Bubble wall velocity and
high-energy string scattering

Alessio Caddeo

Galileo Galilei Institute for Theoretical Physics, INFN, Florence

Based on:

F. Bigazzi, AC, T. Canneti, A. L. Cotrone 2104.12817
S. Bonansea, AC, G. D'Appollonio to appear

Galileo Galilei Institute for Theoretical Physics, 17" December 2021



Outline

Gravitational waves from holography

Bubble wall velocity

High-energy string scattering

Eikonal operator from string non-linear sigma model

Bubble Wall Velocity



Outline

e Gravitational waves from holography

Bubble Wall Velocity



Context

e Cosmological first-order phase transitions (PT) source GWs

e No first-order phase transitions in the Standard Model

Several Beyond-Standard Model scenarios involve strongly-coupled
hidden gauge sectors where first-order phase transitions occur

Holography can be employed to study the gravitational waves
produced in these first-order PTs [Bigazzi, AC, Cotrone, Paredes '20, Ares,
Hindmarsh, Hoyos, Jokela '20, Ares, Henriksson, Hindmarsh, Hoyos, Jokela '21]
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GWs from first-order PT's
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GWs from first-order PT's
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Decay through nucleation of true-vacuum bubbles

Nucleation rate computed through bounce action:
I~ T4e_SB(¢B) [Coleman '77]

Bounce solutions give access to the quantities needed to compute the GW spectrum.
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Holographic Yang-Mills-like theory jwitten -9s]

Backreaction of N D4-branes wrapped on S with inverse radius M :

u\3/2 i i R 3/2 du2
ds? = (E) (dt2 +dxdx’ + f(u)dxf) + (u) oyt R3/2 2402
ug\3 4
flu)=1- (?0) Ug = §R3M}2<K

Physics encoded in the cigar geometry (A = gf/MN)

o Mass gap ~ My s !

o Confinement: goo(ug) # 0

o The free energy density is T

f'

1 2044
conf — T 7 2)‘N MKK
3'm
o Dominant at low temperatures

Alessio Caddeo Bubble Wall Velocity 3/18




High-temperature phase

At high temperatures the dominant background is the black hole one:

3/2 o R\3/2 4,2
$%:Gg (ﬁ@w¥+Wﬂx+w@+<> T RM2UM2402
u

R f(u)
ur\3 16 23
fr(u)=1- (=) R3T?
7(u) u Ur=9gm
@ Deconfinement: gyo(ug) =0 X t
o The free energy density is
u
6.4 76
fdeconr = 7)‘N w
3’ M
e First-order phase transition ur

at temperature T, = My /2m
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FZG/'UOUTS [Sakai, Sugimoto 04, Antonyan et al. 06, Aharony et al. ’07]:

Quark flavours introduced by N; D8/D8 pairs

o If Np < N, probe approximation: DBI action

SDBI = — T8 / d9X ei(ﬁ\/* det(gab + 27TOl/Fab)

Xa
o If L < 0.97Mxr, xSb PT at: -
0154 M
T KK
¢ L > 2m

o First-order chiral symmetry PT

o Confinement PT at T, = My /27
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Chi?“al Symmet'r‘y bUbbles |Bigazzi, AC, Cotrone, Paredes ’20]

In principle: to find bubble-like solution (x = x(a,y)) from

NT3NS

TYIV<

/ dody 02y5/2\/1 +(y® - 1)(8},x)2 + (8,x)?

Bounce configuration from effective variational approach
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BU,bble wall 'U@lOC'&'ty [Bigazzi, AC, Canneti, Cotrone ’21]

The GWs spectrum depends also on out-of-equilibrium quantities such as the
asymptotic bubble wall velocity v.

Challenging also for weakly-coupled theories [Moore, Prokopec '95, Bodeker, Moore '17].

In the steady-state regime, the pressure gradient equates the friction force:
F=AAp zero-force condition

We can thus determine the bubble wall velocity.

The friction force exerted on a probe quark by a strongly-coupled plasma has
been holographically studied [Gubser '06, Herzog et al. '06]:

We analogously compute the drag force exerted on the bubble wall
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Chi?“al Symmet'r‘y bUbbles |Bigazzi, AC, Cotrone, Paredes ’20]

Configuration at nucleation time

The bubble wall is a D8-brane branch

Configuration at asymptotic times

The bubble wall trails towards the horizon
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The problem

Let us use the ansatz z = vt + £(u,x,) (ansatz z = vt not allowed!)

S— —% / dt du dxg (%)73/2 u4\/1 + (046)” + Fr(u) (%)3 (0,6)* — fr(u) V2

-
Oymf + Oymi =0 k=-2ALV(SY

S

where

u*fr(u) (4)°° 0,

7T€ = k
VIH @69 + Fr(v) (4)* (0,6 — Fr(u) 2
ﬂ-g B u4 (%)_3/2645

k
u)3 -
VI+ @8 + fr(w) (8) (0,6 — Fr(w) v
Integration of e.o.m. gives zero-force condition. Difficult problem!

We employ a rectangular approximation
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The drag force

Let us consider the bubble wall as a separate rectangular entity: ’iTg =0.

é_/ _ Trél (U)*3/2 fT(u)_1/2 1-— fT(U)71V2

R K2 fr(u)u® — (nf)?

The momentum T('g is conserved.

v

ur u 4
u(v)=—5573 e = kurm

(1- V2)1/3
Drag force given by the momentum flow towards the horizon [Gubser '06, Herzog et al. '06]:

F dp T,
Id = T: = Wg = Cd% Wf(Tboost)V

where wy is the enthalpy density of the false vacuum and

T
Cd —or pglue

(1 — V2)1/6 ngue

Thoost = c
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The complete steady-state configuration

With wall embedded in the full brane configuration, we derive the zero-force condition

T

1
F= Z/dX4’/Tg(UT,X4) = AAP Ap = —VASDB/
3

In the complete configuration 7rg is not conserved. In rectangular approximation:

k
9y = 722R3/2u5/2

After integration

72 1/2 7L

u/* = uf +WAAp u, > ur
The profile satisfies
L AKRYZ s g\ Uy 32 “12 1— fr(u)~ v
e el G | ¢ B O)

3/2 2
kaT(u)u8 - %% (u7/2 — uz/z)
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Bubble wall velocity formula [igazi, A, Canneti, Cotrone 21]

At the induced horizon

KFE u

Explicitly,

7

4 kR3/?
—a

_ (W2 — J1?)

c

v 4 3

2° T
Ap = 3—973)\3NNf(LT) .

We can write

B 1—
Mg | (1 - V2)4/3 TAnLT (

Fq

= Z + pf(Tboost) - pf(T)

he formula for the velocity:

F

Ap=—

P="2a
Using the result for Fy, we find t
v=_Ct

Tc pt( T) B pf( Tboost)

7—boosi.‘ Wr ( Tboost)

Formula valid also for analogous

Caddeo

Dp-Dg-Dg-brane setups.
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Context

@ String Theory is a theory of gravity
o Usually formulated in flat-spacetime background
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Context

@ String Theory is a theory of gravity
o Usually formulated in flat-spacetime background

How do curved geometries emerge?

High-energy string-string scattering [Amati, Ciafaloni, Veneziano '87]
Unitarity retrieved in the eikonal approximation:

S(s,b) = eziS(s,b)

25(s,b) = / do d"d LA, (s,b+xu(au) —Xd(o—d)) :

Compactible with semnclassncal propagation in Aichelburg-Sexl geometry

Emergent geometry very complicated at subleading orders
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String-brane scattering: an easier problem

Scattering of a string on stack of N D-branes [D'Appollonio, Di Vecchia, Russo, Veneziano '10].
Two descriptions:

o Open string sectors in flat-spacetimes
@ p-brane solutions in supergravity

1 N o
ds? = m%de dx” + \/H(r)d;;dx’ dx’
R 7—p nNT—p
r (7 - p)QS—p
We study string-brane scattering in the Regge limit

s — o0, -—0
s

The two complementary approaches are comparable in the limit
g, —0 A=gN>1

Resumming many-boundaries ampl.ds <+ semicl. string prop. on p-brane geometry.
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String-brane scattering: an easier problem

Sum of amplitudes with many boundaries:

S(sib) = 2B 235 by = L d"

5F t A (s7b + X(a)) :

The eikonal operator S(S,b) can be expanded as

25(sb+ %) ~ 5 lAl(s, ) 2O AD) 375G

where

r(%2) Rl*

- (7-p)
2
b) ~ + imagi t+ 0 (-2
Ay (s.b) S\F ( gp) po—P imaginary par < b)

Studying the semiclassical string propagation in the Penrose limit of the p-brane
solutions, the second term can be computed.

Agreement between the two approaches [D'Appollonio, Di Vecchia, Russo, Veneziano '10]
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Background field expansion of the Polyakov action

The propagation of a highly-energetic string is described by
T o
S= —5 dod7 G, (X)0, X" 05X

The Penrose limit is the first order of a systematic expansion in Fermi coordinates around a null
geodesic X, (7) [Blau et al '06]
X(Jv T) = ng(T) + 5(0—7 T)

Recursive method to write the terms [Mukhi '85]

o T A
S, = 5 / dodr Gap(Xpg) Xox XE:
2 T fe]
S, = 3 / dodT Ragep (Xog)E2EC O X{L0u X +

-
- = / dodT Gag(Xpg)D €D, E"
T (e}
SXZXy = _g/dUdT DaRBcDE(Xog) 0o Xy 0" Xig 6 6P +

2T
T3 / dodT Rapcpd” Xig Dat €7 €C
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Background field expansion of the Polyakov action
The scaling of the quantities with energy is controlled by the vielbeins:
E. ~E, E ~E*', E,~1

Dominant terms with two "+" indices: plane wave — light-cone gauge.

We can resum the series. In the impulsive approximation:

1
S So= o [WELENRL(G) 3" 5 e (0) €2 OO

n=2
where Sy is the string action in flat spacetime, h,, = G, — G;I,‘jt and

1 3]
Cal...an,zbc = _E / dUDal cee Dan,z R+b+c(ng(u))
—00

In the leading eikonal approximation:

1 d
5= So= ¢ [ 5oelb+E@0)
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Comparison
We thus expect the correspondence
g(b+¢(0.0) ¢ Ay (sb+R(0))

As a check, we studied the shock-wave case for which the exact S-matrix is known
[Amati, Klimcic '87]. This case is eikonal exact and indeed g gives the exact S-matrix.

For the p-brane case, at zero order we find

_ 6—p _
g(b)Ezﬁjé_,f;E?{gw@p)” ’
2

At quadratic order we (obviously) retrieve the results found with the Penrose limit.

Higher-order terms reconstruct the Taylor series such that

g(b) = g(b +£(0,0))

High-energy string scattering 18 /18



Comparison
We thus expect the correspondence
g(b+¢(0.0) ¢ Ay (sb+R(0))

As a check, we studied the shock-wave case for which the exact S-matrix is known
[Amati, Klimcic '87]. This case is eikonal exact and indeed g gives the exact S-matrix.

For the p-brane case, at zero order we find

_ 6—p _
PRI H o (%)
2

At quadratic order we (obviously) retrieve the results found with the Penrose limit.

Higher-order terms reconstruct the Taylor series such that
g(b) = g(b +£(0,0))

Eikonal operator from the curved-background approach!
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Thank you for your attention!



