Axions as Dark Matter Candidates

Andreas Ringwald FNHP 2022 Frontiers in Nuclear and Hadronic Physics Galileo Galilei Institute School Online Event Feb 21, 2022 - Mar 04, 2022

CLUSTER OF EXCELLENCE

- Vacuum Structure in Quantum Chromodynamics
- Strong CP Puzzle
- The Axion
- Axion Dark Matter
- Axion Experiments

Big Success: Standard Model of Particle Physics

• Standard Model of elementary particle physics (SM) describes interactions of all known particles

Standard Model of Elementary Particles

[Wikipedia]

Big Success: Standard Model of Particle Physics

 Standard Model of elementary particle physics (SM) describes interactions of all known particles with remarkable accuracy

Big Flaw: SM accounts only for few percent of total energy of universe

• Astronomical observations on galactic

Big Flaw: SM accounts only for few percent of total energy of universe

• Astronomical observations on galactic, galaxy cluster

[Wikipedia]

Big Flaw: SM accounts only for few percent of total energy of Universe

• Astronomical observations on galactic, galaxy cluster and cosmological scales:

[NASA]

Big Flaw: SM accounts only for few percent of total energy of Universe

 Astronomical observations on galactic, galaxy cluster and cosmological scales show that about 85 % of the matter in Universe not comprised of ordinary matter

Big Variety: Zoo of Dark Matter candidates

• Theoretical particle physicists have proposed a plenitude of Dark Matter (DM) candidates:

[Symmetry Magazine]

Big Variety: Zoo of Dark Matter candidates

• Theoretical particle physicists have proposed a plenitude of Dark Matter (DM) candidates, spanning a huge range in masses and interaction strength:

Big Variety: Zoo of Dark Matter candidates

• Concentrate here on QCD axions, belonging to the generic class of Ultralight Dark Matter

[US Cosmic Visions: New Ideas in Dark Matter 2017]

Production via vacuum misalignment

[Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]

• PQ phase transition takes place when $T \lesssim T_c^{\rm PQ} \sim v_{\rm PQ} = N_{\rm DW} f_a$

[Peking University]

Production via vacuum misalignment

[Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]

- PQ phase transition takes place when $T \lesssim T_c^{\mathrm{PQ}} \sim v_{\mathrm{PQ}} = N_{\mathrm{DW}} f_a$
- Axion takes random initial values in causally connected domains

Production via vacuum misalignment

[Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]

- PQ phase transition takes place when $T \lesssim T_c^{\mathrm{PQ}} \sim v_{\mathrm{PQ}} = N_{\mathrm{DW}} f_a$
- Axion takes random initial values in causally connected domains
- Evolution frozen as long as $H(T) \gg m_a(T)$

$$\frac{d^2\theta}{dt^2} + 3H(T)\frac{d\theta}{dt} + m_a^2(T)\sin\theta = 0$$

Production via vacuum misalignment

[Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]

- PQ phase transition takes place when $T \lesssim T_c^{\mathrm{PQ}} \sim v_{\mathrm{PQ}} = N_{\mathrm{DW}} f_a$
- Axion takes random initial values in causally connected domains
- Evolution frozen as long as $H(T) \gg m_a(T)$
- Later when $H(T) \sim m_a(T)$, axion field starts to oscillate around minimum of potential

$$\frac{d^2\theta}{dt^2} + 3H(T)\frac{d\theta}{dt} + m_a^2(T)\sin\theta = 0$$

Production via vacuum misalignment [Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]

- PQ phase transition takes place when $T \lesssim T_c^{\rm PQ} \sim v_{\rm PQ} = N_{\rm DW} f_a$
- Axion takes random initial values in causally connected domains
- Evolution frozen as long as $H(T) \gg m_a(T)$
- Later when $H(T) \sim m_a(T)$, axion field starts to oscillate around minimum of potential

Production via vacuum misalignment [Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]

- PQ phase transition takes place when $T \lesssim T_c^{\rm PQ} \sim v_{\rm PQ} = N_{\rm DW} f_a$
- Axion takes random initial values in causally connected domains
- Evolution frozen as long as $H(T) \gg m_a(T)$
- Later when $H(T) \sim m_a(T)$, axion field starts to oscillate around minimum of potential
 - Equation of state as cold dark matter:

 $w_a = p_a / \rho_a \simeq 0$

Production via vacuum misalignment [Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]

- PQ phase transition takes place when $T \lesssim T_c^{\rm PQ} \sim v_{\rm PQ} = N_{\rm DW} f_a$
- Axion takes random initial values in causally connected domains
- Evolution frozen as long as $H(T) \gg m_a(T)$
- Later when $H(T) \sim m_a(T)$, axion field starts to oscillate around minimum of potential
 - Equation of state as cold dark matter:

 $w_a = p_a / \rho_a \simeq 0$

• Coherent and spatially uniform oscillations of axion field correspond to a coherent state of non-relativistic axion particles

Production via vacuum misalignment

[Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]

- PQ phase transition takes place when $T \lesssim T_c^{\rm PQ} \sim v_{\rm PQ} = N_{\rm DW} f_a$
- Axion takes random initial values in causally connected domains
- Evolution frozen as long as $H(T) \gg m_a(T)$
- Later when $H(T) \sim m_a(T)$, axion field starts to oscillate around minimum of potential
 - Equation of state as cold dark matter:

 $w_a = p_a / \rho_a \simeq 0$

- Coherent and spatially uniform oscillations of axion field correspond to a coherent state of nonrelativistic axion particles
- Input from lattice QCD:

Production via vacuum misalignment [Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]

- PQ phase transition takes place when $T \lesssim T_c^{\rm PQ} \sim v_{\rm PQ} = N_{\rm DW} f_a$
- Axion takes random initial values in causally connected domains
- Evolution frozen as long as $H(T) \gg m_a(T)$
- Later when $H(T) \sim m_a(T)$, axion field starts to oscillate around minimum of potential
 - Equation of state as cold dark matter:

 $w_a = p_a / \rho_a \simeq 0$

- Coherent and spatially uniform oscillations of axion field correspond to a coherent state of non-relativistic axion particles
- Input from lattice QCD:
 - Equation of state $\Rightarrow H(T)$

Production via vacuum misalignment [Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]

- PQ phase transition takes place when $T \lesssim T_c^{\mathrm{PQ}} \sim v_{\mathrm{PQ}} = N_{\mathrm{DW}} f_a$
- Axion takes random initial values in causally connected domains
- Evolution frozen as long as $H(T) \gg m_a(T)$
- Later when $H(T) \sim m_a(T)$, axion field starts to oscillate around minimum of potential
 - Equation of state as cold dark matter:

 $w_a = p_a / \rho_a \simeq 0$

- Coherent and spatially uniform oscillations of axion field correspond to a coherent state of non-relativistic axion particles
- Input from lattice QCD:
 - Equation of state $\Rightarrow H(T)$
 - Topological susceptibility $\Rightarrow m_A(T) = \frac{\sqrt{\chi(T)}}{f_a}$

DESY. | Axions as Dark Matter Candidates | Andreas Ringwald, Online School on Frontiers in Nuclear and Hadronic Physics, Galileo Galilei Institute, Feb 21 - Mar 04, [20]22V]

Pre-inflationary PQ SSB scenario

• If PQ symmetry broken before or during inflation $(f_a > H_{inf}/(2\pi))$ and not restored afterwards

Pre-inflationary PQ SSB scenario

- If PQ symmetry broken before or during inflation $(f_a > H_{inf}/(2\pi))$ and not restored afterwards
 - Axion CDM density depends on initial value of axion field in patch which becomes observable universe

Pre-inflationary PQ SSB scenario

- If PQ symmetry broken before or during inflation $(f_a > H_{inf}/(2\pi))$ and not restored afterwards
 - Axion CDM density depends on initial value of axion field in patch which becomes observable universe

$$\begin{split} \Omega_a^{\rm MIS} h^2 &\approx 0.12 \, \left(\frac{f_a}{9\times 10^{11} \,\,{\rm GeV}}\right)^{1.165} \, \theta_{\rm i}^2 \\ &\approx 0.12 \, \left(\frac{6 \,\,\mu {\rm eV}}{m_a}\right)^{1.165} \, \theta_{\rm i}^2 \,, \end{split}$$

Post-inflationary PQ SSB scenario

• If PQ symmetry broken after inflation

Post-inflationary PQ SSB scenario

- If PQ symmetry broken after inflation
 - Axion field took on different values in different patches of the present universe

Post-inflationary PQ SSB scenario

- If PQ symmetry broken after inflation
 - Axion field took on different values in different patches of the present universe
 - Need to average over random initial axion field values:

$$\Omega_a^{\rm MIS} h^2 \approx 0.12 \, \left(\frac{30 \,\,\mu {\rm eV}}{m_a}\right)^{1.165}$$

Post-inflationary PQ SSB scenario

- If PQ symmetry broken after inflation
 - Axion field took on different values in different patches of the present universe
 - Need to average over random initial axion field values:

$$\Omega_a^{\rm MIS} h^2 \approx 0.12 \, \left(\frac{30 \,\,\mu {\rm eV}}{m_a}\right)^{1.165}$$

• Observed cold dark matter abundance puts lower bound on axion mass:

 $m_a > 28(2)\,\mu\text{eV}$

[Borsanyi et al., Nature `16 [1606.0794]]

Post-inflationary PQ SSB scenario

- If PQ symmetry broken after inflation
 - Random initial values in patches of size of causal contact after PQ phase transition

For illustration purposes only. Resemblance to the actual product might be limited

Post-inflationary PQ SSB scenario

- If PQ symmetry broken after inflation
 - Random initial values in patches of size of causal contact after PQ phase transition
 - Network of cosmic strings generated by Kibble mechanism

Post-inflationary PQ SSB scenario

- If PQ symmetry broken after inflation
 - Random initial values in patches of size of causal contact after PQ phase transition
 - Network of cosmic strings generated by Kibble mechanism

[Saikawa]

Post-inflationary PQ SSB scenario

- If PQ symmetry broken after inflation
 - Random initial values in patches of size of causal contact after PQ phase transition
 - Network of cosmic strings generated by Kibble mechanism
 - Around QCD phase transition, axion potential develops $V(A,T) = \chi(T) \left[1 \cos\left(N_{\rm DW} \frac{A}{v_{\rm PQ}}\right) \right]$
 - $N_{\rm DW}$ domain walls attached to a string

[Saikawa]

Post-inflationary PQ SSB scenario

- If PQ symmetry broken after inflation
 - Random initial values in patches of size of causal contact after PQ phase transition
 - Network of cosmic strings generated by Kibble mechanism
 - Around QCD phase transition, axion potential develops $V(A,T) = \chi(T) \left[1 \cos\left(N_{\rm DW} \frac{A}{v_{\rm PQ}}\right) \right]$
 - $N_{\rm DW}$ domain walls attached to a string
 - $N_{\rm DW} = 1$: string wall system decays

 $N_{\rm DW} = 1$

[Hiramatsu et al.]

Post-inflationary PQ SSB scenario

- If PQ symmetry broken after inflation
 - Random initial values in patches of size of causal contact after PQ phase transition
 - Network of cosmic strings generated by Kibble mechanism
 - Around QCD phase transition, axion potential develops $V(A,T) = \chi(T) \left[1 \cos\left(N_{\rm DW} \frac{A}{v_{\rm PQ}}\right) \right]$
 - $N_{\rm DW}$ domain walls attached to a string
 - $N_{\rm DW} = 1$: string wall system decays
 - $N_{\rm DW} > 1$: string wall system long lived

 $N_{\rm DW} = 1$

 $N_{\rm DW} = 3$

Post-inflationary PQ SSB scenario

- If PQ symmetry broken after inflation
 - Random initial values in patches of size of causal contact after PQ phase transition
 - Network of cosmic strings generated by Kibble mechanism
 - Around QCD phase transition, axion potential develops $V(A,T) = \chi(T) \left[1 \cos\left(N_{\rm DW} \frac{A}{v_{\rm PQ}}\right) \right]$
 - $N_{\rm DW}$ domain walls attached to a string
 - $N_{\rm DW} = 1$: string wall system decays
 - $N_{\rm DW} > 1$: string wall system long lived
 - Amount of axions produced by collapse of network of strings and domain wall currently under debate [Hiramatsu et al. 11,12,13; Kawasaki,Saikawa,Segikuchi 15; AR,Saikawa `16; Klaer,Moore `17; Gorghetto,Hardy,Villadoro `18; Buschmann et al. 19; Hindmarsh 19; Gorghetto,Hardy,Villadoro '20; Buschmann et al. 21]

 $N_{\rm DW} = 1$

 $N_{\rm DW} = 3$

[Hiramatsu et al.]

Post-inflationary PQ SSB scenario

- If PQ symmetry broken after inflation
 - Random initial values in patches of size of causal contact after PQ phase transition
 - Network of cosmic strings generated by Kibble mechanism
 - Around QCD phase transition, axion potential develops $V(A,T) = \chi(T) \left[1 \cos\left(N_{\rm DW} \frac{A}{v_{\rm PQ}}\right) \right]$
 - $N_{\rm DW}$ domain walls attached to a string
 - $N_{\rm DW} = 1$: string wall system decays
 - $N_{\rm DW} > 1$: string wall system long lived
 - Amount of axions produced by collapse of network of strings and domain wall currently under debate [Hiramatsu et al. 11,12,13; Kawasaki,Saikawa,Segikuchi 15; AR,Saikawa `16; Klaer,Moore `17; Gorghetto,Hardy,Villadoro `18; Buschmann et al. 19; Hindmarsh 19; Gorghetto,Hardy,Villadoro '20; Buschmann et al. 21]
 - Required axion mass to explain 100% of CDM abundance: $N_{\rm DW} = 1$: $m_a \approx 26 \ \mu eV - 0.5 \ meV$ $N_{\rm DW} > 1$: $m_a \approx (0.58 - 130) \ meV$

[Hiramatsu et al.]

DESY. | Axions as Dark Matter Candidates | Andreas Ringwald, Online School on Frontiers in Nuclear and Hadronic Physics, Galileo Galilei Institute, Feb 21 - Mar 04, 2022

 $N_{\rm DW} = 3$

Dark Matter axion mass spans a huge range

- Vacuum Structure in Quantum Chromodynamics
- Strong CP Puzzle
- The Axion
- Axion Dark Matter
- Axion Experiments

Microwave Cavities

• Axion DM – photon conversion in microwave cavity placed in magnetic field

$$\mathcal{L} \supset -\frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

Microwave Cavities

• Axion DM – photon conversion in microwave cavity placed in magnetic field

$$\mathcal{L} \supset -\frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

• Best sensitivity: mass = resonance frequency

$$m_a = 2\pi\nu \sim 4 \ \mu \mathrm{eV}\left(rac{
u}{\mathrm{GHz}}
ight)$$

Microwave Cavities

• Axion DM – photon conversion in microwave cavity placed in magnetic field

$$\mathcal{L} \supset -\frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

- Best sensitivity: mass = resonance frequency $m_a = 2\pi\nu \sim 4 \ \mu \text{eV}\left(\frac{\nu}{\text{GHz}}\right)$
- Power output: $P_{\rm out} \sim g^2 \mid {f B}_0 \mid^2 \rho_{\rm DM} V Q/m_a$

Microwave Cavities

- Currently running:
 - ADMX
 - CAPP
 - HAYSTAC
 - ORGAN
 - QUAX a gamma
 - RADES

[https://github.com/cajohare/AxionLimits/blob/master/plots/AxionPhoton_RadioFreqCloseup.pdf]

Haloscope Searches

Microwave Cavities

- Currently running:
 - ADMX
 - CAPP
 - HAYSTAC
 - ORGAN
 - QUAX a gamma
 - RADES
- Axion reach deep into axion band for

 $\mu eV \lesssim m_a \lesssim 100 \,\mu eV$

[https://github.com/cajohare/AxionLimits/blob/master/plots/AxionPhoton_RadioFreqCloseup.pdf]

Dish Antennas

• Oscillating axion DM in a background magnetic field carries a small electric field component

Dish Antennas

- Oscillating axion DM in a background magnetic field carries a small electric field component
- A magnetised mirror in axion/ALP DM background radiates photons [Horns, Jaeckel, Lindner, Lobanov, Redondo, AR 13]

Dish Antennas

- Oscillating axion DM in a background magnetic field carries a small electric field component
- A magnetised mirror in axion/ALP DM background radiates photons

[Horns,Jaeckel,Lindner,Lobanov,Redondo,AR 13]

• Axion/ALP DM dish antenna experiment: BRASS (U Hamburg)

- Permanently magnetized surface for axion/ALP photon conversion
- Dish antenna for photon signal concentration
- Broadband acquisition (16 GHz bandwidth, 10⁷ channels)

[Horns et al. (unpublished)]

Dish Antennas

- Boosted dish antenna: Open dielectric resonator
 - Add stack of dielectric disks with $\sim \lambda/2\,$ spacing in front of mirror (all immersed in magnetic field) $_{\sf [Ja]}$
 - Constructive interference of photon part of wave function

[Jaeckel,Redondo 13] [Millar,Raffelt,Redondo,Steffen 16]

[Baryakhtar, Huang, Lasenby18]

Dish Antennas

Boosted dish antenna: Proposed MADMAX experiment

[Caldwell et al. `16; Bruns et al. 19]

Dish Antennas

 MADMAX projected to probe deep into axion band in the mass range prefered by the post-inflationary PQ symmetry breaking scenario:

Dish Antennas

• **Boosted dish antenna:** Replace magnetised dish by antiferromagnetic topological insulator (A-TI)

[Marsh et al. 19; Schütte-Engel et al. 21]

- Some AF-TIs predicted to feature axionic quasiparticles (AQ) longitudinal A spin fluctuations coupled to E.B [Li et al. `10]
- In presence of magnetic field, the induced oscillating electric field associated with the DM axion field, mixes with the AQ, leading to a resonant conversion into photons

Dish Antennas

• **TOORAD:** Projected sensitivity reaches axion band in meV region

Table 8: Parameter reference values and ranges. Our benchmark material is "Material 2", based on $Mn_2Bi_2Te_5$.

Parameter name & symbol		Range	Benchmark
TMI parameters			
Decay constant	f_{Θ}	$[50, 200] \mathrm{eV}$	$70 \mathrm{eV}$
AQ mass	m_{Θ}	$\sim {\cal O}({ m meV})$	$1.8\mathrm{meV}$
Permittivity	ϵ	[9, 49]	25
Magnetic permeability	μ	$\sim \mathcal{O}(1)$	1
Magnon losses	Γ_m	$[10^{-5}, 10^{-3}] \mathrm{meV}$	
Specific conductance	$\Gamma_{ ho}$	$[10^{-5}, 10^{-3}] \mathrm{meV}$	
Area of crystal face	A	$(0.2{ m m})^2$	
Thickness	d	$d_{\rm opt}$, cf. Eq. (4.51)	
Experimental parameters			
External B -field	B_{e}	$[1, 10] \mathrm{T}$	$2\mathrm{T}$
Detection effciency	η	[0.01, 1]	0.01
Dark count rate	$\lambda_{ m d}$	$\gtrsim 1\mathrm{mHz}$	$1\mathrm{mHz}$

[Schütte-Engel et al. `21]