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A S pointed out by one of us, ' various nuclear species
must have originated not as the result of an equilib-

rium corresponding to a certain temperature and density,
but rather as a consequence of a continuous building-up
process arrested by a rapid expansion and cooling of the
primordial matter. According to this picture, we must
imagine the early stage of matter as a highly compressed
neutron gas (overheated neutral nuclear Quid) which
started decaying into protons and electrons when the gas
pressure fell down as the result of universal expansion. The
radiative capture of the still remaining neutrons by the
newly formed protons must have led first to the formation
of deuterium nuclei, and the subsequent neutron captures
resulted in the building up of heavier and heavier nuclei. It
must be remembered that, due to the comparatively short
time allowed for this procgss, ' the building up of heavier
nuclei must have proceeded just above the upper fringe of
the stable elements (short-lived Fermi elements), and the
present frequency distribution of various atomic species
was attained only somewhat later as the result of adjust-
ment of their electric charges by P-decay.
Thus the observed slope of the abundance curve must

not be related to the temperature of the original neutron
gas, but rather to the time period permitted by the expan-
sion process. Also, the individual abundances of various
nuclear species must depend not so much on their intrinsic
stabilities (mass defects) as on the values of their neutron
capture cross sections. The equations governing such a
building-up process apparently can be written in the form:

We may remark at first that the building-up process was
apparently completed when the temperature of the neutron
gas was still rather high, since otherwise the observed
abundances would have been strongly affected by the
resonances in the region of the slow neutrons. According to
Hughes, 2 the neutron capture cross sections of various
elements (for neutron energies of about 1 Mev) increase
exponentially with atomic number halfway up the periodic
system, remaining approximately constant for heavier
elements.
Using these cross sections, one finds by integrating

Eqs. (1)as shown in Fig. 1 that the relative abundances of
various nuclear species decrease rapidly for the lighter
elements and remain approximately constant for the ele-
ments heavier than silver. In order to fit the calculated
curve with the observed abundances' it is necessary to
assume thy integral of p„dt during the building-up period is
equal to 5X104 g sec./cm'.
On the other hand, according to the relativistic theory of

the expanding universe4 the density dependence on time is
given by p—10'/t~. Since the integral of this expression
diverges at t =0, it is necessary to assume that the building-
up process began at a certain time to, satisfying the
relation:

J (10'jt')dt =5X104,
&0

(2)

CAt ClMlKO

-2

which gives us to=20 sec. and p0=2.5)&105g sec./cm'. This
result may have two meanings: (a) for the higher densities
existing prior to that time the temperature of the neutron
gas was so high that no aggregation was taking place, (b)
the density of the universe never exceeded the value
2.5 )& 10' g sec./cm' which can possibly be understood if we

lsd—=f(t)(;,n; —;n;) i=1,2," 238 '0 /50 BO

where n; and a;. are the relative numbers and capture cross
sections for the nuclei of atomic weight i, and where f(t) is a
factor characterizing the decrease of the density with time.

803

Fio. 1.
Log of relative abundance

Atomic weight
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Historical PerspectiveHistorical Perspective

Intimate connection with CMB

Conditions for BBN:
Require T > 100 keV ⇒ t < 200 s
σv(p + n →D + γ) ≈ 5 × 10−20 cm3/s

⇒ nB ~ 1/σvt ~ 1017 cm-3

Today:
nBo ~ 10-7 cm-3

and
nB ~ R-3 ~ T3

Predicts the CMB temperature
To = (nBo / nB )1/3 TBBN ~10 K

Alpher
Herman
Gamow
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II l6

lo I2
and

dxi/dt =Xxo—(pi p„/mi) xixo, (11b)

7 0

IO
E
CP

O

4 -l2
O

I -24

i -52 90

.2 36 -II4 6 Iog & (wee& 6 IR Ia l6 Is

I'ro. l. The time dependence of the proper distance I., the
densities of matter and radiation, p, and p„as well as the
temperature, T, are shown for the case where p "—10 "
/cm', p,"=10 "g/cm', p =10 ' g/cm, and p, —1 g/cm'.
See Eq. (12).j

dx, /d&=g(p, ipm/m, i)x, ixo g(—p,p~/m;)x, xo,
j=2, 3, , J, (11c)

where xp, x&, and x; are the concentrations by
weight of neutrons, protons, and nuclei of atomic
weight 2»j»J, respectively, m; the nuclear mass,
p the density of matter, ) the neutron decay
constant, and p, the eAective neutron capture
volume swept out per second by nuclei of species j.
Gamow' has sol~ed Eqs. (11a) and (11b) numeri-
cally, taking J= 1, and thereby describing the
building up of deuterons only. In general, Eqs. (11)
have a singularity at the origin because when t~0,
p —+~ as t &. In the approximation used by
Gamow this singularity is reduced because a rela-
tion for the capture cross section of protons for
neutrons is employed which makes pip (=oivp„)
vary as t '.
It may be seen readily that Eq. (11c) can be

written in the form

dx;/ds= (p, ,/Xm, i)x, i—(PJ/Xm;)xy,j=2, 3, , J, (11d)
where

s= j p (r)xo(r)dr, (11e)
We believe that a determination of the matter

density on the basis of only the first few light
elements is likely to be in error. Our experience
with integrations required to determine the relative
abundances of all elements" indicates that these
computed abundances are critically dependent upon
the choice of matter density. Furthermore, all
formulations of the neutron capture process which
have been made thus far neglect the thermal
dissociation of nuclei, which is one of the important
competing processes during the element forming
period if elements are formed from a very early time.
In order to clarify the difficulties associated with

the singularity at t=0, we digress here for an
examination of the equations employed to describe
the formation of the elements. These equations,
recently given by the authors, ' include neutron
decay and universal expansion but do not take into
account the effects of nuclear evaporation or any
processes other than radiative capture of neutrons.
In terms of concentrations by weight, x, m, n, /p„,=
rather than particle concentrations, n, , Eqs. (6)—(8)
of reference 7 may be written as

J
dxo/« =—Xxo—Z (p;p„/m, )x,xo, (11a)

the binding energy of the virtual triplet state of the deuteron,
and the radiation density constant a=7.65)C10 '~ erg cm '
deg. . Our expression di8'ers from that originally given by
Gamow because of algebraic errors contained in his results
and because he neglected the magnetic moment factor.

and

ln general, the integrand in Eq. (11e) is singular a,t
T =0, so that one must take r p )0. This implies
the choice of an initial time at which the element
forming process started. Physically, one may not
speak of an initial time because there were com-
peting processes which became unimportant as the
neutron capture process became important. Com-
peting processes such as photo-disintegration and
nuclear evaporation fall oR' approximately expo-
nentially with time so that neutron capture would
become significant rather rapidly, say in a time of
the order of 10' seconds. The inclusion of this type
of competing process in principle could be handled
and would yield a better estimate of the relative
abundances of the elements. However, without a
better knowledge of cosmology at very early t it
does not appear to be possible to avoid the above-
mentioned difficulty. Finally, if Eqs. (11a), (11b),
and (11c) are solved simultaneously for J=4, the
remaining equations for j)4 are given by Eq.
(11d) which is a simple first-order linear diIIerential
equation with constant coeRicients. Nevertheless,
Eqs. (11a) and (11b), which are the controlling
equations for the process, are not reduced to a
simple form and must still be solved in their present
form. Because of the above difficulties we find it
necessary to introduce the concept of a starting
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In Eqs. (7) and (8), I.=l/lp, y = (8sG/3), E2
= (c'/~RO'~), and p„~ and p„" are the densities of
matter and radiation when I = 1. In order to
integrate Eq. (6) and evaluate the integration
constant, it is necessary to specify the parameter
Ro and consequently /0, which gives the units in
which Ro is measured. Examination of Eq. (6)
indicates that Ro can be determined only if it is
possible to specify Ddl/dt)/L]i=io, p, and p„at any
given time. Since L(dl/dt)/L]i=io is the expansion
rate of space as determined by Hubble" and known,
therefore, only at the present time, since p is also
known now, and if we assume that p~&p, now, one
may evaluate Ro and E&. Introducing the value
of the present expansion rate of the universe
Ddl/dt)/L]i=i0=1. 8X10 ' sec 't. aking p ~. =10—»
g/cm' and l=lo= l.0" cm, i.e. , lo is the side of a
cube containing one gram of matter now, one
obtains R0=1.7X1027(—1)& cm and Kg=3.2X10 "
sec. '. The constants appearing in Eqs. (7) and (8)
involve the present densities of matter and radia-
tion. Clearly, in utilizing Eqs. (7) or (8) one may
introduce the density values at any other time
providing one specifies a value of I. at that time
which leads to the present value of the density of
matter. For convenience we have chosen lo to be
the side of a cube containing one gram of matter at
the present time, so that L, =1 now'. Furthermore,
we have again for convenience assumed that I.=O
at k=0. While Eq. (6) has a singularity at t=0
which is physically unreasonable, we have employed
the solutions in such a manner that the singularity
is of no consequence.
For purposes of computation it is convenient to

employ an approximate form for Eq. (7) which is
valid for early t, i.e., when

LL(~ "/~" )+(&2/v~" )L]&1.
The expansion of Eq. (7) which satisfies the above
inequality is

L = (4yp, ) &L'+(p -/6y&p, "-&)L'+(8y&p; &)
X [(3vp '/4p; ) &2]L'+ —. (10)

The validity of Eqs. (7) or (10) is questionable for
very early times, i.e. , in the vicinity of the singu-
larity at t =0, when the energy of light quanta was
comparable to the rest mass of elementary particles.
In fact, Einstein" has pointed out that there is a
difficulty at very early times because of the separate
treatment of the metric field (gravitation) and
electromagnetic fields and matter in the theory of
relativity. For large densities of field and of matter,
the field equations and even the field variables
which enter into them will have no real significance.

' E. P. Hubble, The Observationa/ Approach to Cosmology
(Clarendon Press, Oxford, 1937}."A. Einstein, The 3&axing of Relativity {Princeton Uni-
versity Press, Princeton, 1945).

However, since we do not concern ourselves with
the "beginning" this difficulty is obviated. In
addition to the fact that the relativistic energy
equation is not valid for very early times, there are
the problems of angular momentum of matter in
the universe, as well as certain physical factors
involved in the formation of the elements, which
we cannot handle satisfactorily at present.
In order to utilize the above equations, it is

necessary to specify p„",p„", and E2. While it may
appear that one need specify the matter and radia-
tion densities at the present time only, because of
Eq. (4), specifying p " and p, is equivalent to
specifying p ~ and p„, these being the densities at
a time during the period of element formation.
This time is to be specified later. (The primed
quantities should not be confused with the running
variables. ) It must be remembered that the value
of Ro employed is that calculated from the present
value of dL/dt.

III. PHYSICAL CONDITIONS DURING THE
EXPANSION

Some information is available regarding the
values of the matter and radiation densities at the
present time and, recently, studies of the relative
abundances of the elements have indicated values
for these densities prevailing very early in the
universe during the period of element formation.
Because of Eq. (4) a knowledge of p„and p,
during the element forming period together with
p„" fixes a value for p„", the present radiation
density, which is perhaps the least well-known
quantity.
In a recent paper Gamow, ' by considerations

which are different than those we have employed,
found a set of physical conditions which prevailed
during the early stages of the universe. He studied
the formation of deuterons only, by the capture of
neutrons by protons, taking into account the uni-
versal expansion. Equations for the formation of
deuterons were integrated from t =0, subject to the
condition that there were neutrons at the start (unit
concentration by weight) and that the final concen-
tration by weight of protons and deuterons was 0.5.
This solution determined a parameter o, which in
turn defined the magnitude of the matter density, "
p~ =pot
"The expression for the parameter cx, as given by Gamow

in reference 8, has been found to be incorrect {see reference 9).
%e find that a(=p eat/m, where p =p0t 8/2 is the density of
matter, v is the mean velocity of particles of mass nz, and cr is
the capture cross section of protons for neutrons) is correctly
given by

29/4~5/4Gl/4a1/4e2$
(f i i f+ I wr f)'(~"+~0")~'"po.

In this expression all the quantities have been defined by
Gamow in reference 8 except LL4~ and L(4~, the magnetic moments
in nuclear magnetons of proton and neutron, respectively, ~0,
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time for the element forming process. Equations
(11) have not yet been solved but are given to
illustrate the singularity. So far as we know, any
formulation of a theory of element building which
includes the type of cosmology discussed mill reHect
these same difficulties.
In what follows we continue the discussion of the

physical conditions employed in the solutions of
the relativistic energy equation. The mean density
of matter in the universe at the present time has
been determined by Hubble" to be

T= P(32+Ga)/(3c') ]—lt—l'K
=1.52)&10'ot-'*'K. (13a)

The density of radiation, p„, may be found from
p„= (a/c') T4, or

expansion alone. However, the thermal energy
resulting from the nuclear energy production in
stars would increase this value.
Since we have p, ))p ~ at early time the energy

relation given in Eq. (6) may be integrated in a
simpler form, with the result

p„=10 "g/cm'. (12a) p„=4.48X10't ' g/cm'. (13b)
An estimate of the density of matter, p, prevailing
at the start of the period of element formation is
obtained by integration of the equations for the
neutron capture theory of the formation of the
elements. Integrations in which neutron decay is
explicitly included, but in which the expansion of
the universe is not included, yield a matter density of
5X10 ' g/cm'. Preliminary investigations of the
equations, including the universal expansion, indi-
cate that this density should be increased by a factor
roughly of the order of 100 in order that one may
correctlydetermine the relative abundance of the ele-
ments with the universal expansion taken into ac-
count. In fact, we have numerically integrated for
the light elements the complete equations (see Eqs.
(11))with an "initial" density about 100 times the
density used in obtaining solutions without the
universal expansion. v We find that the above factor
of 100 is roughly what might be required. Ac-
cordingly, we have taken

p„—10 ' g/cm'. (12b)

These expressions for T and p, at early time are the
consequence of the assumption of an adiabatic
universe filled with blackbody radiation. I t can
also be shown that with the densities chosen in
Eq. (12) we have for early time

p~ = 1.70 &( 10 t ~ g/cm . (13c)
Using I and Io as already defined, we may determine
the constants A and 8 in Eq. (3).With the densities
discussed above we find A = 1 g and 8= 10' g cm.
These values of A and 8 fix the dependence of p
and p, on time through L(=l/lo). Using these
values of A and 8, we have computed I, p, p„,
and T. These quantities are plotted on a logarithmic
scale in Fig. 1. It should be noted in I'ig. 1 that
all the quantities plotted bear simple relationships
with the time to within several orders of magnitude

ll l6
T

10 12

As discussed elsewhere, "the temperature during
the element-forming process must have been of the
order of 10'—10'"K. This temperature is limited,
on the one hand, by photo-disintegration and
thermal dissociation of nuclei and, on the other
hand, by the lack of evidence in the relative
abundance data for resonance capture of neutrons.
For purposes of simplicity we have chosen

p„—1 g/cm', (12c)
which corresponds to T=0.6X10"K at the time
when the neutron capture process became impor-
tant.
In accordance with Eq. (4), the specification of

p ", p, and p„ fixes the present density of radia-
tion, p„". In fact, we find that the value of p„"
collsis'tellt with Eq. (4) is

p„i i—10 g/clll (12d)

lO

g C1

4 -12

3 -16

2 20 r
0-28 r
-I 32

I 24

2 0 2 4 6 log t(~c) 10
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12 14 16 18

which corresponds to a temperature now of the
order of 5'K. This mean temperature for the uni-
verse is to be interpreted as the background tem-
perature which would result from the universal

FIG. 2. The time dependence of the proper distance I thedensities of matter and radiation, p, and p„as well as the
temperature, T, are shown for the case where p —10 30
g/cm3, p, =10 " g/cm', p =1.8X10 4 g/cm', and p„—1
g/cm3. )See Eq. (15).g
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also well suited for presentation to students who
possess a limited knowledge of the theory of
determinants and matrices.

II. PROOF OF THE THEOREM

'I'heorem. If A and 8 are hermitian matrices of
order n, A being positisie definite, the rank of the
matrix 8—X A is exactly n—k, where k is the
multiphcity of the root X; of the secular equation
)8—XA )

=0.
Let the rank of 8—le& be n r. Then—the equa-

tion

where Bl is hermitian and of order n—r. It follows that
X'(8—XA)X

(8—X;A) $=0

has r independent solutions, say $i, , $,. These
solutions can be so chosen" that they also satisfy
the orthonormality relations 81-)I

$,'A$;= 5;;.

By selecting arbitrarily n —r additional vectors,
say &,+i, , &„, so that the entire set of n vectors
is orthonormal in the sense of (2), one obtains a
non-singular matrix X=[pi, -, $ ] such that
X'AX=I. In view of this relation and the fact
that the first r columns of X satisfy (1), the matrix
X'BX has the form

'This device has been used by other authors to prove
similar theorems. See, for example, P. R. Halmos, "Finite
dimensional vector spaces, " AnnaIs of mathematics Studies
{Princeton University Press, Princeton, 1942), No. 7, pp.
125-126.

Since the roots of the equation ~X'(8 le)X~ =—0
are the same as the roots of the secular equation
and, in view of (3), li, is a root of the equation
~X'(8—L4)X~ =0 of multiplicity r at least, it
follows that r cannot exceed the multiplicity k of
the root X; for the secular equation. But if r is
less than k then ); is necessarily a root of the
equation

~
Bi—XI

~

=0. This is impossible since the
rank of X'(8—X;A)X is equal to the rank of
8—X;A, which is n—r by assumption, and by (3)
the rank of X'(8—X;A)X is also equal to the rank of
Bi X;I, which —is less than n r if ~Bi—X;I~ =—0.
It follows that r=k and the rank of 8—);A is
n—k as asserted.
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I'ro. l. The time dependence of the proper distance I., the
densities of matter and radiation, p, and p„as well as the
temperature, T, are shown for the case where p "—10 "
/cm', p,"=10 "g/cm', p =10 ' g/cm, and p, —1 g/cm'.
See Eq. (12).j

dx, /d&=g(p, ipm/m, i)x, ixo g(—p,p~/m;)x, xo,
j=2, 3, , J, (11c)

where xp, x&, and x; are the concentrations by
weight of neutrons, protons, and nuclei of atomic
weight 2»j»J, respectively, m; the nuclear mass,
p the density of matter, ) the neutron decay
constant, and p, the eAective neutron capture
volume swept out per second by nuclei of species j.
Gamow' has sol~ed Eqs. (11a) and (11b) numeri-
cally, taking J= 1, and thereby describing the
building up of deuterons only. In general, Eqs. (11)
have a singularity at the origin because when t~0,
p —+~ as t &. In the approximation used by
Gamow this singularity is reduced because a rela-
tion for the capture cross section of protons for
neutrons is employed which makes pip (=oivp„)
vary as t '.
It may be seen readily that Eq. (11c) can be

written in the form

dx;/ds= (p, ,/Xm, i)x, i—(PJ/Xm;)xy,j=2, 3, , J, (11d)
where

s= j p (r)xo(r)dr, (11e)
We believe that a determination of the matter

density on the basis of only the first few light
elements is likely to be in error. Our experience
with integrations required to determine the relative
abundances of all elements" indicates that these
computed abundances are critically dependent upon
the choice of matter density. Furthermore, all
formulations of the neutron capture process which
have been made thus far neglect the thermal
dissociation of nuclei, which is one of the important
competing processes during the element forming
period if elements are formed from a very early time.
In order to clarify the difficulties associated with

the singularity at t=0, we digress here for an
examination of the equations employed to describe
the formation of the elements. These equations,
recently given by the authors, ' include neutron
decay and universal expansion but do not take into
account the effects of nuclear evaporation or any
processes other than radiative capture of neutrons.
In terms of concentrations by weight, x, m, n, /p„,=
rather than particle concentrations, n, , Eqs. (6)—(8)
of reference 7 may be written as

J
dxo/« =—Xxo—Z (p;p„/m, )x,xo, (11a)

the binding energy of the virtual triplet state of the deuteron,
and the radiation density constant a=7.65)C10 '~ erg cm '
deg. . Our expression di8'ers from that originally given by
Gamow because of algebraic errors contained in his results
and because he neglected the magnetic moment factor.

and

ln general, the integrand in Eq. (11e) is singular a,t
T =0, so that one must take r p )0. This implies
the choice of an initial time at which the element
forming process started. Physically, one may not
speak of an initial time because there were com-
peting processes which became unimportant as the
neutron capture process became important. Com-
peting processes such as photo-disintegration and
nuclear evaporation fall oR' approximately expo-
nentially with time so that neutron capture would
become significant rather rapidly, say in a time of
the order of 10' seconds. The inclusion of this type
of competing process in principle could be handled
and would yield a better estimate of the relative
abundances of the elements. However, without a
better knowledge of cosmology at very early t it
does not appear to be possible to avoid the above-
mentioned difficulty. Finally, if Eqs. (11a), (11b),
and (11c) are solved simultaneously for J=4, the
remaining equations for j)4 are given by Eq.
(11d) which is a simple first-order linear diIIerential
equation with constant coeRicients. Nevertheless,
Eqs. (11a) and (11b), which are the controlling
equations for the process, are not reduced to a
simple form and must still be solved in their present
form. Because of the above difficulties we find it
necessary to introduce the concept of a starting
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In Eqs. (7) and (8), I.=l/lp, y = (8sG/3), E2
= (c'/~RO'~), and p„~ and p„" are the densities of
matter and radiation when I = 1. In order to
integrate Eq. (6) and evaluate the integration
constant, it is necessary to specify the parameter
Ro and consequently /0, which gives the units in
which Ro is measured. Examination of Eq. (6)
indicates that Ro can be determined only if it is
possible to specify Ddl/dt)/L]i=io, p, and p„at any
given time. Since L(dl/dt)/L]i=io is the expansion
rate of space as determined by Hubble" and known,
therefore, only at the present time, since p is also
known now, and if we assume that p~&p, now, one
may evaluate Ro and E&. Introducing the value
of the present expansion rate of the universe
Ddl/dt)/L]i=i0=1. 8X10 ' sec 't. aking p ~. =10—»
g/cm' and l=lo= l.0" cm, i.e. , lo is the side of a
cube containing one gram of matter now, one
obtains R0=1.7X1027(—1)& cm and Kg=3.2X10 "
sec. '. The constants appearing in Eqs. (7) and (8)
involve the present densities of matter and radia-
tion. Clearly, in utilizing Eqs. (7) or (8) one may
introduce the density values at any other time
providing one specifies a value of I. at that time
which leads to the present value of the density of
matter. For convenience we have chosen lo to be
the side of a cube containing one gram of matter at
the present time, so that L, =1 now'. Furthermore,
we have again for convenience assumed that I.=O
at k=0. While Eq. (6) has a singularity at t=0
which is physically unreasonable, we have employed
the solutions in such a manner that the singularity
is of no consequence.
For purposes of computation it is convenient to

employ an approximate form for Eq. (7) which is
valid for early t, i.e., when

LL(~ "/~" )+(&2/v~" )L]&1.
The expansion of Eq. (7) which satisfies the above
inequality is

L = (4yp, ) &L'+(p -/6y&p, "-&)L'+(8y&p; &)
X [(3vp '/4p; ) &2]L'+ —. (10)

The validity of Eqs. (7) or (10) is questionable for
very early times, i.e. , in the vicinity of the singu-
larity at t =0, when the energy of light quanta was
comparable to the rest mass of elementary particles.
In fact, Einstein" has pointed out that there is a
difficulty at very early times because of the separate
treatment of the metric field (gravitation) and
electromagnetic fields and matter in the theory of
relativity. For large densities of field and of matter,
the field equations and even the field variables
which enter into them will have no real significance.

' E. P. Hubble, The Observationa/ Approach to Cosmology
(Clarendon Press, Oxford, 1937}."A. Einstein, The 3&axing of Relativity {Princeton Uni-
versity Press, Princeton, 1945).

However, since we do not concern ourselves with
the "beginning" this difficulty is obviated. In
addition to the fact that the relativistic energy
equation is not valid for very early times, there are
the problems of angular momentum of matter in
the universe, as well as certain physical factors
involved in the formation of the elements, which
we cannot handle satisfactorily at present.
In order to utilize the above equations, it is

necessary to specify p„",p„", and E2. While it may
appear that one need specify the matter and radia-
tion densities at the present time only, because of
Eq. (4), specifying p " and p, is equivalent to
specifying p ~ and p„, these being the densities at
a time during the period of element formation.
This time is to be specified later. (The primed
quantities should not be confused with the running
variables. ) It must be remembered that the value
of Ro employed is that calculated from the present
value of dL/dt.

III. PHYSICAL CONDITIONS DURING THE
EXPANSION

Some information is available regarding the
values of the matter and radiation densities at the
present time and, recently, studies of the relative
abundances of the elements have indicated values
for these densities prevailing very early in the
universe during the period of element formation.
Because of Eq. (4) a knowledge of p„and p,
during the element forming period together with
p„" fixes a value for p„", the present radiation
density, which is perhaps the least well-known
quantity.
In a recent paper Gamow, ' by considerations

which are different than those we have employed,
found a set of physical conditions which prevailed
during the early stages of the universe. He studied
the formation of deuterons only, by the capture of
neutrons by protons, taking into account the uni-
versal expansion. Equations for the formation of
deuterons were integrated from t =0, subject to the
condition that there were neutrons at the start (unit
concentration by weight) and that the final concen-
tration by weight of protons and deuterons was 0.5.
This solution determined a parameter o, which in
turn defined the magnitude of the matter density, "
p~ =pot
"The expression for the parameter cx, as given by Gamow

in reference 8, has been found to be incorrect {see reference 9).
%e find that a(=p eat/m, where p =p0t 8/2 is the density of
matter, v is the mean velocity of particles of mass nz, and cr is
the capture cross section of protons for neutrons) is correctly
given by

29/4~5/4Gl/4a1/4e2$
(f i i f+ I wr f)'(~"+~0")~'"po.

In this expression all the quantities have been defined by
Gamow in reference 8 except LL4~ and L(4~, the magnetic moments
in nuclear magnetons of proton and neutron, respectively, ~0,
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time for the element forming process. Equations
(11) have not yet been solved but are given to
illustrate the singularity. So far as we know, any
formulation of a theory of element building which
includes the type of cosmology discussed mill reHect
these same difficulties.
In what follows we continue the discussion of the

physical conditions employed in the solutions of
the relativistic energy equation. The mean density
of matter in the universe at the present time has
been determined by Hubble" to be

T= P(32+Ga)/(3c') ]—lt—l'K
=1.52)&10'ot-'*'K. (13a)

The density of radiation, p„, may be found from
p„= (a/c') T4, or

expansion alone. However, the thermal energy
resulting from the nuclear energy production in
stars would increase this value.
Since we have p, ))p ~ at early time the energy

relation given in Eq. (6) may be integrated in a
simpler form, with the result

p„=10 "g/cm'. (12a) p„=4.48X10't ' g/cm'. (13b)
An estimate of the density of matter, p, prevailing
at the start of the period of element formation is
obtained by integration of the equations for the
neutron capture theory of the formation of the
elements. Integrations in which neutron decay is
explicitly included, but in which the expansion of
the universe is not included, yield a matter density of
5X10 ' g/cm'. Preliminary investigations of the
equations, including the universal expansion, indi-
cate that this density should be increased by a factor
roughly of the order of 100 in order that one may
correctlydetermine the relative abundance of the ele-
ments with the universal expansion taken into ac-
count. In fact, we have numerically integrated for
the light elements the complete equations (see Eqs.
(11))with an "initial" density about 100 times the
density used in obtaining solutions without the
universal expansion. v We find that the above factor
of 100 is roughly what might be required. Ac-
cordingly, we have taken

p„—10 ' g/cm'. (12b)

These expressions for T and p, at early time are the
consequence of the assumption of an adiabatic
universe filled with blackbody radiation. I t can
also be shown that with the densities chosen in
Eq. (12) we have for early time

p~ = 1.70 &( 10 t ~ g/cm . (13c)
Using I and Io as already defined, we may determine
the constants A and 8 in Eq. (3).With the densities
discussed above we find A = 1 g and 8= 10' g cm.
These values of A and 8 fix the dependence of p
and p, on time through L(=l/lo). Using these
values of A and 8, we have computed I, p, p„,
and T. These quantities are plotted on a logarithmic
scale in Fig. 1. It should be noted in I'ig. 1 that
all the quantities plotted bear simple relationships
with the time to within several orders of magnitude

ll l6
T

10 12

As discussed elsewhere, "the temperature during
the element-forming process must have been of the
order of 10'—10'"K. This temperature is limited,
on the one hand, by photo-disintegration and
thermal dissociation of nuclei and, on the other
hand, by the lack of evidence in the relative
abundance data for resonance capture of neutrons.
For purposes of simplicity we have chosen

p„—1 g/cm', (12c)
which corresponds to T=0.6X10"K at the time
when the neutron capture process became impor-
tant.
In accordance with Eq. (4), the specification of

p ", p, and p„ fixes the present density of radia-
tion, p„". In fact, we find that the value of p„"
collsis'tellt with Eq. (4) is

p„i i—10 g/clll (12d)
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which corresponds to a temperature now of the
order of 5'K. This mean temperature for the uni-
verse is to be interpreted as the background tem-
perature which would result from the universal

FIG. 2. The time dependence of the proper distance I thedensities of matter and radiation, p, and p„as well as the
temperature, T, are shown for the case where p —10 30
g/cm3, p, =10 " g/cm', p =1.8X10 4 g/cm', and p„—1
g/cm3. )See Eq. (15).g
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(11) have not yet been solved but are given to
illustrate the singularity. So far as we know, any
formulation of a theory of element building which
includes the type of cosmology discussed mill reHect
these same difficulties.
In what follows we continue the discussion of the

physical conditions employed in the solutions of
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of matter in the universe at the present time has
been determined by Hubble" to be
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density used in obtaining solutions without the
universal expansion. v We find that the above factor
of 100 is roughly what might be required. Ac-
cordingly, we have taken
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These expressions for T and p, at early time are the
consequence of the assumption of an adiabatic
universe filled with blackbody radiation. I t can
also be shown that with the densities chosen in
Eq. (12) we have for early time

p~ = 1.70 &( 10 t ~ g/cm . (13c)
Using I and Io as already defined, we may determine
the constants A and 8 in Eq. (3).With the densities
discussed above we find A = 1 g and 8= 10' g cm.
These values of A and 8 fix the dependence of p
and p, on time through L(=l/lo). Using these
values of A and 8, we have computed I, p, p„,
and T. These quantities are plotted on a logarithmic
scale in Fig. 1. It should be noted in I'ig. 1 that
all the quantities plotted bear simple relationships
with the time to within several orders of magnitude
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also well suited for presentation to students who
possess a limited knowledge of the theory of
determinants and matrices.

II. PROOF OF THE THEOREM

'I'heorem. If A and 8 are hermitian matrices of
order n, A being positisie definite, the rank of the
matrix 8—X A is exactly n—k, where k is the
multiphcity of the root X; of the secular equation
)8—XA )

=0.
Let the rank of 8—le& be n r. Then—the equa-

tion

where Bl is hermitian and of order n—r. It follows that
X'(8—XA)X

(8—X;A) $=0

has r independent solutions, say $i, , $,. These
solutions can be so chosen" that they also satisfy
the orthonormality relations 81-)I

$,'A$;= 5;;.

By selecting arbitrarily n —r additional vectors,
say &,+i, , &„, so that the entire set of n vectors
is orthonormal in the sense of (2), one obtains a
non-singular matrix X=[pi, -, $ ] such that
X'AX=I. In view of this relation and the fact
that the first r columns of X satisfy (1), the matrix
X'BX has the form

'This device has been used by other authors to prove
similar theorems. See, for example, P. R. Halmos, "Finite
dimensional vector spaces, " AnnaIs of mathematics Studies
{Princeton University Press, Princeton, 1942), No. 7, pp.
125-126.

Since the roots of the equation ~X'(8 le)X~ =—0
are the same as the roots of the secular equation
and, in view of (3), li, is a root of the equation
~X'(8—L4)X~ =0 of multiplicity r at least, it
follows that r cannot exceed the multiplicity k of
the root X; for the secular equation. But if r is
less than k then ); is necessarily a root of the
equation

~
Bi—XI

~

=0. This is impossible since the
rank of X'(8—X;A)X is equal to the rank of
8—X;A, which is n—r by assumption, and by (3)
the rank of X'(8—X;A)X is also equal to the rank of
Bi X;I, which —is less than n r if ~Bi—X;I~ =—0.
It follows that r=k and the rank of 8—);A is
n—k as asserted.
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p .—1.78X10 ' g/cm',
p, .—1 g/cm',
p„—10-"g/crn',

(15)

p, "—10 "g/cm'.
The value obtained for p," in this case corresponds
to a present mean temperature of about 1'K. The
constants A and 8 are found to be 1 g and 10' g
cm, respectively. In Fig. 2 we have plotted the
time dependence of the quantities of interest. One
finds that the transition occurs at an earlier time
than in the previous case, namely, at 10" sec. ,
which implies that this universe would have been
in a state of free expansion for a considerably longer
time. Apparently the behavior of the model is
extremely sensitive to the choice of density condi-
tions. However, the simple type of relations for
I., p, p„, and 1 that were given previously still
apply, but with diferent constants and diAerent
regions of validity.
The time at which p =p ~ and p„=p, for both

sets of densities given in Eqs. (12) and (15) are
found from Eq. (13b) to be 6.7X10' seconds, with
a corresponding temperature of 0.59&10"K. We
have chosen p, —1 g/cm' in both cases because the
corresponding temperature is seen by independent
considerations to be that required for the element
forming process. As will be seen later, the densities
given in Eq. (15) with p —1.78X10 ' g/cm' do not
yield a satisfactory description of the size and mass
of galaxies. On the other ha.nd, as already stated a
density p —100(5X 10 ' g/cm') is apparently

of the time when the universal expansion changes
from one controlled by gravitation to one of free
escape. This transition occurs in the region of
about 10"—10'4 sec. Following this transition the
quantities I., p, p„, and T again are simple functions
of the time. The relations for large t are as follows:

I.=Em~&,
p- = (p-"/&2')t '
p.=(p" /X2')t '

and,
T=(C' P„"/aX 7)2t '.

It is to be noted that in the region of transition to
free escape the densities of matter and radiation
become equal so that, in fact, prior to the transition
the expansion is controlled chieHy by radiation and
subsequent to the transition by matter. The uni-
verse is now in the freely expanding state, and,
since the radius of curvature is imaginary, is of the
open, hyperbolic type.
In order to study how sensitive this model is to

the choice of densities, we have considered the
following additional set of density values which
satisfy Eq. (4):

II = (dL/dt)/L =L '(ypLP+A. ,)i.
For early time this reduces to

H=(2t) '

and, for late time, to
II=t-'.

(16)

(16a)

(16b)
For early and late t, the value of II does not depend
upon the choice of densities. However, in the
transition region where the functional form of II
changes, the manner of change does depend on the
existing density conditions. The universal expansion
rate is the reciprocal of the age of the universe if
measured during the period of free expansion.

IV. THE FORMATION OF GALAXIES

In his discussion of the evolution of the universe,
Gamow' suggested that galactic formation occurred
at the time when the densities of matter and radia-
tion were equal. He assumes that the Jeans'
criterion of gravitational instability may be applied
at this time and as a consequence derives expres-
sions for the galactic diameter and mass. "We have
carried out calculations' based on Gamow's formu-
lation using the corrected expressions for D and 3f
given in footnote 13. We find that p„=p„when
$,—0.86&(10" sec. , which is greater than the age
of the universe. This arises out of the fact that, in
addition to the dif6culties with density determina-
tions mentioned earlier, there is involved an extra-
"Using the corrected form of n described in footnote 12,

we find for the galactic diameter, D, and mass, M; the follow-
ing corrected expressions according to Gamow's formulation:

iow'e'k

S8f8~7«.a1~2&~~=P~D 23/434/467/4~7/4~74/4~7~7/4( I » I + I» I ) (""+44'")"".
where t, is the time at which the densities of matter and
radiation were equal.

enough to overcome the e6ect of the universal
expansion and give the correct relative abundances
of the elements. Thus, on the basis of these con-
siderations one is led to the conclusion that when
t=6.70X 10' sec. , and p, =1 g/cm' we have

5.0X10 ' g/cm'~p .~1.8X10 4 g/cm'.
While it is not particularly germane to the study

reported in this paper, it is interesting to note that
one may find the dependence of the universal
expansion rate on the time in this type of model ~

This rate is the percentage change in proper dis-
tance per unit time determined by Hubble'0 from
the red-shift in spectra of nebulae, and is given in
V=Hd, where V is the velocity of recession of a
nebula at a distance d. In our notation, we have,
in general,
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BBN Theory

Conditions in the Early Universe:

T >
∼ 1 MeV

ρ = π2

30(2 + 7
2 + 7

4Nν)T 4

η = nB/nγ ∼ 10−10

β-Equilibrium maintained by
weak interactions

Freeze-out at ∼ 1 MeV determined by the
competition of expansion rate H ∼ T 2/Mp and
the weak interaction rate Γ ∼ G2

FT 5

n + e+
↔ p + ν̄e

n + νe ↔ p + e−

n ↔ p + e− + ν̄e

At freezeout n/p fixed modulo free
neutron decay, (n/p) ≃ 1/6 → 1/7
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Nucleosynthesis Delayed
(Deuterium Bottleneck)

p + n →D+γ Γp ∼ nBσ

p + n ←D+γ Γd ∼ nγσe−EB/T

Nucleosynthesis begins when Γp ∼ Γd

nγ

nB
e−EB/T ∼ 1 @ T ∼ 0.1 MeV

All neutrons → 4He

with mass fraction

Yp =
2(n/p)

1 + (n/p)
≃ 25%

Remainder:

D, 3He ∼ 10−5 and 7Li ∼ 10−10 by number
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modifies this approach, keeping the same exponential dependence, but changes from a power law

in T 1/3

9 to a power law in T9: exp(a′/T 1/3

9 )(
∑

j c′jT
j
9 ). The main reason for the form of their fit is

to get fast convergence to the numerical data. In some cases (e.g. 3He(d, n)4He and 7Li(p,α)4He)

additional factors are used to improve the fit to the numerical results.

Table 1: Key Nuclear Reactions for BBN

Source Reactions

NACRE d(p, γ)3He

d(d, n)3He

d(d, p)t

t(d, n)4He

t(α, γ)7Li
3He(α, γ)7Be
7Li(p,α)4He

SKM p(n, γ)d
3He(d, p)4He
7Be(n, p)7Li

This work 3He(n, p)t

PDG τn

As noted above, some of the rates are not provided by NACRE. In these cases, the SKM rates

as indicated in Table 1 are used. One of these, 7Be(n, p)7Li, is a n-capture reaction for which a

large amount of data is available. The deuteron-induced reaction (3He(d, p)4He), is fit as a charged

particle reaction using the Caughlan & Fowler prescription, as discussed in the previous paragraph.

Several reactions deserve special mention. As noted by SKM and emphasized recently by

Nollett & Burles (2000), the p(n, γ)d reaction suffers from a lack of data in the BBN energy

range. Also, p(n, γ)d has only 4 data points (not available when SKM did their study) in the

relevant energy range ! 1 MeV. Fortunately, this reaction is well-described theoretically. Here we

follow both SKM and Nollett & Burles, by adopting the theoretical cross sections of Hale et al.

(1991), which provide an excellent fit to the four available data points by Suzuki (1995) and Nagai

(1997). Nevertheless, despite the present agreement between theory and data, the importance of

this reaction–which controls the onset of nucleosynthesis–demands that the theoretical cross section

fit be further tested by accurate experiment. We urge further investigation of this reaction.

Since SKM, Brune et al. (1999) have added new and very precise data for 3He(n, p)t (see Figure

1a).1 This has greatly reduced the uncertainty in this reaction. In order to use these data, we have

refit the R factor in the manner of SKM and Brune et al., using a third order polynomial in v and

1Note that in all figures having logarithmic vertical scales, errors have been properly propagated to reflect the log

nature of the plot.

(a)

(b)

(c)
(d)

NACRE
Cyburt, Fields, KAO

Nollett & Burles
Coc et al.

(See below)



BBN could not explain the
abundances (or patterns) of 
all the elements.

⇒ growth of stellar nucleosynthesis

But, 
Questions persisted:

25% (by mass) of 4He ?
D?

Resurgence:
BBN could successfully account
for the abundance of 

D, 3He, 4He, 7Li.
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FIG. 3. Fractional uncertainties in the light element abundance predictions shown in Fig. 2. For

each species i, we plot ratio of the standard deviation �i to the mean µi, as a function of baryon-

to-photon ratio. The relative uncertainty of the 4He abundance has been multiplied by a factor of

10.

inputs, as defined in detail in CFOY. Here, and below, we define ⌘10 ⌘ 1010⌘.
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• Production of the Light Elements:  D, 3He, 4He, 7Li

• 4He observed in extragalctic HII regions: 
         abundance by mass = 25%

• 7Li observed in the atmospheres of dwarf halo stars: 

         abundance  by number = 10-10

• D observed in quasar absorption systems (and locally): 
         abundance by number = 3 x 10-5

• 3He in solar wind, in meteorites, and in the ISM: 

         abundance by number = 10-5

Observations



D/H
• All Observed D is Primordial!

• Observed in the ISM and inferred from 
meteoritic samples (also HD in Jupiter)

• D/H observed in Quasar Absorption systems

Cooke et al.

primordial deuterium at one percent 13

Figure 6. Our sample of seven high precision D/H measures is shown (symbols with error bars); the green symbol represents the new measure
that we report here. The weighted mean value of these seven measures is shown by the red dashed and dotted lines, which represent the 68
and 95 per cent confidence levels, respectively. The left and right panels show the dependence of D/H on the oxygen abundance and neutral
hydrogen column density, respectively. Assuming the Standard Model of cosmology and particle physics, the right vertical axis of each panel
shows the conversion from D/H to the universal baryon density. This conversion uses the Marcucci et al. (2016) theoretical determination of
the d(p, �)3He cross-section. The dark and light shaded bands correspond to the 68 and 95 per cent confidence bounds on the baryon density
derived from the CMB (Planck Collaboration et al. 2015).

Table 3. precision d/h measures considered in this paper

QSO zem zabs log10 N(H i)/cm�2 [O/H]a log10 N(D i)/N(H i)

HS 0105+1619 2.652 2.53651 19.426 ± 0.006 �1.771 ± 0.021 �4.589 ± 0.026

Q0913+072 2.785 2.61829 20.312 ± 0.008 �2.416 ± 0.011 �4.597 ± 0.018

Q1243+307 2.558 2.52564 19.761 ± 0.026 �2.769 ± 0.028 �4.622 ± 0.015

SDSS J1358+0349 2.894 2.85305 20.524 ± 0.006 �2.804 ± 0.015 �4.582 ± 0.012

SDSS J1358+6522 3.173 3.06726 20.495 ± 0.008 �2.335 ± 0.022 �4.588 ± 0.012

SDSS J1419+0829 3.030 3.04973 20.392 ± 0.003 �1.922 ± 0.010 �4.601 ± 0.009

SDSS J1558�0031 2.823 2.70242 20.75 ± 0.03 �1.650 ± 0.040 �4.619 ± 0.026
aWe adopt the solar value log10 (O/H) + 12 = 8.69 (Asplund et al. 2009).

or, expressed as a linear quantity:

105 (D/H)P = 2.527 ± 0.030 (10)

This value corresponds to a ⇠ 1 per cent determination of the
primordial deuterium abundance, and is shown in Figure 6
by the dashed and dotted horizontal lines to represent the 68
and 95 per cent confidence regions, respectively. Our deter-
mination of the primordial deuterium abundance quoted here
has not changed much from our previous estimate in Cooke
et al. (2016); as discussed above, the new value is in mutual
agreement with the previous six measures and is of compa-
rable precision. We therefore conclude that the primordial
deuterium abundance quoted here is robust.

5.2. Testing the Standard Model

In order to compare this measurement to the latest Planck
CMB results, we must first convert our estimate of (D/H)P to
the baryon-to-photon ratio, ⌘. To do this, we use the BBN
calculations described by Cooke et al. (2016, see also, Nol-
lett & Burles 2000; Nollett & Holder 2011), assuming the
Marcucci et al. (2016) d(p, �)3He reaction rate. For the case

of the Standard Model, we deduce a baryon-to-photon ratio
of

1010 ⌘ ⌘ ⌘10 = 5.931 ± 0.051 (11)

which includes the uncertainty of the nuclear data that are
used as input to the BBN calculations.

We can now convert this value of the baryon-to-photon ra-
tio into an estimate of the cosmic density of baryons using
the formula ⌘10 = (273.78± 0.18)⇥⌦B,0 h2 (Steigman 2006)
which, for the Standard Model, gives the value:

100⌦B,0 h2(BBN) = 2.166 ± 0.015 ± 0.011 (12)

where the first error term includes the uncertainty in the mea-
surement and analysis, and the second error term provides the
uncertainty in the BBN calculations.

The BBN inferred value of the cosmic baryon density is
somewhat lower than the Planck value, 100⌦B,0 h2(CMB) =
2.226 ± 0.023 (Planck Collaboration et al. 2015, see gray



Figure 3: Optical spectrum of quasar 1937–1009, which shows the best example of
primordial D/H. The top spectrum, from the Kast spectrograph on the 3-m telescope at
Lick observatory, is of low spectral resolution, and high signal to noise. The continuum
emission, from the accretion disk surrounding the black hole at the center of the quasar,
is at about 6 flux units. The emission lines showing more flux (near 4950, 5820, 5940,
6230, 6700 & 7420 Å) arise in gas near the quasar. The absorptoin lines, showing less
flux, nearly all arise in gas which is well separated from, and unrelated to the quasar. The
numerous absorption lines at 4200 – 5800 Å are H I Lyα from the gas in the intergalactic
medium. This region of the spectrun is called the Lyα forest. This gas fills the volume
of the intergalactic medium, and the absorption lines arise from small, factor of a few,
fluctuations in the density of the gas on scales of a few hundred kpc. The Lyα lines were
all created by absorption of photons with wavelengths of 1216Å. They appear at a range
of observed wavelengths because they have different redshifts. Hence Lyα absorption at
5800Å is near the QSO, while that at 5000Å is nearer to us. The abrupt drop in flux
at 4180 Å is caused by H I Lyman continuum absorption in the absorber at z = 3.572.
Photons now at < 4180 Å had more than 13.6 eV when they passed though the absorber,
and they ionized its H I. The 1% residual flux in this Lyman continuum region has been
measured in spectra of higher signal to noise (Burles & Tytler 1997) and gives the H I
column density, expressed as H I atoms per cm−2 through the absorbing gas. The lower
plot shows a portion of a spectrum with much higher resolution taken with the HIRES
spectrograph on the Keck-1 telescope. We mark the Lyα absorption lines of H I and D
from the same gas. The column density of D is measured from this spectrum. Dividing
these two column densities we find D/H = 3.3 ± 0.3 × 10−5 (95% confidence), which is
believed to be the primoridal value, and using SBBN predictions, this gives the most
accurate measurements of η and Ωb.

61

Tytler, O’Meara, Suzuki, Lubin
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BBN Prediction:
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4He
Measured in low metallicity extragalactic HII 

regions (~100)  together with O/H and N/H

YP = Y(O/H → 0)
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Results for He dominated by systematic effects

•Interstellar Redding (scattered by dust)
•Underlying Stellar Absorption
•Radiative Transfer
•Collisional Corrections

Aver, Olive, Skillman

MCMC statistical techniques have proven 
effective in parameter estimation

mine the best fit point in the multidimensional parameter space along with their associated
uncertainties. Indeed, the uncertainties are the primary focus of this work.

The Monte Carlo approach of ref. [20] and AOS took each set of measured fluxes and
built a Gaussian distributed dataset of fluxes based upon their measurement uncertainty. For
each of 1000 such datasets, a best-fit solution was found for the helium abundance as well as
the physical input parameters using the “self-consistent” method which determines the set of
input parameters with a χ2 based on the derived helium abundance from each of six helium
emission lines. The final result was computed from the average and standard deviation of the
set of solutions. Using the fluctuation of the minimum is, however, not a direct measure of the
χ2’s parameter dependence. Furthermore, it is also not as robust as desired. Each solution
was restricted to physically meaningful parameter space (e.g., positive densities), potentially
biasing the solution. Additionally, as was manifested in AOS and will be discussed further
in §4, χ2 functions lacking a well constrained temperature and density can produce unlikely
high density and low temperature solutions that greatly skew the results. Ultimately, these
considerations, tempered by the required computational efficiency, motivate this work.

The χ2 function defined here, and used for parameter fitting, is modified from that
used in previous work. Rather than defining y+ implicitly, as the average of six individual
line abundances, and minimizing the deviation between the lines, y+ is demoted to an input
parameter, no different than the others (e.g., temperature and density). Instead, here, we
use all of the input parameters (described below) and calculate synthetic fluxes which are
then compared to observed flux, weighted by the observed uncertainty, allowing for a more
standard definition of χ2,

χ2 =
∑

λ

( F (λ)
F (Hβ) −

F (λ)
F (Hβ)meas

)2

σ(λ)2
, (2.1)

where the He flux at each wavelength λ relative to the flux in Hβ is given by

F (λ)

F (Hβ)
= y+

E(λ)

E(Hβ)

W (Hβ)+aH (Hβ)
W (Hβ)

W (λ)+aHe(λ)
W (λ)

fτ (λ)
1 + C

R (λ)

1 + C
R (Hβ)

10−f(λ)C(Hβ). (2.2)

The χ2 in eq. 2.1 runs over He and H lines, and the ratio of H fluxes is defined analogously,

F (λ)

F (Hβ)
=

E(λ)

E(Hβ)

W (Hβ)+aH (Hβ)
W (Hβ)

W (λ)+aH (λ)
W (λ)

1 + C
R (λ)

1 + C
R (Hβ)

10−f(λ)C(Hβ). (2.3)

For the above flux equations, six measured helium emission line fluxes (λ3889, 4026, 4471,
5876, 6678, and 7065) and three hydrogen emission line fluxes (Hα, Hγ, Hδ), each relative

to Hβ ( F (λ)
F (Hβ)), along with their equivalent widths (W (λ)) are used. The predicted model

fluxes are calculated from an input value of y+ and emissivity ratio of Hβ to the helium or
hydrogen line, E(Hβ)

E(λ) , with corrections made for reddening (C(Hβ)), underlying absorption

(aH & aHe), collisional enhancement, and radiative transfer. The optical depth function,
fτ , and collisional to recombination emission ratio, C

R , are both temperature (T) and density
(ne) dependent (the emissivities are also temperature dependent). Additionally, the hydrogen
collisional emission depends on the neutral to ionized hydrogen ratio (ξ). Therefore, there are
a total of eight model parameters (y+, ne, aHe, τ , T, C(Hβ), aH , ξ). The physical model itself,
the equations relating the abundance and correction parameters to the flux, is unchanged from
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Hβ. The χ2 in eq. 2.1 runs over all He and H lines and σ(λ) is the measured uncertainty in
the flux ratio at each wavelength. Once minimized, best fit solutions for the eight physical
parameter inputs are found, and uncertainties in each quantity can be obtained by calculating
a 1D marginalized likelihood. In AOS3, He line flux ratios (compared to Hβ) were calculated
using

F (λ)

F (Hβ)
= y+

E(λ)

E(Hβ)

W (Hβ)+aH (Hβ)
W (Hβ)

W (λ)+aHe(λ)
W (λ)

fτ (λ)
1 + C

R (λ)

1 + C
R (Hβ)

10−f(λ)C(Hβ), (2.2)

along with an analogous expression for H line flux ratios. In eq. 2.2, y+ corresponds to the
input abundance by number (relative to H) of ionized He. W (λ) is the measured equivalent
width and two parameters, aH and aHe, characterize the wavelength-dependent underlying
absorption for H and He respectively. The function fτ (λ) represents a correction for flores-
cence. In AOS3, a fit for fτ was used that includes collisional corrections and depends on
τ, ne, and T [41]. The emissivity, E, and He collisional corrections were taken from PFM
[38]. The final term in eq. 2.2, accounts for reddening.

AOS3 analyzed the 93 H II region observations reported in the HeBCD sample of ITS07
[24]. Extensive screening was conducted to promote reliability and achieve a robust dataset
for determining the primordial helium abundance (please see AOS3 for more detail [31]).
First, observations for which He I λ4026 was not detected were excluded to reduce system-
atic uncertainty due to the underlying helium absorption that may be introduced by the
absence of He I λ4026. This left 70 objects in the database. Second, best-fit solutions with
χ2 values greater than 4, corresponding to a standard 95% confidence level, were excluded.
This was another large cut, leaving only 25 objects remaining. Third, solutions with unphysi-
cal physical parameters, namely ξ > 0.333 (> 25% neutral hydrogen), were excluded (2 more
objects). Finally, to reduce systematic uncertainty due to the assumed linear metallicity
relationship between He/H and O/H, objects with O/H ≥ 15.2 × 10−5 were also excluded
(one additional object excluded). The χ2 < 4 criterion itself proved effective at identifying
unphysical or ambiguous solutions. However, it also excluded nearly two thirds of the obser-
vations with He I λ4026 detected, raising questions into potential deficiencies of the model
or data. Cumulatively, the cuts just specified yielded a dataset with 22 objects.

The 22 objects for which the model was a good fit were also examined and flagged for
parameter outliers. The models for optical depth and underlying absorption carry significant
systematic uncertainties. To limit the effect of these systematic uncertainties, objects with
large corrections for these factors were flagged: τ > 4, aH > 6 Å, aHe > 1 Å, and finally,
ξ > 0.01, where the 1-σ lower bound does not encompass ξ = 0.001. Furthermore, the solution
for the electron temperature should be in relatively good agreement with the temperature
derived from the [O III] emission lines (which is used as a very conservative prior; see AOS2 for
further discussion [30]), with T(O III) serving as a loose upper bound on T. Thus, screening
for objects with T (O III)−T > 5000 K or T (O III)−T < −3000 K was also conducted, but
none were found. Of the 22 retained objects, a total of 8 were flagged. Table 1 summarizes
the cuts and their effects on the dataset in AOS3. In section 4, we redo the analysis of AOS3
with the new PFSD emissivities. We start with the same HeBCD dataset of 70 objects (those
with He I λ4026 detected), and preform the χ2 analysis and make the same set of cuts. Those
results are all shown in table 1.

The net result from AOS3 for the primordial 4He mass fraction was

Y = 0.2534 ± 0.0083 + (54± 102)O/H, (2.3)

– 3 –
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Results for He dominated by systematic effects

Aver, Olive, Skillman

mine the best fit point in the multidimensional parameter space along with their associated
uncertainties. Indeed, the uncertainties are the primary focus of this work.

The Monte Carlo approach of ref. [20] and AOS took each set of measured fluxes and
built a Gaussian distributed dataset of fluxes based upon their measurement uncertainty. For
each of 1000 such datasets, a best-fit solution was found for the helium abundance as well as
the physical input parameters using the “self-consistent” method which determines the set of
input parameters with a χ2 based on the derived helium abundance from each of six helium
emission lines. The final result was computed from the average and standard deviation of the
set of solutions. Using the fluctuation of the minimum is, however, not a direct measure of the
χ2’s parameter dependence. Furthermore, it is also not as robust as desired. Each solution
was restricted to physically meaningful parameter space (e.g., positive densities), potentially
biasing the solution. Additionally, as was manifested in AOS and will be discussed further
in §4, χ2 functions lacking a well constrained temperature and density can produce unlikely
high density and low temperature solutions that greatly skew the results. Ultimately, these
considerations, tempered by the required computational efficiency, motivate this work.

The χ2 function defined here, and used for parameter fitting, is modified from that
used in previous work. Rather than defining y+ implicitly, as the average of six individual
line abundances, and minimizing the deviation between the lines, y+ is demoted to an input
parameter, no different than the others (e.g., temperature and density). Instead, here, we
use all of the input parameters (described below) and calculate synthetic fluxes which are
then compared to observed flux, weighted by the observed uncertainty, allowing for a more
standard definition of χ2,

χ2 =
∑

λ

( F (λ)
F (Hβ) −

F (λ)
F (Hβ)meas

)2

σ(λ)2
, (2.1)

where the He flux at each wavelength λ relative to the flux in Hβ is given by

F (λ)

F (Hβ)
= y+

E(λ)

E(Hβ)

W (Hβ)+aH (Hβ)
W (Hβ)

W (λ)+aHe(λ)
W (λ)

fτ (λ)
1 + C

R (λ)

1 + C
R (Hβ)

10−f(λ)C(Hβ). (2.2)

The χ2 in eq. 2.1 runs over He and H lines, and the ratio of H fluxes is defined analogously,

F (λ)

F (Hβ)
=

E(λ)

E(Hβ)

W (Hβ)+aH (Hβ)
W (Hβ)

W (λ)+aH (λ)
W (λ)

1 + C
R (λ)

1 + C
R (Hβ)

10−f(λ)C(Hβ). (2.3)

For the above flux equations, six measured helium emission line fluxes (λ3889, 4026, 4471,
5876, 6678, and 7065) and three hydrogen emission line fluxes (Hα, Hγ, Hδ), each relative

to Hβ ( F (λ)
F (Hβ)), along with their equivalent widths (W (λ)) are used. The predicted model

fluxes are calculated from an input value of y+ and emissivity ratio of Hβ to the helium or
hydrogen line, E(Hβ)

E(λ) , with corrections made for reddening (C(Hβ)), underlying absorption

(aH & aHe), collisional enhancement, and radiative transfer. The optical depth function,
fτ , and collisional to recombination emission ratio, C

R , are both temperature (T) and density
(ne) dependent (the emissivities are also temperature dependent). Additionally, the hydrogen
collisional emission depends on the neutral to ionized hydrogen ratio (ξ). Therefore, there are
a total of eight model parameters (y+, ne, aHe, τ , T, C(Hβ), aH , ξ). The physical model itself,
the equations relating the abundance and correction parameters to the flux, is unchanged from
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Hβ. The χ2 in eq. 2.1 runs over all He and H lines and σ(λ) is the measured uncertainty in
the flux ratio at each wavelength. Once minimized, best fit solutions for the eight physical
parameter inputs are found, and uncertainties in each quantity can be obtained by calculating
a 1D marginalized likelihood. In AOS3, He line flux ratios (compared to Hβ) were calculated
using

F (λ)

F (Hβ)
= y+

E(λ)

E(Hβ)

W (Hβ)+aH (Hβ)
W (Hβ)

W (λ)+aHe(λ)
W (λ)

fτ (λ)
1 + C

R (λ)

1 + C
R (Hβ)

10−f(λ)C(Hβ), (2.2)

along with an analogous expression for H line flux ratios. In eq. 2.2, y+ corresponds to the
input abundance by number (relative to H) of ionized He. W (λ) is the measured equivalent
width and two parameters, aH and aHe, characterize the wavelength-dependent underlying
absorption for H and He respectively. The function fτ (λ) represents a correction for flores-
cence. In AOS3, a fit for fτ was used that includes collisional corrections and depends on
τ, ne, and T [41]. The emissivity, E, and He collisional corrections were taken from PFM
[38]. The final term in eq. 2.2, accounts for reddening.

AOS3 analyzed the 93 H II region observations reported in the HeBCD sample of ITS07
[24]. Extensive screening was conducted to promote reliability and achieve a robust dataset
for determining the primordial helium abundance (please see AOS3 for more detail [31]).
First, observations for which He I λ4026 was not detected were excluded to reduce system-
atic uncertainty due to the underlying helium absorption that may be introduced by the
absence of He I λ4026. This left 70 objects in the database. Second, best-fit solutions with
χ2 values greater than 4, corresponding to a standard 95% confidence level, were excluded.
This was another large cut, leaving only 25 objects remaining. Third, solutions with unphysi-
cal physical parameters, namely ξ > 0.333 (> 25% neutral hydrogen), were excluded (2 more
objects). Finally, to reduce systematic uncertainty due to the assumed linear metallicity
relationship between He/H and O/H, objects with O/H ≥ 15.2 × 10−5 were also excluded
(one additional object excluded). The χ2 < 4 criterion itself proved effective at identifying
unphysical or ambiguous solutions. However, it also excluded nearly two thirds of the obser-
vations with He I λ4026 detected, raising questions into potential deficiencies of the model
or data. Cumulatively, the cuts just specified yielded a dataset with 22 objects.

The 22 objects for which the model was a good fit were also examined and flagged for
parameter outliers. The models for optical depth and underlying absorption carry significant
systematic uncertainties. To limit the effect of these systematic uncertainties, objects with
large corrections for these factors were flagged: τ > 4, aH > 6 Å, aHe > 1 Å, and finally,
ξ > 0.01, where the 1-σ lower bound does not encompass ξ = 0.001. Furthermore, the solution
for the electron temperature should be in relatively good agreement with the temperature
derived from the [O III] emission lines (which is used as a very conservative prior; see AOS2 for
further discussion [30]), with T(O III) serving as a loose upper bound on T. Thus, screening
for objects with T (O III)−T > 5000 K or T (O III)−T < −3000 K was also conducted, but
none were found. Of the 22 retained objects, a total of 8 were flagged. Table 1 summarizes
the cuts and their effects on the dataset in AOS3. In section 4, we redo the analysis of AOS3
with the new PFSD emissivities. We start with the same HeBCD dataset of 70 objects (those
with He I λ4026 detected), and preform the χ2 analysis and make the same set of cuts. Those
results are all shown in table 1.

The net result from AOS3 for the primordial 4He mass fraction was

Y = 0.2534 ± 0.0083 + (54± 102)O/H, (2.3)
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2 Model overview

This work uses the model introduced in AOS and the MCMC statistical analysis introduced
in AOS2 and applies them to a larger dataset. The basic definitions are summarized below.
Please see AOS and AOS2 for full details and discussion. CosmoMC1 is used to perform the
Markov Chain Monte Carlo analysis: efficiently exploring the parameter space and calculat-
ing the χ2,

χ2 =
∑

λ

( F (λ)
F (Hβ) −

F (λ)
F (Hβ)meas

)2

σ(λ)2
, (2.1)

where the emission line fluxes, F (λ), are measured or calculated for six helium lines (λ3889,
4026, 4471, 5876, 6678, and 7065) and three hydrogen lines (Hα, Hγ, Hδ) each relative to
Hβ. The χ2 in eq. 2.1 runs over all He and H lines and σ(λ) is the measured uncertainty
in the flux ratio at each wavelength. The best-fit solution (minimum χ2) is then found and
frequentist confidence levels are determined from ∆χ2. The marginalized 1D likelihood for
y+ incorporates both the statistical uncertainty of the fluxes and the systematic uncertainty
introduced by the variance of the model parameters.

The calculated He flux at each wavelength λ relative to the flux in Hβ is given by

F (λ)

F (Hβ)
= y+

E(λ)

E(Hβ)

W (Hβ)+aH(Hβ)
W (Hβ)

W (λ)+aHe(λ)
W (λ)

fτ (λ)
1 + C

R (λ)

1 + C
R (Hβ)

10−f(λ)C(Hβ). (2.2)

The ratio of H fluxes is defined analogously,

F (λ)

F (Hβ)
=

E(λ)

E(Hβ)

W (Hβ)+aH(Hβ)
W (Hβ)

W (λ)+aH(λ)
W (λ)

1 + C
R (λ)

1 + C
R (Hβ)

10−f(λ)C(Hβ). (2.3)

The predicted model fluxes shown above are calculated from an input value of y+ and an
emissivity ratio of the helium or hydrogen line to Hβ, E(λ)

E(Hβ) , with corrections made for red-

dening (C(Hβ)), underlying absorption (aH & aHe), collisional enhancement, and radiative
transfer. The optical depth function, fτ , and collisional to recombination emission ratio, C

R ,
are both temperature (T) and density (ne) dependent (the emissivities are also temperature
dependent). The parameters aHe and aH correspond to λ4471 and Hβ respectively. The
wavelength dependence of the underlying absorption is discussed in detail in AOS. Addition-
ally, the hydrogen collisional emission depends on the neutral to ionized hydrogen ratio (ξ).
Therefore, there are a total of eight model parameters (y+, ne, aHe, τ , T, C(Hβ), aH , ξ). An
extensive description and analysis of the physical model is provided in AOS. The statistical
method of sampling the multi-dimensional parameter space is described in AOS2.

The model fluxes also rely on the measured equivalent widths (W (λ)). However, the
flux of the continuum at each wavelength, h(λ), which relates the line flux to the equivalent
width, is constrained such that changes in the equivalent width are proportional to changes
in the flux (see AOS2):

h(λ)

h(Hβ)
=

F (λ)

F (Hβ)meas

W (Hβ)meas

W (λ)meas
(2.4)

1http://cosmologist.info/cosmomc/.
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Aver, Olive, Porter, Skillman

Improvements

New emissivities

Adding new He line Izotov, Thuan, Guseva

Aver, Olive, Skillman

Adding new H and He lines

7 He, 3 H lines to fit 8 parameters

Add 2 He, and 9 H lines (H9-12, and P8-12)
For a total of 21 observables to fit 9 parameters (aP added). 

Aver, Berg, Olive, Pogge, 
Salzer, Skillman

2013

2015

2021



Applied to Leo P

Skillman et al. [66] This Work
Emission lines 9 21
Free Parameters 8 9
d.o.f. 1 12
95% CL �

2 3.84 21.03
He+/H+ 0.0837+0.0084

�0.0062 0.0823+0.0025
�0.0018

ne [cm�3] 1+206

�1
39+12

�12

aHe [Å] 0.50+0.42
�0.42 0.42+0.11

�0.15

⌧ 0.00+0.66
�0.00 0.00+0.13

�0.00

Te [K] 17,060 +1900

�2900
17,400 +1200

�1400

C(H�) 0.10+0.03
�0.07 0.10+0.02

�0.02

aH [Å] 0.94+1.44
�0.94 0.51+0.17

�0.18

aP [Å] - 0.00+0.52
�0.00

⇠ ⇥ 104 0+156

�0
0+7

�0

�
2 3.3 15.3

p-value 7% 23%
O/H ⇥ 105 1.5 ± 0.1 1.5 ± 0.1
Y 0.2509 ± 0.0184 0.2475 ± 0.0057

Table 2. Physical conditions, He+/H+ abundance solution, and regression values of Leo P

The stronger lines dominate the �
2 minimization and best-fit solution, due to their lower

relative uncertainties. However, the weaker lines, appropriately weighted by their larger
uncertainties, still contribute to constrain the best-fit solution and parameter uncertainties.

Our previous analysis of the Leo P spectrum yielded a fit to eight parameters using 9
nine emission line ratios [66]. As indicated in table 2, the total �2 for the best fit solution was
3.3 for a single degree of freedom, corresponding to a p-value of 7%. Though our new solution
has a significantly higher value of �2 = 15.3 (found by summing the �

2 contributions in the
rightmost column in table 3 for the 21 emission line ratios), it corresponds to 12 degrees of
freedom, and has a p-value of 23%.

In addition to an overall improvement in the fit, we see from the last row of table 2, a
significant drop in the uncertainty in the resulting helium mass fraction. The new uncertainty
is more than a factor of three smaller than the previous result. The central value, in contrast,
changed by less than 1 � leading to a helium mass fraction in Leo P of Y = 0.2475± 0.0057.

4.2 The Primordial Helium Abundance

A regression of Y, the helium mass fraction, versus O/H, the oxygen abundance, from nearby
galaxies, is used to extrapolate to the primordial value1. The O/H values are taken directly
from Izotov, Thuan, & Stasińska [38], except for Leo P, where the value is taken from Skillman
et al. [66].

The relevant values for the regression are given in table 4. The regression is based on
the results from Aver et al. [44], combined with the results for Leo P from this work. There
are 15 objects in the qualifying dataset of Aver et al. [44], and Leo P is added to the previous

1This work takes Z = 20(O/H) such that Y = 4y(1�20(O/H))
1+4y
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Aver, Berg, Olive, Pogge, 
Salzer, Skillman

13.7 for 68%



Aver, Berg, Olive, Pogge, 
Salzer, Skillmanprior: YP = .2449 ± 0.0040



Aver, Berg, Hirschauer, Olive, 
Pogge, Rogers,
Salzer, Skillmanprior: YP = .2453 ± 0.0034

Most recent addition: AGC 198691 (2021)



PHLEK (+SDSS) data

Hsyu, Cooke, Prochaska, Bolte

cf. Aver et al.

THE PHLEK SURVEY 21
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Figure 5. Contours (off-diagonal panels) and posterior distributions (diagonal panels) showing the best fit slope (dy/d(O/H)), intercept (yP),
and intrinsic scatter (�intr), as recovered from the MCMC. The left and right panels show the MCMC results for Sample 1 and Sample 2,
respectively, as defined in Sections 4.1.1 and 4.1.2. For Sample 1, we report a 2� upper limit on �intr since it is consistent with zero. The
contours show the 1�, 2�, and 3� levels. The solid vertical blue lines in the diagonal panels indicate the best recovered values, while the dotted
blue lines represent the ±1� values on the parameters. The linear model described by these parameters (given in Equation 22) is overplotted in
Figure 6.
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Figure 6. Our extrapolation to the primordial helium abundance yP using Sample 1 (left panel) and Sample 2 (right panel), which are described
in Sections 4.1.1 and 4.1.2, respectively. The green, purple, and orange, circles with error bars show our PHLEK sample, the SDSS sample,
and the HeBCD sample of galaxies, respectively. The black dashed line indicates the best fit linear extrapolation to yp while the surrounding
shaded grey regions show the 1� and 2� errors on the linear fit. In the right panel, the darker points represent Sample 1, while the lighter points
represent Sample 2. The expressions shown describe the best fit linear models along with the intrinsic scatter �intr, which captures possible
systematic uncertainties that are currently unaccounted for by our model.
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Table 6. Primordial helium abundance results reported in the literature

yP Observation/Method Number of Systems Citation

0.0856±0.0010 H II region 28 Izotov et al. 2014

0.0811±0.0018 H II region 15 Aver et al. 2015

0.0809±0.0013 H II region 5 Peimbert et al. 2016

0.0802±0.0022 H II region 18 Fernández et al. 2019

0.0812±0.0011 H II region in NGC 346 1 Valerdi et al. 2019

0.0805+0.0017
-0.0017 H II region 54 This work

0.0793±0.011(2�) CMB · · · Planck Collaboration et al. 2018

0.085+0.015
-0.011 Absorption line system 1 Cooke & Fumagalli 2018

0.0820±0.000074 SBBN calculation · · · Cyburt et al. 2016

0.0820±0.000075 SBBN calculation · · · Pitrou et al. 2018

NOTE—A summary of primordial helium abundance results reported in recent literature, the method by which the values are measured or
calculated, and their reference. The Planck measurement is the TT,TE,EE+lowE value from Equation 80a of Planck Collaboration et al.
(2018) and is BBN-independent. All values are quoted with 1� confidence limit, except the CMB value, which is quoted with 2� confidence
limit, as indicated.

5.1. Implications for the Standard Model – BBN bounds on
⌦bh2 and Neff

Physics beyond the Standard Model at the time of BBN can
be identified by comparing observational measurements of
the primordial abundances with the SBBN predicted values.
The primordial element abundances produced during BBN
are captured primarily by two parameters: the baryon den-
sity, ⌦bh2, and the effective number of neutrino species, Neff.
By adopting a measurement of ⌦bh2 from the CMB (Planck
Collaboration et al. 2018) and assuming Neff = 3.046 (i.e.
the Standard Model value; Cyburt et al. 2002, 2016; Pitrou
et al. 2018), BBN is a parameter free theory. Note that the
SBBN predicted abundances are still subject to other uncer-
tainties, such as the mean neutron lifetime ⌧n and nuclear re-
action rates, but these values are measured in laboratories or
inferred using ab initio calculations. Primordial abundances
deduced from observations of astrophysical regions thus pro-
vide a valuable test of the Standard Model of particle physics
and cosmology and its assumptions.

Constraining the values of ⌦bh2 and Neff using observa-
tions requires using two or more measurements of the pri-
mordial abundances. For this exercise, we take our measure-
ment of the primordial helium abundance in conjunction with
the latest primordial deuterium abundance reported by Cooke
et al. (2018):

YP = 0.2436+0.0039
-0.0040

(D/H)P ⇥105 = 2.527±0.030

and use calculations of BBN to infer the values of ⌦bh2 and
Neff that best fit these abundances.

In what follows, we use the detailed primordial abundance
calculations reported by Pitrou et al. (2018). These authors
provide formulae for calculating the primordial abundances,
given a value of ⌦bh2, N⌫ , and ⌧n. We restate the formula for
predicting YP here as an example (see their Equation 145, the
surrounding text, and Table VI of their paper for the values
of the Cpqr coefficients that are referenced here):

�YP

YP
=
X

pqr

Cpqr

⇣�⌦bh2

⌦bh2

⌘p⇣�N⌫

N⌫

⌘q⇣�⌧n

⌧n

⌘r

We use the latest measurement of the mean neutron life-
time ⌧n = 877.7 ± 0.7 (Pattie et al. 2018) to solve for
⌦bh2 and N⌫ . Furthermore, we use the scaling Neff =
N⌫ ⇥ 3.046/3 (see Pitrou et al. 2018). This choice of scale
is commonly used, and allows us to fairly compare the BBN
results to the CMB. We use EMCEE with 100 walkers taking
1500 steps each and sample the parameter space:

0.0185  ⌦bh2  0.0267
1.5  Neff  4.5

With each step, a model set of primordial D/H and YP
abundances are predicted. The optimal parameters are solved
for assuming a Gaussian likelihood function. We take the
burn in to be at 0.8⇥nsteps = 1200 steps. Given the ob-
served primordial element abundances, we report the follow-
ing bounds on the effective number of neutrino species and



Adding higher metallicity regions from SDSS data
Kurichin, Kislitsyn, Klimenko
Balashev, Ivanchik

Primordial Helium Abundance 5

Figure 3. (a) “. - (O/H)” diagram for 100 H �� regions of the final sample (f . (b) “. - (O/H)” diagram for the final sample (f (navy colored) combined with 20
H �� regions of the HeBCD subsapmle (brown colored). The panel beneath the plot (b) represents the dispersion of points around the regression line in terms
of sigma intervals with ⇠75% fraction of all points falling into 1f interval and ⇠94% falling into 2f interval. (c) the same as (b) but the whole sample was
sliced into equally-sized bins in which of those the weighted mean point was calculated for a grater visualisation and clarity (regression line on (c) is the same
as on (b)).

MNRAS 000, 1–12 (2021)

cf. Aver et al.
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Neutron Lifetime

τ = 885.7 → Y = .2481
τ = 880.2 → Y = .2470
τ = 879.4 → Y = .2468

B. The Neutron Mean Life

As noted in the introduction, the value of the neutron mean life has had a turbulent

history. Unfortunately, the predictions of SBBN remain sensitive to this quantity. This

sensitivity is displayed in the scatter plot of our Monte Carlo error propagation with fixed

η = 6.10 × 10−10 in Figure 2. The correlation between the neutron mean lifetime and 4He

abundance prediction is clear. The correlation is not infinitesimally narrow because other

reaction rate uncertainties significantly contribute to the total uncertainty in 4He.

FIG. 2. The sensitivity of the 4He abundance to the neutron mean life, as shown through a scatter

plot of our Monte Carlo error propagation.

C. Planck Likelihood Functions

For this paper, we will need to consider two sets of Planck Markov Chain data, one for

standard BBN (SBBN) and one for non-standard BBN (NBBN). Using the Planck Markov

chain data [113], we have constructed the multi-dimensional likelihoods for the following

extended parameter chains, base yhe and base nnu yhe, for the plikHM TTTEEE lowTEB

dataset. As noted earlier, we do not use the Planck base chain, as it assumes a BBN

relationship between the helium abundance and the baryon density.

From these 2 parameter sets we have the following 2- and 3-dimensional likelihoods
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4He Prediction: 
0.2469 ± 0.0002

Data: Regression: 
0.2448 ± 0.0033
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Possible sources for the discrepancy

• Nuclear Rates

– Restricted by solar neutrino flux

– New Measurements of 7Be(n,p)7Li

– Others: 7Be(n,α)4He, 7Be(d,p)4He4He
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Fig. 15. A unified view of A(Li) vs. [Fe/H] from some studies for which
a common temperature scale can be assumed. Blue circles, Asplund et
al. (2006) data, red triangles, Aoki et al. (2009) data, magenta squares,
CS 22876–032 from González Hernández et al. (2008), filled symbol
primary star, open symbol secondary star. Black diamonds, this work,
BA temperature scale. Dot-dashed gray line, best linear fit to Asplund
et al. (2006) data, continuous dark gray line, best fit to our data. Typical
error bars for our data are displayed.

three works)8. The best linear fit to our data is shown as a dark
gray solid line, while the best fit to Asplund et al. (2006) data
(A(Li)=2.409+ 0.103[Fe/H]) is shown by a dot-dashed gray line.
The Asplund et al. (2006) Li abundances are increased here by
0.04 dex to account for the known offset already mentioned in
Sect. 7.6, and their metallicty is decreased by 0.2 dex to corre-
spond to the metallicity-scale offset detected by Bonifacio et al.
(2007). It is now even more evident that the Spite plateau does
not exist anymore at the lowest metallicity, and is replaced by an
increased spread of abundances, apparently covering a roughly
triangular region ending quite sharply at the plateau level. This
region appears here to be populated in a remarkably even man-
ner; at any probed metallicity some star remains at, or very close
to, the Spite plateau level, but many do not. The rather different
slopes of the best-fit relations in Asplund et al. (2006) and in
this work appear to be the obvious consequence of fitting two
subsamples covering different metallicity regimes. This could
provide also an explanation for the numerous claims, starting
from Ryan et al. (1999), of a thin, but tilted Spite plateau. From
this view, the difference was produced simply because the tail of
these samples had been falling in the low-metallicity “overde-
pletion zone” as we have been able to discern more clearly.

We are not aware of any theoretical explanation of this be-
havior. After the measurements of the fluctuations of the CMB
made it clear that there is a “cosmological lithium problem”, i.e.,
the Li predicted by SBBN and the measured baryonic density is
too high with respect to the Spite plateau (by about 0.6 dex for
our sample), there have been many theoretical attempts to pro-
vide Li-depletion mechanisms that would reduce the primordial
Li to the Spite plateau value in a uniform way. Our observations
now place anadditional constraint on these models – below a
metallicity of about [Fe/H] = −2.5, they should cause a disper-
sion in Li abundances and an overall lowering of A(Li).

If Li depletion from the WMAP-prescribed level were
to happen in the stellar envelopes of very metal-poor stars,

8 González Hernández et al. (2008) derived Teff from photometry and
isochrones, but a cross-check with Hα profiles computed in 1D with
Barklem et al. (2000a) broadening confirmed the result.

the mechanism would have to be remarkably metallicity in-
sensitive to account for the thin, flat plateau observed be-
tween [Fe/H]=−2.5 and −1. And yet, the same phenomenon
must become sharply metallicity sensitive around and below
[Fe/H]=−2.5, i.e., precisely where metallicity effects on the at-
mospheric structure are expected to become vanishing small.

We are tempted to imagine that two different mechanisms
may need to be invoked to explain the production of the Spite
plateau for stars with [Fe/H] > −2.5, and of the low-metallicity
dispersion for stars with [Fe/H] < −2.5. One could envision such
a two-step process as follows:

1. Metal-poor halo stars are always formed at the Spite plateau
level, regardless of their metallicity.Whether the plateau rep-
resents the cosmological Li abundance or is the result of
some primordial uniform depletion taking place before the
star formation phase is immaterial in this context.

2. A second phenomenon, possibly related to atmospheric dif-
fusion, becomes active around [Fe/H]=−2.5 and below, de-
pleting Li further in the atmosphere of EMP stars. This phe-
nomenon, aside from the metallicity sensitivity, would ex-
hibit different star-to-star efficiency, being possibly depen-
dent on additional parameters, such as stellar rotation or Teff .
Its efficiency must in any case be higher for more metal-poor
stars.

In this scenario, the “primordial” plateau would be preserved
above [Fe/H]∼ −2.5, but below that metallicity, a systematic
“leakage” of stars towards lower A(Li) would take place, more
effectively for more metal-poor stars, but naturally scattered due
to the sensitivity to parameters other than [Fe/H]. This scheme
would have a number of advantages. First of all, it would natu-
rally explain our observations, “mimicking” a slope in A(Li) ver-
sus [Fe/H], but with increased scatter at low [Fe/H]. It would also
explain why, while the scatter in A(Li) increases at low metallic-
ities, not a single star in this metallicity regime has been found
to lie above the Spite plateau level. It would then be consistent
with a small number of stars remaining close to the plateau at
any metallicity (e.g., CS 22876–032 A, González Hernández et
al., 2008, filled magenta square in Fig. 15); in these objects,
the depletion process would be somehow inhibited. Finally, at-
tributing the extra depletion to atmospheric diffusion / settling
would not require a physical “conspiracy” capable of producing
exactly the same depletion level regardless of metallicity, stel-
lar rotation, gravity, or effective temperature, as is often invoked
when diffusion is used to explain the Spite plateau.

The nature of what we refer to above as the “second phe-
nomenon”, the one responsible for the departures from the Spite
plateau below [Fe/H] = −2.5, is perhaps the most intriguing.
Above, we have proposed some kind of photospheric settling
mechanism, but one could as well envision a chemical evolution
scenario, on the basis of some gas pre-processing with Li deple-
tion (à la Piau et al. 2006) – while it may not be able to account
for the entire WMAP-Spite plateau discrepancy, this mechanism
could easily account for the mild (0.2-0.4 dex) departure from
the plateau observed at lower metallicities. Moreover, this mech-
anism would naturally produce a spread of abundances as a con-
sequence of the local level of gas pre-processing.

There are hints that the recently discovered ultra-faint dwarf
galaxies (uFdg) might have been the source of the bulk of the
EMP stars now found in the halo of the Milky Way (Tolstoy et
al., 2009, and references therein). If this were indeed the case, a
sizeable fraction of our sample could have formed in uFdg sys-
tems, possibly more so for the most metal-poor objects. It has
been suggested (Komiya et al., 2009) that the paucity of stars
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time was sufficient only for giving abundances of a few el-
ements. The star was independently recovered as a Mg-rich
star by Li et al. (2014), who analysed the SDSS DR9 spec-
tra. Their temperature for the star is higher by 230 K and
consequently their metallicity is higher ([Fe/H]=–2.83). In
the UVES spectrum of SDSS J1349+1407 we identified six
Mg i lines in the blue spectrum (382.9, 383.2, 383.8, 405.7,
416.7, 470.2 nm). We fitted the line profiles and we derived
A(Mg) = 5.30 ± 0.16 and by removing the line which is in
the wing of a Balmer line, we derive A(Mg) = 5.36 ± 0.11.
The star is also enhanced in Na, with [Na/Fe]=+0.86.

– SDSS J1442–0015. We compared our spectrum with the X-
Shooter spectrum of Caffau et al. (2013a). The metallicities
from the analysis of the two spectra are in good agreement
within errors of less than 1σ. The Mg abundances are in rea-
sonable agreement with 1.5σ errors. The situation is slightly
worse for the Ca abundance; the abundances derived from
the Ca i 422.67 nm resonance line from the two spectra are
consistent to within 1.8σ, i.e. 0.7 dex. As usual, this is dis-
crepant with the Ca ii IR triplet lines, measured in the X-
Shooter spectrum. This example is a recommendation not to
overinterpret the abundances that rely on a single, weak line.
It is important to note that both here and in the study of
Caffau et al. (2013a)
we adopted the effective temperature derived by fitting the
wings of Hα, which is considerably lower than the tempera-
ture implied by the g − z colour (6161 K).

– SDSS J1507+0051. The X-Shooter spectrum was analysed
by Caffau et al. (2013b). Both the metallicity and the Mg
abundance of the two analyses are in agreement within less
than 1σ. Instead, we have a strong discrepancy
for the abundances of Ca derived from Ca ii lines. In the
UVES spectrum we detect the 370.6024 nm line, while in
the X-Shooter spectrum, we relied on the IR triplet lines.
This discrepancy needs to be further investigated.

4. Results and discussion

The main result of this investigation is the confirmation, based
on higher resolution spectra, of the very low metallicities that we
derived for these stars from the analysis of the X-Shooter spec-
tra. Two stars have [Fe/H] below −4.3, three stars around −4.0,
and two stars around −3.5. These numbers confirm the high effi-
ciency of the TOPoS strategy for target selection. The five stars
with [Fe/H]≤ −4.0 discussed in this paper, SDSS J1742+2531
( [Fe/H]=−4.80, Bonifacio et al. 2015 ) and SDSS J0929+0238
([Fe/H]=−4.97, Caffau et al. 2016) are the most iron-poor stars
we found in the course of the TOPoS project and they are all
strongly C-enhanced. To date, among the stars with [Fe/H]≤
−4.5 the only ‘non C-enhanced star’ found is SDSS J1029+1729
(Caffau et al. 2011b, 2012).

4.1. Carbon abundances

It is interesting to note that all the C-enhanced stars that we
have found belong indeed to the low-carbon band discussed by
Bonifacio et al. (2015), as illustrated in Fig. 2. These stars do not
seem to be enhanced in s-process elements and we suggest that
they are indeed CEMP-no stars. This view is supported also by
the recent study of Hansen et al. (2016) who analysed a sample
of 27 metal-poor stars and found that 20 of them are CEMP, 3
of which are CEMP-no stars that belong to the low-carbon band.

Fig. 3. Lithium abundance in unevolved extremely metal-poor
stars. The different symbols refer to different carbon abundances.
The filled hexagons refer to carbon normal stars. CEMP stars of
the low- and high-carbon bands are shown as star symbols and
crossed squares, respectively. Measurements and upper limits of
the programme stars are shown in red. Measurements and upper
limits from our group’s previous papers (Bonifacio et al. 2015;
Caffau et al. 2016) are shown in blue. Black symbols are stars
for which metallicity, lithium abundance, and carbon abundance
are taken from the literature (Norris et al. 1997; Lucatello et al.
2003; Sivarani et al. 2004; Ivans et al. 2005; Sivarani et al. 2006;
Frebel et al. 2007, 2008; Thompson et al. 2008; Aoki et al. 2008;
Sbordone et al. 2010; Behara et al. 2010; Caffau et al. 2012;
Carollo et al. 2012; Masseron et al. 2012; Aoki et al. 2013; Ito
et al. 2013; Carollo et al. 2013; Spite et al. 2013; Roederer et al.
2014; Aoki 2015; Bonifacio et al. 2012; Li et al. 2015b; Hansen
et al. 2014; Caffau et al. 2016; Placco et al. 2016; Matsuno et al.
2017). The two components of the binary system CS 22876-32
(González Hernández et al. 2008) are shown as black crosses.
The green dashed line is the level of the Spite plateau as deter-
mined by Sbordone et al. (2010).

We suggest here that a useful classification of metal-poor stars
can be made using only their C abundance without any refer-
ence to their abundance of n-capture elements. This is related
to the fact that, for unevolved stars, it is very difficult to secure
data quality high enough to derive measurements or significant
upper limits for the heavy elements. Our proposed classification
scheme is as follows:

– ‘carbon normal’: for [Fe/H]≥ −4 [C/Fe]< 1.0, for [Fe/H]<
−4 A(C)< 5.5;

– low-carbon band CEMP stars: stars that do not fulfil the car-
bon normal criterion and have A(C)≤ 7.6;

– high-carbon band CEMP stars: stars that do not fulfil the car-
bon normal criterion and have A(C)> 7.6.

This classification is qualitatively similar to that proposed by
Yoon et al. (2016), except that their Group II is partly included
in our low-carbon band and mostly in our carbon normal stars,
their Group I is by and large coincident to our high-carbon band,
except for the stars with the lowest C abundances in their Group
I, which we assign to the low-carbon band.
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Figure 2. Upper panel: Li doublet of J0023+0307 rebinned
to 0.035Å/pixel (1.6 km s�1/pixel) together with the best fit
model (A(Li)= 2.02, � = 0.05) and the fit residual, providing
a S/N⇠ 130. We also show for comparison two additional
synthetic spectra at about 3-� from the best fit.

Lower panel: Li abundance, A(Li), versus metallicity, [Fe/H],
of J0023+0307 compared with other dwarf - turn-o↵ stars
(log g � 3.7) with Li abundance values from Bonifacio
et al. (2018) and references therein. Blue filled circles con-
nected with a solid line indicates the spectroscopic bina-
ries in González Hernández et al. (2008); Aoki et al. (2012).
The Lithium plateau (also called Spite Plateau) reference is
shown as solid line at a level of A(Li) = 2.20 dex. Blue dashed
line represents the primordial lithium value (A(Li)⇠2.7) from
WMAP (Spergel et al. 2003).

mono-enriched area of the [Mg/C] vs [Fe/H] diagram
presented in Hartwig et al. (2018). SDSS J1035+0641
(with a metallicity of [Fe/H]< �5.2) discovered by Boni-
facio et al. (2015) also presents a high probability of
being a second generation mono-enriched star (Hartwig
et al. 2019).
Bonifacio et al. (2018) has recently detected lithium

(A(Li)= 1.9) in J1035+0641 close to the Lithium
Plateau. J0023+0307 with Li abundance of A(Li)= 2.02
surprisingly nearly recovers the same level of the
Lithium Plateau at about 1 dex less iron content. The
presence of lithium in this extremely iron-poor star at
[Fe/H]. �6 reinforces the production of lithium at the
Big Bang, and places a stringent constraint to any the-
ory aiming at explaining the cosmological Li problem.
The fact that no star in this large metallicity regime
(�6 <[Fe/H]< �2.5) has been detected to show a Li
abundance between that inferred from SBBN and the
Li plateau, makes this upper boundary of Li abundance
(or extended Li plateau) at low metallicities di�cult to
explain by destruction in the stars, and may support a
lower primordial Li production, driven by non-standard
nucleosynthesis processes.
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Other possible sources for the discrepancy

• Stellar parameters
• Decaying Particles 
• Axion Cooling
• Variable Constants



BBN and the CMB
Monte-Carlo approach combining BBN rates, observations and CMB 
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5.1 2D fits: BBN with CMB-determined baryon and helium abundances

We first consider models fixing N⌫ = 3. In this case standard BBN is a one-parameter theory,
depending only on the cosmic baryon density. Moreover, in the conventional cosmology, ⌘

and Yp do not change between nucleosynthesis and recombination, so we may combine the
information from these epochs. The various likelihood functions can be convolved in a number
of di↵erent ways. For element abundance determinations, we can compare the observational
likelihood LOBS(X) with the following convolution of the CMB and BBN likelihood functions

LCMB�BBN(Xi) /
Z

LCMB(⌘, Yp) LBBN(⌘; Xi) d⌘ , (5.1)

where we normalize each of the likelihood functions so that their peak takes the common value
of 1. Thus we arrive at zero-parameter predictions of abundances for all of the light nuclides.
In the case of 4He, we can also marginalize over ⌘ to obtain a CMB-only likelihood function

LCMB(Yp) /
Z

LCMB(⌘, Yp) d⌘ . (5.2)

Figure 4 shows the comparison of these likelihood functions for (a) Yp (upper left), (b)
D/H (upper right), (c) 3He/H (lower left), and (d) 7Li/H (lower right). In the case of 4He,
we show all three likelihood functions. The combined CMB-BBN likelihood from eq. (5.1),
LCMB�BBN(Y ), is shaded purple. The observational likelihood, LOBS(Y ) from eq. (3.1) is
shaded yellow. The CMB-only likelihood, LCMB(Yp), is shaded cyan. The largest change in
these results from Planck 2015 is seen in the CMB-only result for YP which shifted down from
0.250 to 0.239 with a slightly lower uncertainty of 0.013 compared with 0.14 in 2015. Given
the uncertainties in these likelihood distributions, as seen by the width of the likelihoods, all
three are in good agreement.

In the cases of D/H and 7Li/H, we are able to compare the observational likelihoods
(shaded yellow) with the combined CMB-BBN likelihoods (shaded purple). One can see the
excellent agreement between the observational value of D/H (in eq. (3.2)) and the CMB-
BBN predicted value. In contrast, the is a clear mismatch between the observational and
CMB-BBN likelihoods for 7Li.

There continue to be two directions of inquiry suggested by the remarkable contrast
between the excellent concordance for D and 4He observations, and the longstanding lithium
problem [44]. One approach is to assume the lithium problem points to new physics at
play in the early Universe, pushing us beyond the standard cosmology and standard BBN.
The other approach to assume the lithium problem will find its solution in observational
or astrophysical systematics. For example, internal stellar depletion may be important,
making the observations of stellar Li non-representative of their initial and near primordial
abundance. In this scenario we retain the standard cosmology, ignore the lithium data, and
concentrate on 4He and D/H to probe the cosmic baryon density.

Finally, we show only the CMB-BBN likelihood for 3He, because of the lack of a reliable
method of extracting a primordial abundance from existing 3He observational data.

The CMB-BBN likelihoods in figure 4 are summarized by the predicted abundances

Yp = 0.24691 ± 0.00018 (0.24691) (5.3)

D/H = (2.57 ± 0.13) ⇥ 10�5 (2.57 ⇥ 10�5) (5.4)
3He/H = (10.03 ± 0.90) ⇥ 10�6 (10.03 ⇥ 10�6) (5.5)
7Li/H = (4.72 ± 0.72) ⇥ 10�10 (4.71 ⇥ 10�10) (5.6)
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5.1 2D fits: BBN with CMB-determined baryon and helium abundances

We first consider models fixing N⌫ = 3. In this case standard BBN is a one-parameter theory,
depending only on the cosmic baryon density. Moreover, in the conventional cosmology, ⌘

and Yp do not change between nucleosynthesis and recombination, so we may combine the
information from these epochs. The various likelihood functions can be convolved in a number
of di↵erent ways. For element abundance determinations, we can compare the observational
likelihood LOBS(X) with the following convolution of the CMB and BBN likelihood functions

LCMB�BBN(Xi) /
Z

LCMB(⌘, Yp) LBBN(⌘; Xi) d⌘ , (5.1)

where we normalize each of the likelihood functions so that their peak takes the common value
of 1. Thus we arrive at zero-parameter predictions of abundances for all of the light nuclides.
In the case of 4He, we can also marginalize over ⌘ to obtain a CMB-only likelihood function

LCMB(Yp) /
Z

LCMB(⌘, Yp) d⌘ . (5.2)

Figure 4 shows the comparison of these likelihood functions for (a) Yp (upper left), (b)
D/H (upper right), (c) 3He/H (lower left), and (d) 7Li/H (lower right). In the case of 4He,
we show all three likelihood functions. The combined CMB-BBN likelihood from eq. (5.1),
LCMB�BBN(Y ), is shaded purple. The observational likelihood, LOBS(Y ) from eq. (3.1) is
shaded yellow. The CMB-only likelihood, LCMB(Yp), is shaded cyan. The largest change in
these results from Planck 2015 is seen in the CMB-only result for YP which shifted down from
0.250 to 0.239 with a slightly lower uncertainty of 0.013 compared with 0.14 in 2015. Given
the uncertainties in these likelihood distributions, as seen by the width of the likelihoods, all
three are in good agreement.

In the cases of D/H and 7Li/H, we are able to compare the observational likelihoods
(shaded yellow) with the combined CMB-BBN likelihoods (shaded purple). One can see the
excellent agreement between the observational value of D/H (in eq. (3.2)) and the CMB-
BBN predicted value. In contrast, the is a clear mismatch between the observational and
CMB-BBN likelihoods for 7Li.

There continue to be two directions of inquiry suggested by the remarkable contrast
between the excellent concordance for D and 4He observations, and the longstanding lithium
problem [44]. One approach is to assume the lithium problem points to new physics at
play in the early Universe, pushing us beyond the standard cosmology and standard BBN.
The other approach to assume the lithium problem will find its solution in observational
or astrophysical systematics. For example, internal stellar depletion may be important,
making the observations of stellar Li non-representative of their initial and near primordial
abundance. In this scenario we retain the standard cosmology, ignore the lithium data, and
concentrate on 4He and D/H to probe the cosmic baryon density.

Finally, we show only the CMB-BBN likelihood for 3He, because of the lack of a reliable
method of extracting a primordial abundance from existing 3He observational data.

The CMB-BBN likelihoods in figure 4 are summarized by the predicted abundances

Yp = 0.24691 ± 0.00018 (0.24691) (5.3)

D/H = (2.57 ± 0.13) ⇥ 10�5 (2.57 ⇥ 10�5) (5.4)
3He/H = (10.03 ± 0.90) ⇥ 10�6 (10.03 ⇥ 10�6) (5.5)
7Li/H = (4.72 ± 0.72) ⇥ 10�10 (4.71 ⇥ 10�10) (5.6)
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5.1 2D fits: BBN with CMB-determined baryon and helium abundances

We first consider models fixing N⌫ = 3. In this case standard BBN is a one-parameter theory,
depending only on the cosmic baryon density. Moreover, in the conventional cosmology, ⌘

and Yp do not change between nucleosynthesis and recombination, so we may combine the
information from these epochs. The various likelihood functions can be convolved in a number
of di↵erent ways. For element abundance determinations, we can compare the observational
likelihood LOBS(X) with the following convolution of the CMB and BBN likelihood functions

LCMB�BBN(Xi) /
Z

LCMB(⌘, Yp) LBBN(⌘; Xi) d⌘ , (5.1)

where we normalize each of the likelihood functions so that their peak takes the common value
of 1. Thus we arrive at zero-parameter predictions of abundances for all of the light nuclides.
In the case of 4He, we can also marginalize over ⌘ to obtain a CMB-only likelihood function

LCMB(Yp) /
Z

LCMB(⌘, Yp) d⌘ . (5.2)

Figure 4 shows the comparison of these likelihood functions for (a) Yp (upper left), (b)
D/H (upper right), (c) 3He/H (lower left), and (d) 7Li/H (lower right). In the case of 4He,
we show all three likelihood functions. The combined CMB-BBN likelihood from eq. (5.1),
LCMB�BBN(Y ), is shaded purple. The observational likelihood, LOBS(Y ) from eq. (3.1) is
shaded yellow. The CMB-only likelihood, LCMB(Yp), is shaded cyan. The largest change in
these results from Planck 2015 is seen in the CMB-only result for YP which shifted down from
0.250 to 0.239 with a slightly lower uncertainty of 0.013 compared with 0.14 in 2015. Given
the uncertainties in these likelihood distributions, as seen by the width of the likelihoods, all
three are in good agreement.

In the cases of D/H and 7Li/H, we are able to compare the observational likelihoods
(shaded yellow) with the combined CMB-BBN likelihoods (shaded purple). One can see the
excellent agreement between the observational value of D/H (in eq. (3.2)) and the CMB-
BBN predicted value. In contrast, the is a clear mismatch between the observational and
CMB-BBN likelihoods for 7Li.

There continue to be two directions of inquiry suggested by the remarkable contrast
between the excellent concordance for D and 4He observations, and the longstanding lithium
problem [44]. One approach is to assume the lithium problem points to new physics at
play in the early Universe, pushing us beyond the standard cosmology and standard BBN.
The other approach to assume the lithium problem will find its solution in observational
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FIG. 1. The astrophysical S-factor for d(p, �)3He showing 1) the NACRE-II [39] S-factor used

in FOYY (blue dotted); 2) the theoretical S-factor [43] (green dot-dashed); 3) the LUNA global

average [47] (red dashed); and 4) our new world average rate (black solid). The shading corresponds

to the 68% uncertainty we assign to the average rate. In the left panel, the S-factor is shown against

a linear energy scale centered on the BBN energies. In the right panel, we show an extended energy

range on a log scale.

the NACRE-II S-factor, the rate has increased at all temperatures in the BBN range, with

about a 6.5% increase around T = 109 K where the rate is most important. On the other

hand, our rate remains ⇠ 10% lower than the theoretical prediction. Finally, our results

are quite similar to the LUNA global average, reflecting our similar approaches, and indeed

they are almost identical around and below the T = 109 K regime important for BBN.

III. RESULTS FOR FIXED N⌫ = 3

To describe the impact of the newly measured d(p, �)3He cross section, we first briefly

review our method for constructing BBN likelihood functions. As uncertainties in the input

BBN reactions play a pivotal role in determining the uncertainties in the light element

7
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TABLE I. The mean and peak values of D/H for each of the adopted rates for d(p, �)3He .

d(p, �)3He rate mean D/H ⇥105 peak D/H ⇥105

FOYY [19] 2.574± 0.129 2.572

Theory [43] 2.417± 0.103 2.416

LUNA20 [47] 2.503± 0.106 2.502

This Work 2.506± 0.110 2.504

FIG. 4. The relative change in the D/H abundance using our previous (FOYY) rate as a function

of ⌘.

for 4He (upper panels) and 7Li (lower panels), comparing the previous results from FOYY

(left panels) with the combined results which include the newly measured d(p, �)3He rate

(right panels). In the case of 4He, we also show the likelihood obtained by integrating

LCMB(⌘, Yp) over ⌘ corresponding to the Planck CMB determination of Yp. As one might

expect, there is virtually no change in the helium abundance. In contrast there is a more no-

ticeable change in Li/H towards higher values, thus worsening the lithium problem (slightly).

The predicted abundances for 4He and 7Li from Fig. 5 in addition to the remaining two

rates are summarized in Table II.
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Convolved Likelihoods
From Planck:from the CMB: LPLA−base yhe(ωb, Yp) and LPLA−base nnu yhe(ωb, Yp, Nν). The 2-dimensional

base yhe likelihood is well-represented by a 2D correlated gaussian distribution, with means

and standard deviations for the baryon density and 4He mass fraction

ωb = 0.022305± 0.000225 (18)

Yp = 0.25003± 0.01367 (19)

and a correlation coefficient r ≡ cov(ωb, Yp)/
√

var(ωb)var(Yp) = +0.7200.

The two parameter data can be marginalized to yield 1-dimensional likelihood functions

for η. The peak and 1-σ spread in η is given in the first row of Table IV. The following rows

correspond to different determinations of η. In the second-fourth rows, no CMB data is used.

That is, we fix η only from the observed abundances of 4He, D or both. Notice for example,

in row 2, the value for η is low and has a huge uncertainty. This is due to the slightly low

value for the observational abundance (7) and the logarithmic dependence of Yp on η. We

see again that BBN+Yp is a poor baryometer. This will be described in more detail in the

following subsection. Row 5, uses the BBN relation between η and Yp, but no observational

input from Yp is used. This is closest to the Planck determination found in [6], though here

Yp was taken to be free and the value of η in the Table is a result of marginalization over

Yp. This accounts for the very small difference in the results for η: η10 = 6.09 (Planck);

η10 = 6.10 (Table IV). Rows 6-8 add the observational determinations of 4He, D and the

combination. As one can see, the inclusion of the observational data does very little to affect

the determination of η and thus we use η10 = 6.10 as our fiducial baryon-to-photon ratio.

The 3-dimensional base nnu yhe likelihood is not well-represented by a simple 3D cor-

related gaussian distribution, but since these distributions are single-peaked we can correct

for the non-gaussianity via a 3D Hermite expansion about a 3D correlated gaussian base

distribution. Details of this prescription will be given in the Appendix.

The calculated mean values and standard deviations for these distributions are:

ωb = 0.022212± 0.000242 (20)

Neff = 2.7542± 0.3064 (21)

Yp = 0.26116± 0.01812 (22)

These values correspond to the peak of the likelihood distribution using CMB data alone.

That is, no use is made of the correlation between the baryon density and the helium
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From Planck 2018:

history. The Planck analysis presents a number of these possiblities, and we will explore the

effect on our analysis of additing different non-CMB constraints. Our fiducial case will be

the Plik_TTTEEE_lowE_lensing analysis, which gives the Markov chains representing the

likelihood that combines all of TT, TE, EE, low-ℓ reionization constraints, and CMB lensing

5. This is also the fiducial case in the Planck cosmological parameter study [4], and in our

previous analysis [2].

We will present Planck final CMB results for their two sets of analyses in which results

were found independently of BBN, i.e., without using BBN theory to relate (ωb, Yp, Nef).

This allows us to test the CMB consistency with BBN. The Planck chains denoted base_yhe

represent the likelihoods in (ωb, Yp) space while fixing Nν = 3. We then relax this and allow

Nν to vary, giving the base_nnu_yhe analyses. Within each of these cases there a multiple

analyses–the fiducial case, but also a number of additional non-CMB datasets are added.

The fiducial case gives, for Nν = 3

ωCMB
b = 0.022298 ± 0.0000200 (8)

ηCMB = (6.104 ± 0.055) × 10−10 (9)

Yp = 0.239 ± 0.013 (10)

For comparison, the Planck 2015 results used in CFOY gave ωb = 0.022305± 0.000225 and

Yp = 0.2500 ± 0.0137. Allowing Nν to vary, the fiducial case gives from margestats file,

will verify from chains

ωCMB
b = 0.0222417± 0.000221 (11)

ηCMB = (6.089 ± 0.060) × 10−10 (12)

Yp,CMB = 0.247 ± 0.018 (13)

Neff = 2.84 ± 0.30 (14)

Planck 2015 had ωb = 0.022212 ± 0.00024, Yp = 0.2612 ± 0.0181, and Neff = 2.754 ± 0.306.

Below we will illustrate the degree to which these parameters are correlated.

While Planck is the culmination of a series of remarkably successful space missions, future

ground-based experiments are envisioned as “stage four” of CMB science. CMB-S4 promises

improved BBN parameters, particularly Yp and Nν . As shown in ref. [125], the mission sky

5 http://pla.esac.esa.int/pla/#cosmology
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CMB data, we anticipate positive (!b, Yp) and (!b, N⌫) correlations, and a negative (Yp, N⌫)

correlation. These expectations are borne out in the results below.

In the Planck analysis, cosmic parameters are largely fixed by CMB data, where con-

straints come from both temperature (T) and polarization (E-mode) anisotropy measure-

ments, in the form of TT, EE, and TE power spectra. One may choose to add constraints

such as large scale structure observations and measures of the cosmic expansion rate and its

history. The Planck analysis presents a number of these possibilities, and we will explore

the e↵ect on our analysis of adding di↵erent non-CMB constraints. Our baseline case will

be the Plik_TTTEEE_lowE_lensing analysis, which gives the Markov chains representing

the likelihood that combines all of TT, TE, EE, low-` reionization constraints, and CMB

lensing 6. This is also the fiducial case in the Planck cosmological parameter study [4], and

similar to the one used in our previous analysis [2].

We will present Planck final CMB results for their two sets of analyses in which results

were found independently of BBN, i.e., without using BBN theory to relate (!b, Yp, Ne↵).

This allows us to test the CMB consistency with BBN. The Planck chains denoted base_yhe

represent the likelihoods in (!b, Yp) space while fixing N⌫ = 3. Converting the baryon density

!b to the baryon-to-photon ratio, ⌘, we denote this likelihood as LCMB(⌘, Yp) which is well-

represented by a 2D correlated Gaussian distribution. The are however small perturbations

from a Gaussian and these are expanded by Hermite polynomials. For a more detailed

description of the likelihood functions we use, see the Appendix in CFOY. We then relax this

and allow N⌫ to vary, giving the base_nnu_yhe analyses. The three dimensional likelihood

is denoted as LNCMB(⌘, Yp, N⌫).

The mean and standard deviation for our baseline case with N⌫ = 3 gives

!
CMB
b = 0.022298 ± 0.000200 (8)

⌘
CMB = (6.104 ± 0.055) ⇥ 10�10 (9)

Yp = 0.239 ± 0.013 (10)

Note that here and throughout, we determine the mean of ⌘ and convert between ⌘ and

!b using the relations presented in Appendix A. The same Appendix discusses the small

distinction between the 4He baryon or nucleon fraction and mass fraction. Planck results

6 http://pla.esac.esa.int/pla/#cosmology
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present both mass and baryon fractions (their YP and Y
BBN
P respectively); here and through-

out we quote baryon fractions. For comparison, the Planck 2015 results used in CFOY gave

!b = 0.022305 ± 0.000225 and Yp = 0.2500 ± 0.0137.

Allowing N⌫ to vary, our baseline case gives mean and standard deviations of

!
CMB
b = 0.022242 ± 0.000221 (11)

⌘
CMB = (6.090 ± 0.061) ⇥ 10�10 (12)

Yp,CMB = 0.247 ± 0.018 (13)

Ne↵ = 2.841 ± 0.298 (14)

Planck 2015 resulted in !b = 0.022212 ± 0.00024, Yp = 0.2612 ± 0.0181, and Ne↵ = 2.754 ±

0.306. Below we will illustrate the degree to which these parameters are correlated.

While Planck is the culmination of a series of remarkably successful space missions, future

ground-based experiments are envisioned as “stage four” of CMB science. CMB-S4 promises

improved BBN parameters, particularly Yp and N⌫ . As shown in ref. [107, 108], the mis-

sion sky coverage particularly, and also beam size, will determine the precision of these

parameters; forecasts span the ranges �(Yp) ⇡ 0.0075 � 0.0040, and �(Ne↵) ⇡ 0.06 � 0.13.

Indeed, accurate measurement of Ne↵ is a science driver for CMB-S4, with �(Ne↵) = 0.030

the target sensitivity. If this can be realized, then CMB-S4 should be able to resolve the

Ne↵ � 3 = 0.045 contribution from neutrino heating in the Standard Model. In §VI below

we will consider the implications of these for BBN.

IV. THE LIKELIHOOD ANALYSIS AND MONTE-CARLO PREDICTIONS FOR

THE LIGHT ELEMENT ABUNDANCES

Over the last several decades, SBBN has evolved from a 2-parameter theory to essen-

tially a parameter-free theory. The baryon density is now well defined with the statistically

determined uncertainty. The neutron mean-life, despite current discrepancies, is quite well

determined. As a result, uncertainties in input BBN reactions play a non-trivial role in

determining the uncertainties in the light element abundances and Monte-Carlo techniques

[109–112] have proven very useful and are now commonplace. Our procedure for construct-

ing likelihood functions was discussed in detail in CFOY [2] and here we simply review the

necessary ingredients.
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Plik_TTTEEE_lowE_lensing analysis, which gives the Markov chains representing the like-
lihood that combines all of TT, TE, EE, low-` reionization constraints, and CMB lensing.6

This is also the fiducial case in the Planck cosmological parameter study [4], and similar to
the one used in our previous analysis [2].

We will present Planck final CMB results for their two sets of analyses in which results
were found independently of BBN, i.e., without using BBN theory to relate (!b, Yp, Ne↵).
This allows us to test the CMB consistency with BBN. The Planck chains denoted base_yhe

represent the likelihoods in (!b, Yp) space while fixing N⌫ = 3. Converting the baryon density
!b to the baryon-to-photon ratio, ⌘, we denote this likelihood as LCMB(⌘, Yp) which is well-
represented by a 2D correlated Gaussian distribution. The are however small perturbations
from a Gaussian and these are expanded by Hermite polynomials. For a more detailed
description of the likelihood functions we use, see the appendix in CFOY. We then relax this
and allow N⌫ to vary, giving the base_nnu_yhe analyses. The three dimensional likelihood
is denoted as LNCMB(⌘, Yp, N⌫).

The mean and standard deviation for our baseline case with N⌫ = 3 gives

!
CMB
b = 0.022298 ± 0.000214 (3.5)

⌘
CMB = (6.104 ± 0.058) ⇥ 10�10 (3.6)

Yp = 0.239 ± 0.013 (3.7)

Note that here and throughout, we determine the mean of ⌘ and convert between ⌘ and !b

using the relations presented in appendix A. The same appendix discusses the small distinc-
tion between the 4He baryon or nucleon fraction and mass fraction. Planck results present
both mass and baryon fractions (their YP and Y

BBN
P respectively); here and throughout

we quote baryon fractions. For comparison, the Planck 2015 results used in CFOY gave
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Allowing N⌫ to vary, our baseline case gives mean and standard deviations of
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Planck 2015 resulted in !b = 0.022212 ± 0.00024, Yp = 0.2612 ± 0.0181, and Ne↵ = 2.754 ±
0.306. Below we will illustrate the degree to which these parameters are correlated.7

While Planck is the culmination of a series of remarkably successful space missions,
future ground-based experiments are envisioned as “stage four” of CMB science. CMB-S4
promises improved BBN parameters, particularly Yp and N⌫ . As shown in refs. [130, 131], the
mission sky coverage particularly, and also beam size, will determine the precision of these
parameters; forecasts span the ranges �(Yp) ⇡ 0.0075 � 0.0040, and �(Ne↵) ⇡ 0.06 � 0.13.
Indeed, accurate measurement of Ne↵ is a science driver for CMB-S4, with �(Ne↵) = 0.030
the target sensitivity. If this can be realized, then CMB-S4 should be able to resolve the

6
http://pla.esac.esa.int/pla/#cosmology.

7
Note that the values we quote here are using our Hermite polynomial fits to the Planck chains. The

resulting means and standard deviations can di↵er from those directly from the chains by less than one tenth

of a percent in 2D fits. In our 3D fits, the di↵erences in ⌘ are also within 0.1%, and within 1/2% for Yp and

N⌫ . The closeness of the values shows that our fits are excellent representations of the chains.
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0Figure 4. Light element abundance likelihood functions. Shown are likelihoods for each of the light

nuclides, normalized to show a maximum value of 1. The solid-lined, dark-shaded (purple) curves are
the BBN+CMB predictions, based on Planck inputs as discussed in the text. The dashed-lined, light-
shaded (yellow) curves show astronomical measurements of the primordial abundances, for all but
3He where reliable primordial abundance measures do not exist. For 4He, the dotted-lined, medium-
shaded (cyan) curve shows the independent CMB determination of 4He. We see excellent agreement
for D/H, good agreement for 4He, and strong discrepancy in 7Li constitutes the persistent lithium
problem.

where the central values give the mean, and the error gives the 1� variance. The final number
in parentheses gives the value at the peak of the distribution.

We compare our results to previous results in CFOY [2] and ref. [46] in table 3. The
values in eqs. (5.3)–(5.6) di↵er slightly from those given in table 3 as the latter were evaluated
using central values of all inputs at a single value of ⌘10 = 6.129.

There are additional ways of integrating over our various likelihood functions. We can
for example, simply marginalize the CMB likelihood function over YP to obtain a CMB-only
likelihood function of ⌘

LCMB(⌘) /
Z

LCMB(⌘, Yp) dYp . (5.7)

This is plotted in figure 5 as the red dot-dashed curve. Its mean and standard deviation are
given in table 4. Also given in table 4 is the position of the peak of the distribution. Its
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⌘10 N⌫ Yp D/H 3He/H 7Li/H

ref. [2] 6.10 3 0.2470 2.579 ⇥ 10�5 0.9996 ⇥ 10�5 4.648⇥ 10�10

ref. [46] 6.091 3 0.2471 2.459 ⇥ 10�5 1.074 ⇥ 10�5 5.624⇥ 10�10

this work 6.129 3 0.2470 2.559 ⇥ 10�5 0.9965 ⇥ 10�5 4.702⇥ 10�10

Table 3. Comparison of BBN Results.

Figure 5. Baryon-to-photon ratio determinations for di↵erent combinations of light element and
CMB data. We show BBN-only predictions based on D (dotted purple) and Yp (dashed magenta),
and CMB-only predictions in dot-dashed red. BBN+CMB (green dot-long dashed) uses the Planck
Yp data, while the tightest combined constraints, BBN+CMB+D (solid orange) further include the
observed D/H.

di↵erence from the mean value is a measure of the mode skewness of the distribution. It is
always very small.

The likelihood function LCMB(⌘) uses no information from BBN. In particular it does
not use the BBN relation between ⌘ and Yp. This relation can be folded in by computing

LCMB�BBN(⌘) /
Z

LCMB(⌘, Yp) LBBN(⌘; Yp) dYp , (5.8)

which is shown in figure 5 by the green dot-long dashed curve.
As is well known and seen in figure 2, there is a weak dependence of Yp on ⌘. As a

result, though one can form a likelihood function from BBN and Yp alone,

LBBN�OBS(⌘) /
Z

LBBN(⌘; Xi) LOBS(Xi) dXi , (5.9)

with Xi = Yp, it is not very instructive. It is shown in figure 5 by the very broad magenta
dashed curve. In contrast, D/H is a very good baryometer, and substituting Xi = D/H in
eq. (5.9) yields the purple dotted curve in figure 5. Finally, we can convolve all three primary
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Constraints Used mean ⌘10 peak ⌘10

CMB-only 6.104 ± 0.058 6.104

BBN+Yp 6.741+1.220
�3.524 4.920

BBN+D 6.148 ± 0.191 6.145

BBN+Yp+D 6.143 ± 0.190 6.140

CMB+BBN 6.128 ± 0.040 6.128

CMB+BBN+Yp 6.128 ± 0.040 6.128

CMB+BBN+D 6.129 ± 0.039 6.129

CMB+BBN+Yp+D 6.129 ± 0.039 6.129

Table 4. Constraints on the baryon-to-photon ratio, using di↵erent combinations of observational
constraints. We have marginalized over Yp to create 1D ⌘ likelihood distributions. Given are both
the mean (and its uncertainty) as well as the value of ⌘ at the peak of the distribution.

likelihood functions as

LCMB�BBN�OBS(⌘) /
Z

LCMB(⌘, Yp)LBBN(⌘; Xi) LOBS(Xi)
Y

i

dXi , (5.10)

which is shown as the solid orange curve in figure 5. With the exception of LBBN�OBS(⌘)
using Yp, which carries little information, all of the likelihoods are remarkably consistent
which is another reflection of the agreement between the BBN prediction of D/H at the
CMB-determined value of ⌘ and the observationally-determined value of D/H. The mean,
standard deviations, and peaks of all of these likelihood functions are summarized in table 4.

As one can see from table 4, the BBN + D likelihood gives ⌘10 ' 6.15 and is slightly
lower than that found in CFOY (⌘10 ' 6.18). This is primarily due to the very slight shift
in the observational value of D/H used. With all other factors fixed the change in ⌘ can be
estimated from the sensitivities discussed earlier and we expect �(D/H)/(D/H) ' �1.6 �⌘/⌘.
In contrast, all of the CMB+BBN determinations of ⌘10 are increased from ' 6.10 (in 2015)
to roughly 6.13 presently. This tendency can be understood using figure 6 which shows
contours of the 2-D likelihood LCMB(⌘, Yp) for fixed N⌫ = 3. Also shown is the BBN relation
for Yp(⌘) which appears as a nearly horizontal line over this range in ⌘. Thus small changes in
⌘ barely a↵ect the peak of the likelihood function (shaded purple) in figure 4. In contrast, the
CMB contours show a significantly stronger and positive correlation between the CMB-only
determined baryon density and helium abundance. Now, as noted above, one of the more
noticeable changes between Planck 2015 and 2018 was the CMB-only determination of Yp.
Using Planck 2015, the peak of the CMB-only distribution of Yp was high compared to the
observational peak and as a result ⌘ was found to be lower when BBN was included (relative
to the CMB-only value of ⌘). Currently, as one sees in figure 4, the CMB-only distribution
for Yp sits below the observational value and as a result requires a higher value of ⌘ when
the distributions are convolved. This is precisely what we find. Our final combined value for
the baryon-to-photon ratio, is therefore

⌘ = (6.129 ± 0.039) ⇥ 10�10
, !b = 0.02239 ± 0.00014 . (5.11)

We can also plot the 2d CMB likelihood function, LCMB(⌘, Yp) showing instead of ⌘,
the BBN value of Yp at that value of ⌘. This is shown in figure 7. That is, we use the peak of
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FIG. 5. Baryon-to-photon ratio determinations for di↵erent combinations of light element and

CMB data. We show BBN-only predictions based on D (dotted purple) and Yp (dashed magenta),

and CMB-only predictions in dot-dashed red. BBN+CMB (green dot-long dashed) uses the Planck

Yp data, while the tightest combined constraints, BBN+CMB+D (solid orange) further include the

observed D/H.

TABLE IV. Constraints on the baryon-to-photon ratio, using di↵erent combinations of observa-

tional constraints. We have marginalized over Yp to create 1D ⌘ likelihood distributions. Given

are both the mean (and its uncertainty) as well as the value of ⌘ at the peak of the distribution.

Constraints Used mean ⌘10 peak ⌘10

CMB-only 6.104 ± 0.055 6.104

BBN+Yp 6.741+1.220
�3.524 4.920

BBN+D 6.148 ± 0.191 6.145

BBN+Yp+D 6.143 ± 0.190 6.140

CMB+BBN 6.129 ± 0.041 6.129

CMB+BBN+Yp 6.128 ± 0.041 6.128

CMB+BBN+D 6.130 ± 0.040 6.129

CMB+BBN+Yp+D 6.129 ± 0.040 6.129
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�3.524 4.920
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which is plotted in Fig. 8. Shown are the results for our four choices of the d(p, �)3He rate.

Its mean and standard deviation are given in Table III. Our final combined value for the

baryon-to-photon ratio, is therefore

⌘ = (6.123± 0.039)⇥ 10�10
!b = 0.02237± 0.00014 . (5)

Also given in the table is the value of ⌘10 at the peak of the likelihood distribution which in

these cases equals the mean.

FIG. 8. Baryon-to-photon ratio determinations using the likelihood function defined in Eq. (4) for

the four choices of the d(p, �)3He rate considered.

TABLE III. Constraints on the baryon-to-photon ratio, using four choices for the d(p, �)3He rate.

We have marginalized over Yp to create 1D ⌘ likelihood distributions. Given are both the mean

(and its uncertainty) as well as the value of ⌘ at the peak of the distribution.

d(p, �)3He rate mean ⌘10 peak ⌘10

FOYY [19] 6.129± 0.040 6.129

Theory [43] 6.113± 0.039 6.113

LUNA20 [47] 6.123± 0.039 6.123

This Work 6.123± 0.039 6.123
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flavors appropriate for temperatures T > 1 MeV. At these temperatures, weak interaction

rates between neutrons and protons maintain equilibrium.

At lower temperatures, the weak interactions can no longer keep up with the expansion

of the universe or equivalently, the mean time for an interaction becomes longer than the

age of the Universe. Thus, the freeze-out condition is set by

G2
FT

5 ∼ Γwk(Tf) = H(Tf) ∼ G1/2
N T 2, (2)

where Γwk represents the relevant weak interaction rates per baryon that scale roughly as

T 5, and H is the Hubble parameter

H2 =
8π

3
GNρ (3)

and scales as T 2 in a radiation dominated universe. GF and GN are the Fermi and Newton

constants respectively. Freeze-out occurs when the weak interaction rate falls below the ex-

pansion rate, Γwk < H . The β-interactions that control the relative abundances of neutrons

and protons freeze out at Tf ∼ 0.8MeV. At freeze-out, the neutron-to-proton ratio is given

approximately by the Boltzmann factor, (n/p)f ≃ e−∆m/Tf ∼ 1/5, where ∆m = mn −mp

is the neutron–proton mass difference. After freeze-out, free neutron decays drop the ratio

slightly to (n/p)bbn ≃ 1/7 before nucleosynthesis begins. A useful semi-analytic description

of freeze-out can be found in [58, 59].

The first link in the nucleosynthetic chain is p + n → d + γ and although the binding

energy of deuterium is relatively small, EB = 2.2 MeV, the large number of photons relative

to nucleons, η−1 ∼ 109 causes the so-called deuterium bottleneck. BBN is delayed until

η−1exp(−EB/T ) ∼ 1 when the deuterium destruction rate finally falls below its production

rate. This occurs when the temperature is approximately T ∼ EB/ ln η−1 ∼ 0.1 MeV.

To a good approximation, almost all of the neutrons present when the deuterium bottle-

neck breaks end up in 4He. It is therefore very easy to estimate the 4He mass fraction,

Yp =
2(n/p)

1 + (n/p)
≈ 0.25, (4)
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FIG. 8. The sensitivity of the light element predictions to the number of neutrino species, similar

to Figure 2. Here, abundances shown by blue, green, and red bands correspond to calculated

abundances assuming N⌫ = 2, 3 and 4 respectively.

As one can see in Fig. 8, without a lower bound on ⌘, it is not possible to set a meaningful

upper limit to N⌫ , even with a firm upper bound to Yp. Prior to the CMB determination

of ⌘, a lower bound on ⌘ was inferred from observations of of D and 3He implying N⌫ < 4

[116, 117]. More rigorous bounds on N⌫ became became possible when likelihood techniques

were introduced [22, 46, 110, 118–121].
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5.1 2D fits: BBN with CMB-determined baryon and helium abundances

We first consider models fixing N⌫ = 3. In this case standard BBN is a one-parameter theory,
depending only on the cosmic baryon density. Moreover, in the conventional cosmology, ⌘

and Yp do not change between nucleosynthesis and recombination, so we may combine the
information from these epochs. The various likelihood functions can be convolved in a number
of di↵erent ways. For element abundance determinations, we can compare the observational
likelihood LOBS(X) with the following convolution of the CMB and BBN likelihood functions

LCMB�BBN(Xi) /
Z

LCMB(⌘, Yp) LBBN(⌘; Xi) d⌘ , (5.1)

where we normalize each of the likelihood functions so that their peak takes the common value
of 1. Thus we arrive at zero-parameter predictions of abundances for all of the light nuclides.
In the case of 4He, we can also marginalize over ⌘ to obtain a CMB-only likelihood function

LCMB(Yp) /
Z

LCMB(⌘, Yp) d⌘ . (5.2)

Figure 4 shows the comparison of these likelihood functions for (a) Yp (upper left), (b)
D/H (upper right), (c) 3He/H (lower left), and (d) 7Li/H (lower right). In the case of 4He,
we show all three likelihood functions. The combined CMB-BBN likelihood from eq. (5.1),
LCMB�BBN(Y ), is shaded purple. The observational likelihood, LOBS(Y ) from eq. (3.1) is
shaded yellow. The CMB-only likelihood, LCMB(Yp), is shaded cyan. The largest change in
these results from Planck 2015 is seen in the CMB-only result for YP which shifted down from
0.250 to 0.239 with a slightly lower uncertainty of 0.013 compared with 0.14 in 2015. Given
the uncertainties in these likelihood distributions, as seen by the width of the likelihoods, all
three are in good agreement.

In the cases of D/H and 7Li/H, we are able to compare the observational likelihoods
(shaded yellow) with the combined CMB-BBN likelihoods (shaded purple). One can see the
excellent agreement between the observational value of D/H (in eq. (3.2)) and the CMB-
BBN predicted value. In contrast, the is a clear mismatch between the observational and
CMB-BBN likelihoods for 7Li.

There continue to be two directions of inquiry suggested by the remarkable contrast
between the excellent concordance for D and 4He observations, and the longstanding lithium
problem [44]. One approach is to assume the lithium problem points to new physics at
play in the early Universe, pushing us beyond the standard cosmology and standard BBN.
The other approach to assume the lithium problem will find its solution in observational
or astrophysical systematics. For example, internal stellar depletion may be important,
making the observations of stellar Li non-representative of their initial and near primordial
abundance. In this scenario we retain the standard cosmology, ignore the lithium data, and
concentrate on 4He and D/H to probe the cosmic baryon density.

Finally, we show only the CMB-BBN likelihood for 3He, because of the lack of a reliable
method of extracting a primordial abundance from existing 3He observational data.

The CMB-BBN likelihoods in figure 4 are summarized by the predicted abundances

Yp = 0.24691 ± 0.00018 (0.24691) (5.3)

D/H = (2.57 ± 0.13) ⇥ 10�5 (2.57 ⇥ 10�5) (5.4)
3He/H = (10.03 ± 0.90) ⇥ 10�6 (10.03 ⇥ 10�6) (5.5)
7Li/H = (4.72 ± 0.72) ⇥ 10�10 (4.71 ⇥ 10�10) (5.6)
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3He/H = (9.95 ± 0.91) ⇥ 10�6 (9.95 ⇥ 10�6) (33)

7Li/H = (4.78 ± 0.74) ⇥ 10�10 (4.78 ⇥ 10�10) . (34)

Note that the value for Yp found from the BBN likelihood (31) is almost identical to the

observational value in Eq. (4) which is why the observational likelihood in Fig. 9 appears

masked.

We can also form a one-dimensional likelihood function of ⌘ with one of several combi-

nations of LNCMB(⌘, Yp, N⌫), LNBBN(⌘, N⌫ ;Xi), and LOBS(Xi). For example, by integrating

over both Yp and N⌫ , using only CMB data, we have

LNCMB(⌘) /
Z

LNCMB(⌘, Yp, N⌫) dYp dN⌫ , (35)

which is shown as the green dashed curved in the right panel of Fig. 10. Similarly, if we fold

in the relation between ⌘ and Yp we have

LNCMB�NBBN(⌘) /
Z

LNCMB(⌘, Yp, N⌫)LNBBN(⌘, N⌫ ;Xi) dYpdN⌫ , (36)

which is shown by the purple dotted curve in the right panel of Fig. 10. We can also fold in

the observations of either 4He, D/H or both using

LNCMB�NBBN�OBS(⌘) /
Z

LNCMB(⌘, Yp, N⌫)LNBBN(⌘, N⌫ ;Xi) LOBS(Xi)
Y

i

dXidN⌫ , (37)

which depending on the choice of observations is shown by the short dashed cyan curve

(using D/H), the red dot-dashed curve (using Yp) or the pink solid curve (using both) in the

right panel of Fig. 10. These are collectively shown in the left panel of the same figure by

the solid green curve labelled CMB+X. If we drop the CMB entirely, we can write

LNBBN�OBS(⌘) /
Z

LNBBN(⌘, N⌫ ;Xi) LOBS(Xi)
Y

i

dXidN⌫ , (38)

shown by the red short dashed curve in the left panel of Fig. 10. A comparison of the two

curves in the left panels shows the strength in determining ⌘ using the CMB relative to BBN

(D/H).

Similarly, we can form one-dimensional likelihood functions of N⌫ . For example, using

the CMB-only likelihood function, we can integrate over ⌘ and Yp

LNCMB(N⌫) /
Z

LNCMB(⌘, N⌫ , Yp)dYpd⌘ , (39)
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VI. LIMITS ON Neff

Before concluding, we consider a one-parameter extension of SBBN by allowing the num-

ber of relativistic degrees of freedom to differ from the Standard Model value of Nν = 3 and

Neff = 3.046. Opening this degree of freedom has an impact on both the CMB and BBN. In

Fig. 6, the thinner contours show the 2D likelihood distribution in the (η, Nν) plane, using

Planck data marginalizing over the CMB Yp. We see that the CMB Nν values are nearly

uncorrelated with η. The thicker contours include BBN information and are discussed below.

FIG. 6. The 2D likelihood function contours derived from the Planck Markov Chain Monte Carlo

base nnu yhe [113], marginalized over the CMB Yp (points). Thin contours are for CMB data

only, while thick contours use the BBN Yp(η) relation, assuming no observational constraints on the

light elements. We see that that whereas in the CMB-only case Nν and η are almost uncorrelated,

in the CMB+BBN case a stronger correlation emerges.
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present both mass and baryon fractions (their YP and Y
BBN
P respectively); here and through-

out we quote baryon fractions. For comparison, the Planck 2015 results used in CFOY gave

!b = 0.022305 ± 0.000225 and Yp = 0.2500 ± 0.0137.

Allowing N⌫ to vary, our baseline case gives mean and standard deviations of

!
CMB
b = 0.022242 ± 0.000221 (11)

⌘
CMB = (6.090 ± 0.061) ⇥ 10�10 (12)

Yp,CMB = 0.247 ± 0.018 (13)

Ne↵ = 2.841 ± 0.298 (14)

Planck 2015 resulted in !b = 0.022212 ± 0.00024, Yp = 0.2612 ± 0.0181, and Ne↵ = 2.754 ±

0.306. Below we will illustrate the degree to which these parameters are correlated.

While Planck is the culmination of a series of remarkably successful space missions, future

ground-based experiments are envisioned as “stage four” of CMB science. CMB-S4 promises

improved BBN parameters, particularly Yp and N⌫ . As shown in ref. [107, 108], the mis-

sion sky coverage particularly, and also beam size, will determine the precision of these

parameters; forecasts span the ranges �(Yp) ⇡ 0.0075 � 0.0040, and �(Ne↵) ⇡ 0.06 � 0.13.

Indeed, accurate measurement of Ne↵ is a science driver for CMB-S4, with �(Ne↵) = 0.030

the target sensitivity. If this can be realized, then CMB-S4 should be able to resolve the

Ne↵ � 3 = 0.045 contribution from neutrino heating in the Standard Model. In §VI below

we will consider the implications of these for BBN.

IV. THE LIKELIHOOD ANALYSIS AND MONTE-CARLO PREDICTIONS FOR

THE LIGHT ELEMENT ABUNDANCES

Over the last several decades, SBBN has evolved from a 2-parameter theory to essen-

tially a parameter-free theory. The baryon density is now well defined with the statistically

determined uncertainty. The neutron mean-life, despite current discrepancies, is quite well

determined. As a result, uncertainties in input BBN reactions play a non-trivial role in

determining the uncertainties in the light element abundances and Monte-Carlo techniques

[109–112] have proven very useful and are now commonplace. Our procedure for construct-

ing likelihood functions was discussed in detail in CFOY [2] and here we simply review the

necessary ingredients.
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FIG. 12. Likelihood distributions in (N⌫ , ⌘) space. Smaller solid contours are the (68%, 95%, 99%)

CL results combining BBN, CMB, light element data. Larger dotted contours are for BBN and

light element data only. Panels use observed data for: (a) Yp, (b) D/H, and (c) Yp and D/H. We

see that BBN-only constraints are weak with only one light element, but give bounds on both ⌘

and N⌫ when two light elements are used. Adding the CMB considerably tightens both limits.

C. Other Planck Data Sets

Up to now, we have concentrated on two specific choices of the Planck data chains.

Namely TTTEEE+lowE+lensing, for both N⌫ fixed and variable. In this section we compare

our results with other chains made available by Planck as well as with the 2015 Planck data

[3].

We start by showing the likelihoods as functions of each of the light elements when lensing

is not included in the CMB likelihood. These results, shown in Fig. 13, are very similar to

those shown in Fig. 4 when lensing is included. We see only a slight shift in the peak of
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BBN and the CMB
Convolved Likelihoods

Results for η (Nν)

TABLE V. The marginalized most-likely values and central 68.3% confidence limits on the baryon-

to-photon ratio and e↵ective number of neutrinos, using di↵erent combinations of observational

constraints.

Constraints Used mean ⌘10 peak ⌘10 mean N⌫ peak N⌫

CMB-only 6.090 ± 0.061 6.090 2.799 ± 0.294 2.763

BBN+Yp+D 6.084 ± 0.230 6.075 2.878 ± 0.278 2.861

CMB+BBN 6.088 ± 0.060 6.088 2.830 ± 0.189 2.825

CMB+BBN+Yp 6.090 ± 0.055 6.090 2.838 ± 0.158 2.833

CMB+BBN+D 6.088 ± 0.060 6.089 2.838 ± 0.182 2.833

CMB+BBN+Yp+D 6.090 ± 0.055 6.090 2.843 ± 0.154 2.839

Given these results with no lensing, we can cross correlate the likelihoods for each of the

light elements. We do this using the CMB MCMC chains directly as input to the BBN

calculation. For our purposes the tractable cases are where the points in each chain have

integer weights. This is the case for the analyses involving only Planck data and that do

not combine other cosmological data such as lensing. Fortunately, we have seen that the

inclusion of lensing has a tiny e↵ect on our results.

Our procedure is to use the chains for the TTTEEE+lowE case (i.e., baseline except for

no lensing) with fixed N⌫ = 3 (Ne↵ = 3.045). Each point k in the chain provides a CMB

(⌘k, Yk) and a weight (wk). We run the BBN code w times per point, sampling the nuclear

reaction uncertainties randomly as usual. The resulting set of abundances Xk(⌘k) at each

point (properly weighted) follows the CMB+BBN likelihood in Eq. (20). Moreover, we can

examine the results for correlations between the light element predictions including the full

range of nuclear and cosmological dependences.

Our results for light element cross-correlations appear in Fig. 14. In most cases, there is

in fact little correlation. Some negative correlation between Yp and D/H is seen, as well as

between D and 7Li. There is more evident positive correlation between 3He and 7Li. These

trends have been discussed in [122], and trace back to the underlying abundance dependence

on the nuclear rates as seen in Eqs. (16)-(19) and Table II. For example, the D–7Li anti-

correlation arises largely due to their common dependence on d(p, �)3He and d(d, n)3He,
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Nν < 3.15 (95% CL)

TABLE V. The marginalized most-likely values and central 68.3% confidence limits on the baryon-

to-photon ratio and e↵ective number of neutrinos, using di↵erent combinations of observational

constraints.

Constraints Used mean ⌘10 peak ⌘10 mean N⌫ peak N⌫

CMB-only 6.090 ± 0.061 6.090 2.799 ± 0.294 2.763
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Given these results with no lensing, we can cross correlate the likelihoods for each of the

light elements. We do this using the CMB MCMC chains directly as input to the BBN

calculation. For our purposes the tractable cases are where the points in each chain have

integer weights. This is the case for the analyses involving only Planck data and that do

not combine other cosmological data such as lensing. Fortunately, we have seen that the

inclusion of lensing has a tiny e↵ect on our results.

Our procedure is to use the chains for the TTTEEE+lowE case (i.e., baseline except for

no lensing) with fixed N⌫ = 3 (Ne↵ = 3.045). Each point k in the chain provides a CMB

(⌘k, Yk) and a weight (wk). We run the BBN code w times per point, sampling the nuclear

reaction uncertainties randomly as usual. The resulting set of abundances Xk(⌘k) at each

point (properly weighted) follows the CMB+BBN likelihood in Eq. (20). Moreover, we can

examine the results for correlations between the light element predictions including the full

range of nuclear and cosmological dependences.

Our results for light element cross-correlations appear in Fig. 14. In most cases, there is

in fact little correlation. Some negative correlation between Yp and D/H is seen, as well as

between D and 7Li. There is more evident positive correlation between 3He and 7Li. These

trends have been discussed in [122], and trace back to the underlying abundance dependence

on the nuclear rates as seen in Eqs. (16)-(19) and Table II. For example, the D–7Li anti-

correlation arises largely due to their common dependence on d(p, �)3He and d(d, n)3He,
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TABLE VI. The marginalized most-likely values and central 68.3% confidence limits on the baryon-

to-photon ratio and e↵ective number of neutrinos, for each choice of the d(p, �)3He rate.

d(p, �)3He rate mean ⌘10 peak ⌘10 mean N⌫ peak N⌫

FOYY [19] 6.090± 0.055 6.090 2.843± 0.154 2.839

updated YP [19, 29] 6.093± 0.054 6.093 2.855± 0.146 2.851

Theory [43] 6.092± 0.054 6.092 2.918± 0.144 2.915

LUNA20 [47] 6.092± 0.054 6.093 2.883± 0.144 2.879

This Work 6.092± 0.054 6.093 2.880± 0.144 2.876

V. SUMMARY

Predictions from BBN are limited by the precision of the nuclear rates used in BBN

calculations. As such, the new rates for d(p, �)3He provided by the LUNA collaboration are

indeed welcome. In addition to providing a higher degree of accuracy, they also help resolve

the discrepancy between older experimental rates, and theoretical calculations, suggesting

that more work on the theory is needed to explain the new rates.

The new rates rea�rm the excellent agreement between BBN/CMB calculated light el-

ement abundances, and their observational determinations. At the fixed value of ⌘ as de-

termined in this work and shown in the last line of Table III, we compare our results with

previous results.

TABLE VII. Comparison of BBN Results

⌘10 N⌫ Yp D/H 3He/H 7Li/H

Ref. [18] 6.10 3 0.2470 2.579 ⇥ 10�5 0.9996 ⇥ 10�5 4.648⇥ 10�10

Ref. [17] 6.091 3 0.2471 2.459 ⇥ 10�5 1.074 ⇥ 10�5 5.624⇥ 10�10

Ref. [19] 6.129 3 0.2470 2.559 ⇥ 10�5 0.9965 ⇥ 10�5 4.702⇥ 10�10

This Work 6.123 3 0.2470 2.493 ⇥ 10�5 1.033 ⇥ 10�5 4.926⇥ 10�10

Table VII compares our results with those of earlier work. The values quoted are not from

a full Monte Carlo analysis but rather results for a single value of ⌘, and the reaction rates

at their central value. The abundance di↵erences are the result of di↵erent nuclear rates.

Our new D/H abundance is lower than our earlier results in FOYY [19] and in ref. [18] due
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CMB-S4:

VI. THE FUTURE IMPACT OF CMB-STAGE 4 MEASUREMENTS

CMB observations are poised to improve dramatically beyond their already impressive

precision. The next generation of ground-based CMB measurements is known as Stage 4

(CMB-S4), with planning well underway [107, 108]. Being ground-based, these will dramat-

ically improve the CMB precision at small angular scales and high multipoles. Thus we can

expect only incremental refinements in the precision of !b and thus ⌘, which is determined

by the undamped acoustic peaks at large angular scales. For our forecasts, we will not

assume any improvement over the Planck sensitivity to cosmic baryons.

The dramatic e↵ect of CMB-S4 will be the improvements in N⌫ and Yp. As noted in

§V, these parameters come from the CMB damping scale which is best accessed through

ground-based measurements. Moreover, the CMB determination ofNe↵ is a science driver for

CMB-S4. In the standard cosmology, both the baryon-to-photon ratio and helium abundance

should not change between the BBN and CMB epochs, so that it is meaningful to use the

BBN Yp(⌘cmb) relation. When this is done, the constraints on Ne↵ are much stronger, and

the CMB-S4 target sensitivity is �S4(Ne↵ |BBN) = 0.030! If this can be achieved, then it

would be possible to resolve the di↵erence Ne↵ � N⌫ = 0.045 due to neutrino heating. This

would o↵er a new probe of neutrino interactions during the BBN epoch.

The CMB-S4 sensitivity will depend on the total sky coverage. To estimate the impact

of CMB-S4, and for a survey covering a fraction fsky = 0.5 of the sky, we can infer sensi-

tivity to Yp and N⌫ from ref. [107]. We start with the Planck likelihood chain which gives

LCMB(⌘, Yp, N⌫). For each point in the chain, we reduce the spread in Yp by 0.005/0.013 and

in N⌫ by 0.09/0.3. Then the 4He and neutrino counting should have precisions of about

�S4(Ne↵) ' 0.09 �S4(Yp) ' 0.005 (45)

which matches the CMB-S4 forecasts. We adopt these estimates, and now explore the impact

on our CMB-BBN joint analysis.

We start by once again showing the likelihoods as functions of each of the light elements

where for now, we assume that N⌫ = 3 is fixed. The main impact in this case is, unsurpris-

ingly, on 4He. The CMB-BBN likelihood LCMB�BBN(Yp) shaded purple is identical as that

shown previously (as the mean CMB prediction for ⌘ has not changed and the uncertainties

in Yp do not enter in this integration). Similarly, the observational likelihood (shaded yellow)
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FIG. 11. One-dimensional likelihood functions of N⌫ .

to the 68.27% 95.45% and 99.73% values of the likelihood function. Once again we see that

when the observations of 4He are used alone, we get very little information on ⌘ (over the

range shown), but relatively strong limits on N⌫ . When observations of D/H are used alone,

we get limits on both ⌘ and N⌫ , though there is a degeneracy and the contours do not close.

They do close when both YP and D/H are used as seen in the 3rd panel of Fig. 12.

Using Eq. 43, we obtain the solid contours in Fig. 12, all of which are closed. As one

can see, each of these give relatively strong constraints on both ⌘ and N⌫ . The mean and

standard deviation of the two-dimensional likelihoods, L(⌘, N⌫) are summarized in Table V.

Also given is the position of the peak of the likelihood.

Comparing Table V to Table IV, we see that there is a systematic downward shift in ⌘10

when N⌫ is allowed to vary. This can be understood from Figs. 8 and 9 where concordance

is more easily achieved at N⌫ slightly below 3 and at slightly lower ⌘10. The Planck CMB

data alone also prefer a value of N⌫ slightly below 3, but with 68% and 95% confidence

level upper limits on N⌫ � 3 of 0.093 and 0.387. When BBN and CMB and observations are

combined we find

N⌫ = 2.843 ± 0.154 (44)

giving a 95% confidence level upper limit of N⌫ � 3 = 0.151.

C. Other Planck Data Sets

Up to now, we have concentrated on two specific choices of the Planck data chains.

Namely TTTEEE+lowE+lensing, for both N⌫ fixed and variable. In this section we compare
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unchanged. But all of the distributions based on CMB input have widths which are reduced

by roughly a factor of 3. The mean values of ⌘ and N⌫ as well as the uncertainties in the

means are summarized in Table VII. Thus without a shift in the mean value of N⌫ , the 95%

confidence limit is N⌫ < 2.977 from CMB-S4 alone, and the combined 95% limit becomes

N⌫ < 2.947. We note that SPT-3G expects to be able to place an upper limit on N⌫ of 3.15

[123].
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FIG. 17. As in Fig. 17, the CMB-S4 forecasts for N⌫ .

TABLE VII. The expected sensitivities to the baryon-to-photon ratio and e↵ective number of

neutrinos from CMB-S4, assuming unchanged mean values.

Constraints Used mean ⌘10 mean N⌫

CMB-S4 only 6.090 ± 0.061 2.799 ± 0.089

CMB-S4+BBN 6.086 ± 0.061 2.835 ± 0.057

CMB+BBN+Yp 6.087 ± 0.060 2.836 ± 0.056

CMB+BBN+D 6.085 ± 0.060 2.835 ± 0.057

CMB+BBN+Yp+D 6.085 ± 0.059 2.835 ± 0.056

Finally, the two-dimensional likelihood functions shown in Fig. 12 are shown in Fig. 18 as-

suming the CMB-S4 improvements given in Eq. (45). The BBN plus observations likelihoods

are of course unchanged, but we see a dramatic improvement when the CMB likelihood is

included. The CMB+BBN+OBS closed loops are now significantly smaller in each of the

three panels. Thus there is good reason to eagerly await these results.
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Summary

• BBN and CMB are in excellent agreement 
wrt D and He

• Li: Problematic
- BBN 7Li high compared to observations

• Wish list:

- New cross sections measurements for 
D(D,p) and D(D,n)

- New high precision measurements of He

• Standard Model (Nν = 3) is looking good!


