CFT CORRELATORS IN MOMENTUM SPACE, CONFORMAL ANOMALY AND ANOMALY-INDUCED ACTION

Matteo Maria Maglio

Galileo Galilei Institute For Theoretical Physics, Arcetri, Firenze (Italy)

17th December 2021

The Galileo Galilei Institute for Theoretical Physics

Introduction

- Conformal invariance imposes strong constraints on correlation functions
- It determines 2- and 3-point functions of scalars, conserved vectors and the stress-energy tensor
- It determines the form of the higher functions up to functions of cross-ratios
- These results were obtained in position space and this is in contrast with general QFT were Feynman diagrams are typically computed in momentum space
- While position space methods are powerful, typically they provide results that hold only at separated points

Why study CFT directly in momentum space?

Cosmology

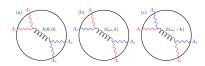
- CMB primordial power spectra and Non-Gaussianities
- Cosmological Booststrap
- Gravitational waves
- Holographic Cosmology

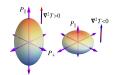
Condensed Matter

- Multipoint correlators of conformal field theories: implications for quantum critical transport
- Electromagnetic response of interacting Weyl semimetals
- Dynamical Response Near Quantum Critical **Points**

Anomalies

Breaking of conformal invariance by quantum effects





Coordinate Space

Conformal transformations $x_{\mu} \to x'_{\mu}(x)$ preserve the infiniesimal length up to a local factor

$$dx_{\mu}dx^{\mu} \to dx'_{\mu}dx'^{\mu} = \Omega(x)^{-2}dx_{\mu}dx^{\mu}$$

and in the infinetisimal form

$$x'_{\mu}(x) = x_{\mu} + a_{\mu} + \omega_{\mu\nu}x^{\nu} + \lambda x_{\mu} + b_{\mu}x^{2} - 2b \cdot x x_{\mu}$$

with
$$\Omega(x) = 1 - \sigma(x) = 1 - \lambda + 2b \cdot x$$
.

Isometry
$$x^{\mu}(x) \rightarrow x'^{\mu}(x) = x^{\mu} + v^{\mu} \implies g'_{\mu\nu}(x') = g_{\mu\nu}(x')$$

$$v^{\alpha}\,\partial_{\alpha}\,g_{\mu\nu}+g_{\mu\sigma}\,\partial_{\nu}\,v^{\sigma}+g_{\sigma\nu}\,\partial_{\mu}\,v^{\sigma}=0,\quad \text{Killing equation}$$

With the condition $g'_{\mu\nu}(x') = \Omega^{-2}(x)g_{\mu\nu}(x')$

$$v^{\alpha}\partial_{\alpha}g_{\mu\nu}+g_{\mu\sigma}\partial_{\nu}v^{\sigma}+g_{\sigma\nu}\partial_{\mu}v^{\sigma}=2\sigma g_{\mu\nu}$$
, Conformal Killing equation

In the flat spacetime limit the conformal Killing equation has the general solution

$$v^{\mu}(x) = a_{\mu} + \omega_{\mu\nu} x^{\nu} + \lambda x_{\mu} + b_{\mu} x^{2} - 2x_{\mu} b \cdot x$$

Conformal Symmetry in Coordinate Space

$$\begin{array}{lll} \text{Translation} & \delta x^{\mu} = a_{\mu}, & P_{\mu} = \partial_{\mu}, \\ \text{Rotation} & \delta x^{\mu} = \omega_{\mu\nu} x^{\nu} & \Longrightarrow & L_{\mu\nu} = x_{\nu} \partial_{\mu} - x_{\mu} \partial_{\nu}, \\ \text{Dilatations} & \delta x^{\mu} = \lambda x^{\mu}, & D = x^{\mu} \partial_{\mu}, \\ \text{SCT} & \delta x^{\mu} = b^{\mu} x^2 - 2 x^{\mu} b \cdot x. & K_{\mu} = 2 x_{\mu} x^{\nu} \partial_{\nu} - x^2 \partial_{\mu}. \end{array}$$

Defining the generators J_{ab} , $J_{ab} = -J_{ba}$ with a, b = -1, 0, 1, ..., d as

$$J_{\mu\nu} = L_{\mu\nu}, \quad J_{-1,\mu} = \frac{1}{2} (P_{\mu} - K_{\mu}),$$

$$J_{-1,0} = D, \quad J_{0,\mu} = \frac{1}{2} (P_{\mu} + K_{\mu}).$$

the conformal algebra can be written as

$$[J_{ab}, J_{cd}] = \eta_{ac}J_{bd} + \eta_{bd}J_{ac} - \eta_{ad}J_{bc} - \eta_{bc}J_{ad}$$

with
$$\eta_{ab} = \text{diag}(-1, 1, ..., 1)$$
. Then

$$Conf(\mathbb{R}^d) \cong SO(1, d+1), \Rightarrow 1/2(d+2)(d+1)$$
 parameters.

Conformal Symmetry in Coordinate Space

Coordinate Space

$$\begin{split} &SCT = Inversion + translation + Inversion & x^{\mu} \rightarrow \frac{x^{\mu}}{x^{2}} \rightarrow \frac{x^{\mu}}{x^{2}} - b^{\mu} \rightarrow \frac{\frac{x^{\nu}}{x^{2}} - b^{\mu}}{\left(\frac{x^{\mu}}{x^{2}} - b^{\mu}\right)^{2}} \\ & \langle \mathcal{O}_{i}(x)\mathcal{O}_{j}(y) \rangle = \frac{\delta_{ij}}{(x - y)^{2\Delta}}, & \langle \mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})\mathcal{O}_{3}(x_{3}) \rangle = \frac{\lambda_{123}}{|x_{12}|^{\Delta_{123}}|x_{13}|^{\Delta_{132}}|x_{23}|^{\Delta_{231}}} \\ & \langle \mathcal{O}(x_{1})...\mathcal{O}(x_{4}) \rangle = \frac{f(u, v)}{|x_{12}|^{2\Delta}|x_{34}|^{2\Delta}}, & u = \frac{x_{12}^{2}x_{24}^{2}}{x_{13}^{2}x_{24}^{2}}, & v = \frac{x_{23}^{2}x_{14}^{2}}{x_{13}^{2}x_{24}^{2}} \end{split}$$

Momentum Space

$$\begin{split} 0 &= D \, \langle \mathcal{O}^{\mu_{1_{1}}\mu_{1_{2}}...\mu_{1_{r_{1}}}}(p_{1})...\mathcal{O}^{\mu_{j_{1}}\mu_{j_{2}}...\mu_{j_{r_{j}}}}(p_{j})...\mathcal{O}^{\mu_{n_{1}}\mu_{n_{2}}...\mu_{n_{r_{n}}}}(\bar{p}_{n}) \rangle \\ 0 &= K^{\kappa} \, \langle \mathcal{O}^{\mu_{1_{1}}\mu_{1_{2}}...\mu_{1_{r_{1}}}}(p_{1})...\mathcal{O}^{\mu_{j_{1}}\mu_{j_{2}}...\mu_{j_{r_{j}}}}(p_{j})...\mathcal{O}^{\mu_{n_{1}}\mu_{n_{2}}...\mu_{n_{r_{n}}}}(\bar{p}_{n}) \rangle \end{split}$$

[C. Corianó, M. M. M., Conformal Field Theory in Momentum Space and Anomaly Actions in Gravity: The Analysis of 3- and 4-Point Functions, To appear on Physics Reports, (2021)], [C. Corianò, M. M. M. and D. Theofilopoulos, "The Conformal Anomaly Action to Fourth Order (4T) in d = 4 in Momentum Space," doi:10.1140/epjc/s10052-021-09523-9, (2021)]

CFT in Coordinate Space

The position space expressions are only valid at separated points and do not possess a Fourier transform prior to renormalization. For instance

$$\langle \mathcal{O}(x)\mathcal{O}(0)\rangle = \frac{C_{\mathcal{O}}}{|x|^{2\Delta}}$$

does not have a Fourier transform when

$$\Delta = \frac{d}{2} + k, \qquad k = 0, 1, 2, \dots$$

because of short-distance singularities. In momentum space

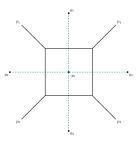
$$\begin{split} \langle \mathcal{O}(p_1)\mathcal{O}(p_2)\rangle &= (2\pi)^d \delta(p_1+p_2) \frac{C_O \, \pi^{d/2} \, 2^{d-2\Delta} \, \Gamma\left(\frac{d}{2}-\Delta\right)}{\Gamma(\Delta)} p_1^{2\Delta-d}, \quad \Delta \text{ generic} \\ \langle \mathcal{O}(p_1)\mathcal{O}(p_2)\rangle &= (2\pi)^d \delta(p_1+p_2) \Bigg[\frac{C_O \, \pi^{d/2} \, 2^{d-2\Delta} \, \Gamma\left(\frac{d}{2}-\Delta\right)}{\Gamma(\Delta)} \ln \frac{p_1^2}{\mu^2} + c_{\Delta'} \Bigg] p_1^{2k}, \quad \Delta &= \frac{d}{2} + k \end{split}$$

with $c_{\Lambda'}$ scheme dependent constant that can be absorbed by a redefinition of the scale u.

IC. Coriano, L. Delle Rose, E. Mottola, and M. Serino, Graviton vertices and the mapping of anomalous correlators to momentum space for a general conformal field theory, JHEP 1208 (2012) 1471 [A. Bzowski, P. McFadden and K. Skenderis, "Scalar 3-point functions in CFT: renormalisation, beta functions and anomalies," JHEP 03 (2016), 066]

4 Point-Function in Momentum Space - Dual Conformal Symmetry

A particular solution of the 4 point function in momentum space using the dual conformal symmetry (DCC).



$$\begin{split} p_1^{\mu} &= y_2^{\mu} - y_1^{\mu}, \quad p_2^{\mu} = y_3^{\mu} - y_2^{\mu}, \\ p_3^{\mu} &= y_4^{\mu} - y_3^{\mu}, \quad p_4^{\mu} = y_1^{\mu} - y_4^{\mu}. \end{split}$$

$$\langle \mathcal{O}(p_1)\mathcal{O}(p_2)\mathcal{O}(p_3)\mathcal{O}(\bar{p}_4)\rangle = \Phi(p_1,...,p_4,s,t)$$

$$0 = D(p_i)\Phi(p_1,...,p_4,s,t)$$

$$0 = K^{\kappa}(p_i)\Phi(p_1,...,p_4,s,t)$$

$$0 = D(y_i)\Phi(y_1,...,y_4)$$

$$0 = K^{\kappa}(y_i)\Phi(y_1,...,y_4)$$

$$D(y_i) = \left[\sum_{j=1}^4 \Delta_j + \sum_{j=1}^4 y_j^{\alpha} \frac{\partial}{\partial y_j^{\alpha}} \right]$$

$$K^{\kappa}(y_i) = \left[\sum_{j=1}^{4} \left(2\Delta_j y_j^{\kappa} + 2y_j^{\kappa} y_j^{\alpha} \frac{\partial}{\partial y_j^{\alpha}} - y_j^2 \frac{\partial}{\partial y_{j\kappa}} \right) \right]$$

$$\langle \mathcal{O}(p_1)\mathcal{O}(p_2)\mathcal{O}(p_3)\mathcal{O}(p_4)\rangle = C \left[I_{\frac{d}{2} - 1\{\Delta - \frac{d}{2}, \Delta - \frac{d}{2}, 0\}}(p_1 \, p_3, p_2 \, p_4, s \, t) + \text{perm} \right]$$

Conformal Anomaly

In even dimensions one observes the breaking of conformal invariance. The result is an anomalous trace for the stress energy tensor.

 $\ln d = 2$

$$\langle T^{\mu}_{\ \mu} \rangle = -\frac{c}{24\pi} R$$

Given the conformal anomaly A one can integrate the equation

$$2g_{\mu\nu} \frac{\delta S_{anom}[g]}{\delta g_{\mu\nu}(x)} = \frac{\delta S_{anom}[e^{2\sigma}\bar{g}]}{\delta \sigma(x)} \bigg|_{g=e^{2\sigma}\bar{g}} = A$$

to obtain the anomaly action in d = 2

$$S_{anom}[g,\sigma] = -\frac{c}{96\pi} \int d^2x \sqrt{-g} \, \sigma \Box \, \sigma \tag{1}$$

The conformal factor σ in d=2 is uniquely determined as $\sigma=\Box_g^{-1}R$ to give the Polyakov action

$$S_{anom}[g,\sigma] = -\frac{c}{96\pi} \int d^2x \sqrt{-g} R \,\Box_g^{-1} R \tag{2}$$

Anomaly induced Action

 $\ln d = 4$

$$\langle T^{\mu}_{\mu} \rangle = b C^2 + b' \left(E - \frac{2}{3} \Box R \right)$$

and in d = 4

$$S_{anom}[g,\sigma] = -\frac{b'}{2} \int d^4x \sqrt{-g} \left(\sigma \Delta_4 \sigma \right) + \frac{1}{2} \int d^4x \, A \, \sigma \tag{3}$$

with

$$\Delta_4 \equiv \nabla_\mu \Big(\nabla^\mu \nabla^\nu + 2R^{\mu\nu} - \frac{2}{3}Rg^{\mu\nu} \Big) \nabla_\nu = \Box^2 + 2R^{\mu\nu} \nabla_\mu \nabla_\nu - \frac{2}{3}R\Box + \frac{1}{3}(\nabla^\mu R)\nabla_\mu \eqno(4)$$

The conformal parameter σ can be inverted in some specific case and so far we have

$$\begin{split} \sigma_{FV} &= 2\ln\Big(1 + \frac{1}{6}\;G_{\square - R/6}\,R\Big),\\ \sigma_R &= -\frac{1}{2}\,G_{\Delta_4}\Big(E - \frac{2}{3}\,\square R\Big), \end{split}$$

Anomaly Induced Actions

The Riegert actions is

$$S_{anom}[g,\sigma_R] = \frac{1}{4} \int \ dx \sqrt{-g_x} \left(E - \frac{2}{3} \Box R\right)_x \int \ dx' \sqrt{-g_{x'}} G_{\Delta_4}(x,x') \left[\frac{b'}{2} \left(E - \frac{2}{3} \Box R\right) + bC^2\right]_{x'}$$

whose conformal variation is the anomaly. For instance, the anomalous part of the three-point diagram (TTT) is given by

$$\langle T^{\mu_1\nu_1}(x_1)T^{\mu_2\nu_2}(x_2)T^{\mu_3\nu_3}(x_2)\rangle_{anom} = \frac{2}{\sqrt{-g_{x_1}}}\dots \frac{2}{\sqrt{-g_{x_3}}}\frac{\delta^3\,S_{anom}}{\delta\,g_{\mu_1\nu_1}(x_1)\dots\delta g_{\mu_3\nu_3}(x_3)}$$

[C. Corianò, M. M. M., E. Mottola, Nucl. Phys. B942 (2019) 303-328]

Anomalous Conformal Ward Identities

Explicit breaking of Conformal Invariance

[Corianò and Maglio, The general 3-graviton vertex (TTT) of conformal field theorries in momentum space in d = 4, Nucl. Phys. B937 (2018) 56-134]

The extra part of the TTT after the renormalization is the anomaly part

We have anomaly interactions!

Application in Condensed Matter

In condensed matter systems, the "gravitational" (conformal) anomaly may be probed in an off-equilibrium regime using the Luttinger theory of thermal transport coefficients. The effect of a temperature gradient ∇T can be compensated by Φ

$$\frac{1}{T}\nabla T = -\frac{1}{c^2}\nabla \Phi.$$

For a weak gravitational field

$$g_{00} = 1 + \frac{2\Phi}{c^2},$$

and the TTT contribution to the thermal transport via Luttinger formula is

$$\langle T^{\mu\nu}(x)\rangle = \frac{1}{8} \int dx_2 dx_3 \langle T^{\mu\nu}(x) T^{\mu_2\nu_2}(x_2) T^{\mu_3\nu_3}(x_3) \rangle h_{\mu_2\nu_2}(x_2) h_{\mu_3\nu_3}(x_3).$$
 (5)

Considering a system in a slightly off-equilibrium regime with a small temperature variation along the third direction, the anomalous part of the *TTT* vertex contributes as

$$\begin{split} \langle T^{00} \rangle_{TTT} &= \frac{4b}{9} \left[3 \left(\partial_3^2 \Phi \right)^2 + 4 \left(\partial_3^2 \Phi \right) \left(\partial_3^3 \Phi \right) + 2 \Phi \left(\partial_3^4 \Phi \right) \right] \\ \langle T^{11} \rangle_{TTT} &= \langle T^{22} \rangle_{TTT} = \frac{4b}{9} \left[2 \left(\partial_3^2 \Phi \right) \left(\partial_3^3 \Phi \right) + \Phi \left(\partial_3^4 \Phi \right) \right] \end{split}$$

Pressure Anisotropy

The TTT vertex of the conformal anomaly action leads to a qualitatively new effects: for a linearly varing temperature, there is a variation of the energy density

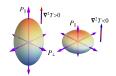
$$\delta E = \langle T^{00} \rangle_{TTT} = \frac{4b \, \hbar \, c}{3} \left(\frac{\nabla \, T}{T} \right)^4, \qquad \delta P = 0.$$

Assuming $\nabla^2 T \neq 0$ there is an anisotropic pressure

$$\delta P = P_{\parallel} - P_{\perp}, \qquad P_{\parallel} = \langle T^{33} \rangle, \quad P_{\perp} = \frac{\langle T^{11} \rangle + \langle T^{22} \rangle}{2}$$

and explicitly

$$\delta P = \frac{16b}{3}\hbar c \left(\frac{\nabla T}{T}\right)^2 \left(\frac{\nabla^2 T}{T}\right), \qquad b = \frac{1}{320\pi^2}$$



[M. N. Chernodub, C. Corianò, M. M. M., Phys.Lett.B 802 (2020) 135236]

Conclusions

- Implications of conformal invariance in momentum space for 3-point function and a particular class of 4-point functions
- Exact Solutions in momentum space for the 4-point function by using the dual conformal invariance
- Anomaly action in condensed matter systems
- Structure of the anomalous part for the TTT

- How to extend the analysis to higher point functions?
- What are the implications of the dual conformal symmetry?
- What is the anomalous structure of higher point functions?