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The topological charge in 4d gauge theories
The topological charge of the gluon field Aµ(x)

Q =
g2

16π2

∫
d4x Tr

{
G̃µν(x)Gµν(x)

}
∈ Z, G̃µν(x) ≡ 1

2
εµνρσGρσ(x)

can be coupled to the QCD action via the dimensionless parameter θ:

SQCD → SQCD(θ) = SQCD + θQ,

introducing a non-trivial dependence on θ in the theory.

The θ-dependence of the free energy (density), defined in Euclidean
time as

f(θ) = − 1

V
log

∫
[dψdψdA]e−SQCD+iθQ, f(θ) =

1

2
χθ2
(

1 +

∞∑
n=1

b2nθ
2n

)
,

χ =
〈Q2〉
V

∣∣∣∣
θ=0

, b2 = − 1

12

〈Q4〉 − 3 〈Q2〉2

〈Q2〉

∣∣∣∣
θ=0

, b2n ∝
〈Q2n+2〉c
〈Q2〉
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θ=0

has been extensively investigated in several different physical contexts.
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Physical relevance of θ-dep. in QCD and related theories

CP-symmetry breaking and Beyond Standard Model physics:
non-zero θ → breaking of CP symmetry, e.g., non-zero neutron
Electric Dipole Moment (nEDM).

Experiments: nEDM is well compatible with zero =⇒
θ ∼ 0 within 10−10 =⇒ No strong-CP violation.
If CP symmetry is conserved =⇒ fine-tuning problem on
θ: strong-CP problem. Simple and promising solution:
axion. Axion physics related to θ-dependence in QCD.

Large-N limit and hadron physics:
Q breaks the U(1)A flavor symmetry through anomaly =⇒ large
mass of η′ meson. Physical parameters of the η′ related to
θ-dependence of large-N SU(N) gauge theories.

Large-N and θ-dep. of lower dim. gauge theories:
e.g., 2d CPN−1 models. Extensively studied both analytically (1/N
expansion) and on the lattice (cheap to simulate) as test-beds for
validation of Lattice QCD numerical methods.

The lattice approach is effective in addressing these physical aspects.
However, there are several non-trivial computational problems to be faced.
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Topological Freezing

Approaching the continuum limit, fluctuations of Q during the
simulation become extremely rare. In the continuum theory
topological sectors are separated by infinite free-energy barriers.

Left to right: a = 0.082 fm, 0.057 fm and 0.040 fm (figs. Bonati et al., 2016)
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ens increasing N (example for CPN−1

models, also occurs in SU(N) gauge
theories) =⇒ approaching the con-
tinuum limit for N large is extremely
challenging.
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Chiral symmetry and large lattice artifacts for χ
Gauge field configurations are weighted with the determinant of /D in the
path integral:

ZQCD =

∫
[dA]e−SYM

∏
f

det{ /D +mf}, det{ /D +mf} =
∏
λ

(iλ+mf ) .

The Index Theorem relates the number of zero-modes n0 of /D to the
topological charge Q of the gauge field =⇒ suppression of Q 6= 0
contributions as the quark mass

Q[A] = n
(left)
0 − n(right)

0 =⇒ det{ /D[A] +mf} ∝ mn0
f

On the lattice, /DL has no exact zero-
modes: λwould−be−zero = mf + iλ0

=⇒ suppression of Q 6= 0 contribu-
tions not effective as in the continuum
=⇒ large corrections to the contin-
uum limit, especially at high T , where
we expect χ ∼ T−α
(fig. from Bonati et al., 2018, T ' 2.8Tc)
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Spectral projectors for χ at high-T (QCD prelim. results)

In the continuum, Q is related to zero-modes of /D. Define QL by summing
eigenmodes of /DL up to a given threshold M :

Q = Tr{γ5} −→ Tr{γ5PM},

PM =
∑
|λk|≤M

uku
†
k, /DLuk = iλkuk.

Tuning the value of M allows to reduce lattice corrections because only
modes with magnitude |λ| ≤M are included in the determination of χ.
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Spectral Projectors, M/ms = 0.3

Spectral Projectors, M/ms = 0.5

Spectral Projectors, M/ms = 1

Gluonic

Threshold mass M simply fixed in
terms of one of the quark masses.

Spectral projectors are affected by
much smaller corrections to the
continuum limit compared to the
standard gluonic definition.

Magnitude and sign of corrections
tunable choosing M/ms.

Stable continuum limit varying M/ms.
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The Hasenbusch algorithm: parallel tempering of defect

Simulate collection of lattice copies with different boundary
conditions, interpolating periodic and open ones. Each replica
has an independent evolution and different copies are swapped
from time to time. Charge is quickly changed in the open
replica, then the configuration is transferred to the periodic
replica through the swaps (Hasenbusch, 2018).
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Large-N behavior of Nξ2χ in 2d CPN−1 models
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Fit results up to O(1/N2) terms, N ∈ [10, 51]

Nξ2χ = 1/(2π)− 0.08(2)(1/N) + 2.2(3)(1/N2)
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Large-N behavior of N 2b2 in 2d CPN−1 models
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Fit results up to O(1/N3) terms, N ∈ [11, 51]

b̄theo
2 ≡ lim

N→∞
N2b2 = −27/5 = −5.4,

(N2b2)fit = −5.7(1.1) + 160(60)(1/N) + . . .
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Adapting Hasenbusch Algorithm to 4d gauge theories
Standard simulations of SU(N) gauge theories suffer from severe CSD in
the large-N limit =⇒ Hasenbusch algorithm can be adopted to mitigate
topological freezing. Difference: now the defect is a cubic volume.
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Parallel tempering dramatically im-
proves simulations at large N (fig. on
the left: N = 6). Performances are ex-
ceedingly better without much tuning
of the algorithm free parameters (de-
fect volume and swap acceptance).
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Continuum limits: diamond pnts (Bonati et al., 2016), full pnts (CB, Bonati, D’Elia, 2020).
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Large-N limit of χ in SU(N) pure-gauge theories
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Witten–Veneziano: χ̄1/4 ' 180 MeV +O(1/N2). Fit results:

χ/σ2 = 0.0199(10) + 0.08(2)(1/N2)

χ̄/σ2 = 0.0199(10) =⇒ χ̄1/4 = 173(8) MeV
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Large-N limit of b2 in SU(N) pure-gauge theories
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Large-N prediction: b2 = b̄2/N
2 +O(1/N4). Fit results:

1) b2 = b̄2/N
γ → γ = 2.17(26), cf. γ = 2.0(4) (Bonati et al., 2016)

2) b2 = b̄2/N
2 → b̄2 = −0.19(1), cf. b̄2 = −0.23(3) (Bonati et al., 2016)

3) b2 = b̄2/N
2 + b̄

(1)
2 /N4 → b̄

(1)
2 = −0.17(35)
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Other topological observables: the susceptibility slope χ′

The 2-point correlator G̃(p2) of topological charge density q(x) is another
interesting topological observable (e.g., related to sphaleron rate):

G̃(p2) =

∫
d4x eip·x 〈q(x)q(0)〉 , Q =

∫
d4x q(x)

G̃(p2 = 0) =

∫
d4x 〈q(x)q(0)〉 =

〈Q2〉
V

= χ

dG̃

dp2
(p2 = 0) = −

1

8

∫
d4x |x|2 〈q(x)q(0)〉 ≡ −

1

8
χ′

No results from the lattice for χ′. Known in some approximations: large-N 2d
CPN−1 up to O(1/N2), T = 0 Nf = 3 QCD through LO Chiral Pert. Theory.

Preliminary results for 2d CP10 from
the lattice: good agreement with
large-N prediction if NLO corrections
are included =⇒ χ′ seems to ap-
proach large-N limit slowly.
Results will be refined and completed
in a forthcoming work.
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Conclusions and take-home results

Topology in high-T QCD from spectral projectors
Spectral Projectors provide an improved technique to compute the
continuum limit of χ in high-T QCD.
Lattice corrections to the continuum limit showed by Spectral Projectors are
reduced compared to the standard gluonic definition.
Lattice corrections of Spectral Projectors can be tuned with a suitable
choice of M .

Large-N limit and 1/N expansion: 2d CPN−1 vs 4d SU(N) YM
The Hasenbusch algorithm dramatically mitigates severe Topological
Freezing, both in 2d CPN−1 models and in 4d SU(N) gauge theories.
Large-N data show slow convergence of 1/N series of CPN−1 models,
explaining discrepancies between early lattice results and analytic
predictions.
Large-N predicted scaling of 4d SU(N) θ-dependence holds for N ≥ 3.
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Future outlooks

Refinement of present study of χ′ in large-N CPN−1

models and future extension to SU(N) gauge theories and
full QCD.
Computation of non-topological observables of large-N
SU(N) gauge theories may be affected by topological
freezing (e.g., glueball masses) =⇒ possible improvements
of state of the art adopting the Hasenbusch algorithm.
Adapt Hasenbusch algorithm to full QCD to improve high
temperature simulations, which suffer for severe topological
freezing when T � Tc.
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attention!
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Higher-order cumulants and imaginary-θ simulations
Signal-to-Noise Ratio (SNR) of b2n (higher-order cumulants) degrades
rapidly as the volume grows due to the Central Limit Theorem.
=⇒ large statistics required to keep finite-size effects of b2n under control.
Idea 1: add imaginary-θ term to Euclidean action, so that it acts as a
source term for Q, enhancing SNR of higher-order cumulants:

S → S + θIQ, θI ≡ iθ =⇒ kn → kn(θI) ∝ dnf(θI )
dθn

I

Idea 2: information on χ and b2n now encoded in θI -dependence of
lower-order cumulants =⇒ extract χ and b2n from combined fit of
θI -dependence of cumulants kn. (N. B. odd cumulants non-zero for θI 6= 0)
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Imaginary-θ fit. Left: 2d CPN−1 models. Right: 4d SU(N) pure-gauge theories.
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Hasenbusch algorithm details, SU(N) gauge theories
Links crossing the defect get their coupling multiplied by a factor c(r):
0 ≤ c(r) ≤ 1 (r = replica index). In our SU(N) implementation we chose
c(r) so that swap acceptance p is ∼ const. for couples (r, r + 1).
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When acc. ∼ const. =⇒
conf. moves freely among
different replicas (left fig.)
and c(r) deviates from lin-
ear interpolation (center
fig.). Examples: N = 4.
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Parallel tempering, Ld = a

Parallel tempering, Ld = 2a

Parallel tempering, Ld = 3a

Auto-correlation time of Q2 scales
as exp(1/a) if defect size Ld is fixed
in lattice units as a → 0, however
with a much smaller slope com-
pared to the standard algorithm. If
instead Ld is kept fixed in physical
units, scaling with a is largely im-
proved. (Fig. on the left: N = 6)
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Large-N behavior of b4 in 2d CPN−1 models
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With our statistics b4 ∼ 〈Q6〉 is always compatible with zero.
However, we find |b̄4| ∼ |N4b4| . 20, but large-N analytic
computations yield b̄4 = −25338/175 ' −144.79 . . . =⇒ b4
data compatible with slow convergence of 1/N series too.
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