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Physical Motivation

the Feynman path integral is both conceptually
and computationally powerful ... but

... some important physics computations are still challenging

finite density: e.g. the “sign problem”
non-equilibrium physics at strong-coupling
real time evolution

quantum systems 1n extreme background fields

standard computational methods from path integrals

perturbation theory

non-perturbative numerical methods: Monte Carlo
non-perturbative semi-classical methods: “instantons”
asymptotics

“resurgence’’: seeks to unify these approaches

technical problem: how to actually compute a quantum path integral?



The Feynman Path Integral
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QM: / Dzx(t) exp ;LS[fL‘(t)]

QFT- / DA(z") exp | S [A(z")

stationary phase approximation: classical physics

bridge from classical to quantum field theory

quantum perturbation theory: fluctuations about trivial saddle point
other saddle points: non-perturbative physics

resurgence: saddle points are related by analytic continuation, so
perturbative and non-perturbative physics are unified




Resurgence in Classical Optics: the original “sign problem”

Airy, Stokes and spurious/supernumerary rainbows

Airy 1838: “On the intensity of Stokes 1850: “On the numerical
light in the neighbourhood of calculation of a class of definite
a caustic” integrals and infinite series”

“Stokes, by mathematical supersubtlety
transformed Airy’s integral into a form by
which the light at any point of any of
those thirty bands could be calculated
with but little effort ...”

Lord Kelvin (Stokes obituary, 1903)

W. Miller 1841:
“On Spurious
Rainbows”




The Stokes Phenomenon Stokes 1857: “On the discontinuity of arbitrary

constants which appear in divergent developments™
1 [T 1
Ai(z) = dt '8+ t)
70

— OO

- ' ' . i, 2714 Do
non-perturbative connection Bl( x) — 92T Aj ( et 75 x) i Al( g;)
formulae connect sectors




Analytic Continuation of Path Integrals

since we need complex analysis and contour deformation to
make sense of oscillatory exponential integrals, 1t 1s natural to
explore similar methods for (infinite dimensional) path integrals

/ Da(t) exp |+ Sla(t)]| - » / Dx(t) exp

— = Slx(t),

goal: a satisfactory formulation of the functional integral

should be able to describe Stokes transitions

1dea: seek a computationally viable constructive definition
of the path integral using 1deas from resurgent trans-series




Resurgent Trans-Series Ecalle 1980s
Dingle 1960s

Stokes 1850s

resurgence: new-1sh 1dea 1n mathematics

perturbative series —— “trans-series”

physics applications: “semiclassical trans-series”

f(R) =D cph? — f(R)=> >

_k [
E Clkpl] € " R (lIl h)
p kK p I
* trans-series 1s well-defined under analytic continuation
« well understood for differential/difference/integral equations
& exponential integrals: “natural problems”

 expansions about different saddles are related
 exponentially improved asymptotics

physics: necessarily unifies perturbative and non-perturbative physics




Resurgent Functions

“resurgent functions display at each of their singular points
a behaviour closely related to their behaviour at the origin.
Loosely speaking, these functions resurrect, or surge up - 1n
a slightly different guise, as i1t were - at their singularities”

J. Ecalle, 1980

physical implication: fluctuations about different sectors are related

conjecture: this structure 1s general




Dingle: Demystifying and Decoding Divergent Series

Before Dingle, almost every scientist who encountered a divergent series
regarded it as meaningful only up to an inherent vagueness. Dingle ...
regarded a divergent series as an exact coding of the function it
represents. Decoding (‘interpreting’) such series is exact in principle,
and in practice can lead to vastly improved approximations.

Robert Dingle obituary, 2010, Michael Berry and John Cornwell
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Their Derivation and
Interpretation

R. B. DINGLE

Department of Theoretical Physics,
University of St. Andrews,
Fife, Scotland

1973
ACADEMIC PRESS
LONDON AND NEW YORK
A Subsidiary of Harcourt Brace Jovanovich, Publ shers

T — —




Resurgence in Exponential Integrals Dingle 1960s;
B Berry & Howls 1991

“Hyperasymptotics for
steepest descent integral through saddle point “n’: Integrals with Saddles”

C

) J1/h

all fluctuations beyond the Gaussian approximation: Ny Con
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straightforward complex analy81s 1mphes:
universal large orders of fluctuation coefficients: (F nm = Jm — fn)
~ D (£1) | F (Frm)’ '
() pm) o Fnm m) nm) m)
L [ i el e

fluctuations about different saddles are quantitatively related




Resurgence 1n Exponential Integrals

canonical example: Airy function integral has 2 saddle points
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large orders of fluctuation coefficients:
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generic “large-order/low-order” resurgence relation

remarkable fact: this resurgent large-order/low-order behavior has been
found 1n matrix models, QM, QFT, string theory, ...

the natural way to explain this is via analytic
continuation of functional integrals



[efschetz Thimbles

even the generalization to more than 1 complex dimension is interesting

Pham 1967;
Howls 1997, ...

Borel plane U




Analytic Continuation of Path Integrals: “Lefschetz Thimbles™

Z(h) = /DA exp (% S[A]) Z > Nume'? [ DA x (Jin) X exp (Re {

thimble th

Lefschetz thimble = “functional steepest descents contour”

* in principle, on a thimble, the path integral
becomes well-defined and computable

» complexified gradient flow:
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Analytic Continuation of Path Integrals: “Lefschetz Thimbles”™

CRISTOFORETTI et al.  (2013) Fujii et al (2013)
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FIG. 3. Comparison of the average density (n) obtained with
the worm algorithm (WA) [22] with the Aurora algorithm (AA)

- 4d relativistic Bose gas: complex scalar field theory
+  Monte Carlo on thimble softens the sign problem
» results comparable to “worm algorithm™
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Phase Transitions in QFT: 2d Thirring Model (Alexandru et al, 2016)
2

L= G (3 +m+ p0)° + g (90907 (9030°)

chain of interacting fermions: asymptotically free
sign problem at nonzero density
generalized thimble method: balance flow cost with sign problem cost
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Resurgence in QM or QFT Path Integrals?

* perturbation theory works, but it 1s generically divergent,
and 1t 1s only part of the story

* resurgence: perturbation theory encodes non-perturbative information

path integral == perturbation theory == Borel =8 trans-series
path integral = saddle expansion = asymptotics == trans-series

path integral =# Lefschetz thimbles/Monte Carlo =# trans-series

main conjecture: these should all be the same thing, and resurgence
should connect them, as well as connecting different saddles




PHYSICAL REVIEW VOLUME 85, NUMBER 14 FEBRUARY 15, 1952

Divergence of Perturbation Theory in Quantum Electrodynamics

F. J. Dysox
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

(Received November 5, 1951)

An argument is presented which leads tentatively to the conclusion that all the power-series expansions
currently in use in quantum electrodynamics are divergent after the renormalization of mass and charge.
The divergence in no way restricts the accuracy of practical calculations that can be made with the theory,
but raises important questions of principle concerning the nature of the physical concepts upon which the

theory is built.
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Borel Summation: Physical Regularization of Divergent Series

Borel transform of a divergent series with ¢, ~ n!

flg)~ D eag” = Bl =D 5t

Borel sum of the divergent series:

stre) = | " dte 9 B

- the singularities of B[{](t) provide a physical encoding of the global
asymptotic behavior of f(g)

- singularities of Borel transform < » non-perturbative physics

- singularities on positive Borel t axis: exponentially small imaginary part



QM Perturbation Theory: Zeeman & Stark Effects

Zeeman : divergent, alternating, asymptotic series

Borel singularities on the negative Borel axis.

physics: Magnetic field causes (real) energy level shifts

Stark : divergent, non-alternating, asymptotic series

an ~ (2n)!

Borel singularities on the positive Borel axis.

physics: Electric field causes (real) energy level shifts

and 1onization (1maginary, exponentially small)



Instantons and Non-Perturbative Physics

AN
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(phase transitions) (band structure)

exponentially small non-perturbative splitting due to tunneling
Yang-Mills theory and QCD have aspects of both systems

less familiar: perturbation theory 1s non-alternating divergent

but these systems are stable 777

e resolution: trans-series encodes cancellations between imaginary terms

Bogomolny, Zinn-Justin, ... ~1980



VOLUME 52, NUMBER 13 PHYSICAL REVIEW LETTERS 26 MARCH 1984
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The 1/R perturbation series for Hy has a complex Borel sum whose imaginary part deter-
mines the asymptotics of the perturbed energy coefficients £V, The full asymptotic expan-
sion for the energy includes complex, exponentially small terms:

E(R)’\‘ EE(N)(zR)—N+e—R/nEa(N)(zR)—N
+e 2RI 3 d'M(2R) "M+ logRterms] tie "R/ I MQR) N+ ...

The explicit imaginary terms cancel the implicit imaginary part of the Borel sum. An exact
relation between the double-well gap series, exp(—R/n) 3 aY(2R)™", and the
i exp(— 2R /n) series is derived.



Resurgence in Quantum Mechanical Instanton Models

e trans-series for energy, including non-perturbative splitting:

ho1 /32\NT2 3
Ei(h, N) — Epert(h, N) T \/ﬂ N n eEXP —% Pinst(h, N)

 fluctuations about first non-trivial saddle:

OBy, N) | [Mdh [ 0Epe(B,N) (N +3) B2\
Pmst(h,N)— 8N eXPp S/O hg 8N —h i S

perturbation theory encodes everything ... to all orders ... 1n all regions

Alvarez/Casares 2000, Alvarez 2004; GD/Unsal 2014, ...



Resurgence in QM

resurgent relations in QM path integrals with an infinite number of saddles




Resurgence and Phase Transitions: Multi-Parameter Trans-Series

Z(h) = / DA exp (% S[A])

in general, we are interested in many parameters

Z(h) — Z(h,masses, couplings, u, T, B, ...)

¢.g., for a phase transition: large N " thermodynamic limit”
Z(h) — Z(h,N), and N — o0

multiple parameters: different limits are possible

“uniform” ’t Hooft limit: N — oo, h =0 : AN = fixed
trans-series transmutes into different form in the large N limit
hallmark of a Stokes transition



Phase Transition in the Periodic Potentia; Spectrum
h

E(h, N) —?w”(lz) + cos(z) w(z) = Ew(z)

2.5}

2.0}

1.5}

1.0

0.5}

- N = band/gap label; A = coupling

» phase transition: narrow bands vs. narrow gaps: AN =
- real instantons vs. complex instantons

» phase transition = “instanton condensation”

- universal Stokes transition




Resurgence 1n QFT: Euler-Heisenberg Effective Action

Folgerungen aus der Diracschen Theorie des Positrons.
Von W. Heisenberg und H. Euler in Leipzig.
Mit 2 Abbildungen. (Eingegangen am 22. Dezember 1935.)

Aus der Diracschen Theorie des Positrons folgt, da jedes elektromagnetische
Feld zur Paarerzeugung neigt, eine Abanderung der Ma xwellschen Gleichungen
des Vakuums. Diese Abdénderungen werden fiir den speziellen Fall berechnet,
in dem keine wirklichen Elektronen und Positronen vorhanden sind, und in
dem sich das Feld auf Strecken der Compton-Wellenlinge nur wenig dndert.
Es crgibl sich fiir das Feld eine Lagrange-Funktion:

GGS(I{E | V&2 — B2 4 21?((55]3)) + kopj

1 e? T ooty .
QZEF((ELSBQHEEJGH“‘Q‘{WQ(@SB) e
| " ‘“’3(1@ V& $9+2i((§i‘3j)—kunj

+ | Cr[? + — (5132 {Eﬂ)

O3

- paradigm of effective field theory m[L] ~ €—m27r /(e€)
- 1ntegral representation = Borel sum

- analogue of Stark effect ionization and Dyson’s argument



Stokes Phase Transition in QFT

“Schwinger effect” with monochromatic E field: E(t) = £ cos(wt)

mcw Keldysh, 1964;
e& Brezin/Itzykson, 1970;
Popov, 1971

- Keldysh adiabaticity parameter: 7 =

m? ¢

WKB: T'ggp ~ exp {—7’(’ e g(fy)}

2 3 ,
exp [—W e } , <1 (tunneling)
I'QED ~
( e & )4mc:2/hw

mcw

., v>1 (multiphoton)

phase transition: tunneling vs. multi-photon “ionization”

phase transition: real vs. complex instantons (GD, Dumlu,1004.2509, 1102.2899)
similar to the transition for the QM cosine potential
Borel transform 1s no longer meromorphic

SLAC (Snowmass [.ol) & DESY experiments aim to probe the transition region



https://www.snowmass21.org/docs/files/summaries/TF/SNOWMASS21-TF1-001.pdf
https://arxiv.org/abs/1909.00860
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.250402
https://inspirehep.net/literature/889724

World-line Instantons for Intense Field Physics

Feynman worldline representation for one-loop effective action  Feynman 1949, 1951

['[A] = _/ dTT €_m2T/Dx(T)6_ Jo dr(#+Au(@)an)

0 Alvarez/Affleck/Manton;
GD, Schubert
 double saddle-point approximation (cf. Gutzwiller)
E, = F,(x)t, » closed loop with action = S(T, params)
1 :
95T ;?rams) = —m? » T saddle action = S(m2, params)

* localized intense fields involve complex saddles of the path integral

e particle production = Stokes phenomenon

e interference effects can lead to substantial (exponential) enhancement

» efficient approach to the quantum control problem

» improved semiclassical methods for scattering processes 1n intense fields




Resurgence and Large N Phase Transitions in Matrix Models

3rd order phase transition in Gross-Witten-Wadia unitary matrix model

Gross-Witten, 1980

N
Z(t,N) = / DU exp | —tr (U + UT) Wadia, 1980
U(N) t

Marino, 2008

/. depends on two parameters: 't Hooft coupling t, and matrix size N

T T 1 f

C/N?| |
N .500 | n
Z(t,N) :det [[J_k (7 a4k : 2l
jk=1,...N

2 =

phase transition in the R B i

¢ £ 90 s FIG. 2. The specific heat per degree of freedom, C
thermodynamic” large N limit 3 pe pox degree of freedomy, €y

N*, as a function of A (temperature).
“order parameter” A(t,N) = (detU)

2
A"+t A NtQA (1—A%) = n _AN <N2 — 17 (A’)Q)

P. Rossi 1982



Resurgence in Weak Coupling Large N Trans-Series

ODE = large N weak coupling trans-series: Ahmed, GD, 2017

> d(o)
AN ~VI=t),

|gweak e_Nsweak(t) - d%l)(t)

Nzn \/47TN Weak() Z N™

n=>0
weak coupling large N action:
21—t
Sweak (t) = ; — 2 arctanh (\/ 1 — t)

“one-instanton" fluctuations: coefticients are functions of ¢

i dV ) LB o12-8)1
n _ 4£)3/2 S

— N 96(1 —t)3/2 N

resurgence: large-order growth of “perturbative coefficients”:

—1 ['(2n — 2) - (3t — 12t — 8) Sweak ()

V2(1 = £)3/473/2 (S yenr (1)) 273 96(1 —¢)3/2 (2n— 1)

dy) (t) ~



Resurgence 1n Strong Coupling Large N Trans-Series

* large N strong-coupling: A(t,N) =~ o Jn <¥>
* Debye expansion: completely different trans-series

0O (¢
DI

t €_NS tr Ong(t)

\/QWN‘ strong

\/QWN’ strong

3
1 ( t e~ N Sstrong (1) iUfr(zl)(t)
)

* large N strong-coupling action:  Sg,.,.(t) = arccosh(t) — \/ 1 —
 low-order/large-order resurgence relation (for all #):

(QSstrong (t))

|

U, (t) ~ D) - 1)! (1+U1(t)

27 (2Sstrong (1)) (n—1)



Lee-Yang view of Large N Phase Transitions in Matrix Models

b= T4 RN

t = o0

 double-scaling limit region: bridge between trans-series (nonlinear Airy)

* Lee-Yang: complex zeros of Z(t, N) pinch the real t axis at the phase
transition, 1n the thermodynamic (large N) limat
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Resurgent Extrapolation

O. Costin, GD: 1904.11593, 2003.07451

2009.01962, 2108.00145

* sometimes perturbation theory/asymptotics is the ONLY thing we can do

e question: how much global non-perturbative information can be
decoded from a FINITE number of perturbative coefficients ?
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tritronquee of Painleve I eqn.


https://arxiv.org/abs/1904.11593
https://arxiv.org/abs/2003.07451
https://arxiv.org/abs/2009.01962
https://arxiv.org/abs/2108.01145

Resurgent Extrapolation: Euler-Heisenberg at 1-loop

2
E(l) <£> — —B— B ﬁ (cotht— l — E) e_mZt/(eB)
m?2 2 Jo t2 t 3
B2 reB\2 = » T(2n + 2) By 2
e T2 <m2> nz::O(_l) a2n+2 ¢(2n +4) <m> I e
1 .82 eB 6 / 2
L

» weak to strong B field extrapolation

* B field to E field analytic continuation

a) (eB eE
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* accurate over many orders of magnitude (from just 10 input terms!)



Resurgent Extrapolation: Euler-Heisenberg at 2-1oop

» 2 loop: Ritus double-integral representation

2 o0 n
£ (ﬁ) . (63)220&2) <£)2 .

m2 7T2 m2 m2
n=0
1 B2 (1 ( eB > 5 +4C(3)) . .
~ —+«— | In S Al - m
4 2 M2 7 6

» weak to strong B field extrapolation

* B field to E field analytic continuation
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 accurate over many orders of magnitude (from just 10 input terms!)



Conclusions

* “resurgence” 1s based on a new and improved form of asymptotics
» deep(er) connections between perturbative and non-perturbative physics
 recent applications to differential eqs, QM, QFT, string theory, ...

» resurgent extrapolation: high-precision extraction of physical information
from finite order expansions

* outlook: computational access to strongly-coupled systems, finite density,
phase transitions, particle production, far-from-equilibrium physics, ...

 Lefschetz thimbles and bions
Further topics not covered today .... « “Exact WKB”

* Chern-Simons theory

* Yang-Mills & QCD

 Dualities and Modularity

e Integrability and large N

* Renormalons and the OPE

* Hopft algebraic renormalization

* Numerical Stochastic Perturbation Theory



QFT at Extreme Intensities

Strickland
& Mourou
Nobel Prize 2018

Current experimental
proposals: laser-laser; laser-
lepton; lepton-lepton;
highly-charged 1ons;

astrophysics; ...
. 10°° | v = 1 (Schwinger intensity)
Important theoretical puzzles - -
remain S e S
Semiclassical computations? 5 10%
eq- . . < EL
Non-equilibrium physics? Z P
Ultra-fast dynamics? Z Michigan > @, @ Treriora
g 10% Up = m,c? un )icLs*
Snowmass LOI = elativ‘;'stic fntensity)
T €SLACE144 lab frame
Z Up = 1 atomic unit (Rochester T3)
E 1015 < CPA
€ Mode-locking
Reviews: Di Piazza et al, 2012; 1010 | /€ Qswitching

US National Academies, 2018 1960 1970 1980 1990 2000 2010 2020 2030


https://www.snowmass21.org/docs/files/summaries/TF/SNOWMASS21-TF1-001.pdf

Resurgence and the “Painleve/Gauge” Correspondence Bonelli et al, ...

canonical catastrophe integrals: Vi (&) = / du exp [i D(u; Z)] Arnold, .
\\ ) -.é
\ . / S —
m-ax \\ .e /) m:x POLA ."6 .=
..o-o n.‘ R 'V—. p—
- ~— -_“__ - - ‘.‘,%
" ;.':‘ oo 8 on e ) 00 -—A " ~15 /// ‘ /;/4'
fold (P-I) cusp (P-11) elhptlc umbilic (P V)
(E) (¢, 2 = il ex i 3 x — lw e exp |7 [ u® u 2 4 2)u? v’ U
e, y) 2\/; P [ (27t B! )] /ooexp(—77m'/12) P [ ( 2 (o 12’“2)] ‘
Newton-Calogero form of Painleve equations: i = —0,V (u,t)

Painleve tau functions: resurgent conformal block expansions

N=2 SUSY QFT 1n 4d: Nekrasov dual partition function & RG interpretation

basic “skeleton” upgraded from exponential integrals to QM and to QFT
path integrals, with resurgence results at each level



