031027 (2015).

Idea: non-relativistic electrons in LLL behave similarly to massless Dirac
electrons.

Dirac electron:

1
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$ Particle-vortex duality
Dirac CF: | |
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AM . Background (EM) gauge field.

@, - Dynamical U(1) gauge field.



Dirac CFs

D.T. Son PRX 5, 031027 (2015).

Idea: non-relativistic electrons in LLL behave similarly to massless Dirac
electrons.

Dirac electron:

1

»CDirac el. — iElDAC | AdA
ST
$ Particle-vortex duality
Dirac CF: | |
Lor =i, Ada AdA
! VDY 4 ST
A, Background (EM) gauge field. (cTe) = B47_Tb B=VxA
B
a,, : Dynamical U(1) gauge field. (PTep) = yp b=V Xa



Disorder in Dirac CF theory

Dirac electron: Ay — A+ V("“)

LDirac el. — iElDAC + SLT('AdA
»CDiraC el. — £Dirac el. »Cdis ﬁdz’s — V(T)CT (T)C(T)




Disorder in Dirac CF theory

Dirac electron: Ay — A+ V("“)

LDirac el. — iElDAC + SLT('AdA
»CDiraC el. — £Dirac el. »Cdis ﬁdz’s — V(T)CT (T)C(T)

Dirac CF: Ay — Ay + V(r)
- 1 1
Lo =ipID ) — - Ada+ o~ AdA 1
Lo = Lef + Lais s = ==V ((r)

b(r) =V x a(r)



Disorder in Dirac CF theory

Dirac CF: At — At -+ V(T)

Lep = Log + Loy, is = — 1=V (r)b(r)

b(r) =V x a(r)

V(r) sources a quenched random b(r).

a;(r;t) = aj(r,t) + a;(r) dis — @3 (r)y0(r)

2 / 2
P[a/] — e_WNFT J d7ra’(r) Nr: density of states at Er.



Interactions in Dirac CF theory

Dirac electron:

1 2./ / /
Lant = =5 [ &/ In(r) = (UG = 1) [n() — ()

Dirac CF:

1 / / /
Lii = 5772 /dzr b(r)U (Jr — #/)b(r)  b(r) = ¥ x a(r)

Interactions: gauge fluctuations (gauge boson kinetic term).



Interactions in Dirac CF theory

Coulomb gauge: ag, aT

/ 1 / / /
Lii = 5772 /dzr b(r)U (Jr — #/)b(r)  b(r) = ¥ x a(r)




Dirac CF + disorder + interactions

_ 1 1
Lop = 0Dyt — —Ada+ —AdA+ Ly, + L,

int

1 7. /
éiis — —EV(T)I)(T) — a;- (T>¢7]w(T) aj(r,t) — a;(r,t) 4+ a’(r)

= ! 2" b(r r — ' No(r’
Lhns =~ | 1 WU (ir =/ Db(r)




CF Mean-field theory



CF mean-field theory

Mean-field theory: gauge dynamics only via egs. of motion.

_ 1 1
Lop = 0Dyt — —Ada+ —AdA+ Ly, + L,

int

Include proper UV regularization in mean-field theory.

,Ccf — ‘Cw [a] T Lgauge[a’? A] T Liizs T ‘C’;nt

- ada (a —A)d(a — A)
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CF mean-field theory

Lop = Lyla]l + Lyqugela, Al + Ly, + L

ada (a —A)d(a — A)

8 Foeuge = 8

Ly =i D 4

Associated Hamiltonian (also properly regularized): 7‘[¢ — 7‘[1 -+ 7‘[2

Hi=o0.(p—a') — Ho=0.(p—a') —mo® — et
Massive

partner



CF mean-field theory

Mean-field behavior of H{ = G.(p — a’) — et

Localized

Tuning parameter for transition: average b: E(’r‘) — bo



CF mean-field theory

Mean-field behavior of H{ = G.(p — a’) — et

Contribution from light

Localized fermion:
O-Cf — ng—gim]a bO # 0
Y 0 bo =0

bo<0: Integer QH. bo>0: insulator.



CF mean-field theory

Mean-field behavior of H{ = G.(p — a/) — et

Localized

bo<0: Integer QH. bo>0: insulator.

Contribution from light
fermion:

of —SgZESO], bo # 0
Y 0 bo =0

o)

Total contribution:

O

cf _ {Sgn[i(;]lv bo # 0

Ty _ 1 __
e bg = 0



Delocalized states at criticality

Laughlin gauge argument:

1
States at Er _
— X
localized i Twy = Integer
D States at Er
f _ i
Va O-;;y = —1/4n must be delocalized.

States are delocalized at all Extended

energies at the critical point! \ P

Implies a finite dc resistance of
CFs at criticality. <




Finite electrical resistance at criticality

Exact relationship between CF and electrical linear response:

f_

NN AN
H oy <y Pab = Pab + 4Teq
NN NN

Finite CF resistance implies finite electrical resistance at T>0.

extended

Not obvious in electron N(E)
coordinates!

localised




Mean-field exponents

Numerical study of H,, = Hi + Ho

£~ |bo|™Y v =2.56+0.02

Previous work (Chalker-Coddington model): v = 2.593 4+ 0.01

Also: composite fermion multifractality identical to predictions of
Chalker-Coddington model for electrons.

PHYSICAL REVIEW LETTERS 126, 056802 (2021)
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Numerical Study of a Dual Representation of the Integer Quantum Hall Transition
Kevin S. Huang ,1 S. Raghu,l’2 and Prashant Kumar®'?
1Stcmford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
2Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory,
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Abelian Fractional QH transitions (mean-field)

1

Transitions from filling fractions v = s 0 m=123,--:

2m — 1

Mean-field theory almost identical to Integer case.

ﬁcf — £¢ [UJ] + £gaug€[a7 A] T E’élzs + £"/Lnt

Lo =Dt~ "0 Ly = (a— A)d(a— A)

H. Goldman, E. Fradkin PRB 98, 165137 (2018).

STm

Fermions again undergo an integer QHIT.



Finite electrical resistance at criticality

Exact relationship between CF and electrical linear response:
1

Transitions from filling fractions v = 0 m=1,2,3, -

2m — 1

/02[]; = Pab + dTMEy

Critical resistance depends on m.

All critical exponents same as in the Integer QHIT.



Mean-field summary

Main message: at criticality, the CFs have a finite conductivity.

Transitions as viewed in CF mean-field theory are trivially superuniversal:

Conductivities are different, but z=2, nu ~ 2.6 for all transitions.

Next: gauge fluctuation effects.



II. Gauge Fluctuations



Basic roadmap

Key points:
1) non-zero dc conductivity at criticality of CFs.
2) finite static compresibility of CFs at criticality.

1) sets the key dynamical scaling relations.
2) establishes the superuniversality of the transitions with 1/r interactions.

To establish 1) and 2): disorder averaged theory: gauged NLSM.



Before disorder averaging

Start with the integer QH transition.

Lop = Lyla]l + Lyqugela, Al + Ly, + L

1 (a — A)d(a — A)

Ll =~ 505z | L7 WU = DY) Loauge =

2(4m)? KT

ada

;! T
£¢ + Edis — Zwma,—l—a’w Q7

Disorder average free energy via replica trick:

Z" —1
log |[Z] = lim

n—0 n




Disorder averaging

Start with the integer QH transition.

»Ccf — ’C¢ [CL] T »Cgauge[a; A] T ‘CZZZS T ‘Cznt
Replicate and integrate out disorder:

S = Sgauge + Simy + /dQ:z: TrQ? — Tr log Gal + LQ + gv - ar

g: gauge coupling.

4 t’( ) — an,wm( ) EFT for Q: non-linear sigma model.




nonlinear sigma model

S = Syquge + Sh s + /d% TrQ? — Trlog |Gy ' + %Q + gv - ar

Idea: double expansion of above: 1) saddle point for Q (NLSM).

2) expansion about g=0 (gauged NLSM).

1) saddle point for Q (NLSM) with g=0. Q% = 1, Tr Q=0
Q<eU2n)/U(n) x U(n) n — 0

S = Sgauge =+ Sint - S[Q]
S|Q] = —inNpTr |0,Q] + Wzm Tr [&-Q]Z + 2Stop Stop = %eijﬂ' 1Q0;Q0; Q)]



nonlinear sigma model

S = Syquge + Sh s + /d% TrQ? — Trlog |Gy ' + %Q + gv - ar

Idea: double expansion of above: 1) saddle point for Q (NLSM).

2) expansion about g=0 (gauged NLSM).

2) expansion about g=0: (gauged NLSM).

2
9 TOzg

0S8 = igmoy;Tr|a; - Q0;Q)] 1 [anan — a?}

no corrections to topological term! Only 0., affected by
gauge fluctuations at the critical point.



Why S;,, is not gauged

Topological term is related to Oy :© Siop = %eijﬂ 1Q0:Q0,Q)]
Dirac CFs: massive modes generate Oy, .

E

' m Massive modes unaffected by
/ gauge fluctuations.
”f - ada
E”gb — “Ppaw
ST

Gauge fluctuations don’t change dc Hall conductivity of Dirac CFs.



HLR theory: S;,, is gauged

Topological term is related to Oy :© Siop = %eij’l’r 1Q0:Q0,Q)]

HLR theory: Hall conductance entirely from modes Fermi energy.

\ /

\/ e f

Topological term is gauged and dc Hall conductivity runs at
criticality due to gauge fluctuations.




Back to delocalized states

Laughlin gauge argument:

1
States at Er _
— X
localized i Ory = Integer

i States at Er
cf __
Opy = —1/4m must be delocalized.

Dirac CFs are delocalized at critical point even with gauge fluctuations.

Finite conductivity from delocalized states: Dissipation.

Finite density of delocalized states: Debye screening.



Implications



Superuniversality from Debye screening

Finite compressibility of CFs makes fluctuation corrections from CS terms
irrelevant at criticality.

X0 = N (density of states at Fermi energy).

from Lyauge from Lint

v z)\/

Egauge =+ LGt — §X0a0 + _anaT +ar [q T ] ar

Leps~ar g+ ON¢/x0)|a

Coulomb effects + finite compressibility: RG irrelevance of CS.
IQH and FQH transitions are equivalent.




Screening and dissipation at criticality

1/r interactions:

2
/ 6*

=15 | lalar@w)ar(~g,

Transverse gauge boson inv. propagator:

2
—1 & . 2 _cf .
D = e q| +19°wo’) z=1 scaling

—

Kubo formula.

Dynamical scaling due to overdamped transverse gauge boson.

The result is self-consistent.



Screening and dissipation at criticality

short-range interactions:

U
ffnt — 16(; /w’q QZCLT(%W)CLT(_C]? —w)

Transverse gauge boson inv. propagator:

U
D_ . = —Oq +zgw0f

fret — _87T
H,_J

Kubo formula.

z=2 scaling

Dynamical scaling due to overdamped transverse gauge boson.



Towards a scaling theory

1)0 22

Full theory will have 3 running couplings: 2)0'$y

2
3)e;
At the QHIT in the Dirac CF theory only 2 of them run: 5
3)e:
Even though both couplings are order 1 at critical
point, we can deduce z:
2 L
cf We also know that transitions are

—1 €y - 2
D,y = _8_7T|q‘ T 19" WO 1y superuniversal.



How to determine 1/

Finite-size scaling of gauge boson spectral function.

Llar] = ar ||q| + ingam} ar

62

Finite-size scaling: 0.:(B, L) = E./T(CSLUV)




Summary

A 1/r interactions
1
e? z =1
o
Y
O & - >
z = 2 1

Theme: Composite fermion viewpoint of QH critical points.



