Nucleon partonic structure: concepts and measurements Part 1: renormalisation

M. Diehl

Deutsches Elektronen-Synchroton DESY

Frontiers in Nuclear and Hadronic Physics 2022 GGI, Firenze, 21 Feb – 4 March

Introduction	Renormalisation	Summary	Ex.
0000	00000000000000	0	000000

Plan of lectures

- 0. Brief introduction
- 1. Renormalisation, running coupling, running masses scale dependence of observables
- 2. $e^+e^- \rightarrow \text{hadrons}$ some basics of applied perturbation theory
- 3. Factorisation and parton densities using perturbation theory in *ep* and *pp* collisions
- 4. PDFs (parton distribution functions) Event generators
- 5. Exclusive processes and GPDs (generalised parton distributions)
- 6. TMDs (transverse momentum dependent distributions)
- 7. Double parton scattering and double parton distributions

Some references (only a small selection)

more on short-distance factorisation

- J Collins, hep-ph/9907513 and hep-ph/0107252
- J Collins, Foundations of Perturbative QCD, CUP 2011
- short overview of GPDs and TMDs MD, arXiv:1512.01328
- full bibliography for GPDs e.g. in reviews
 S Boffi and B Pasquini, arXiv:0711.2625
 A Belitsky and A Radyushkin, hep-ph/0504030
 MD, hep-ph/0307382; K Goeke et al., hep-ph/0106012
- more on TMDs
 - S Mert Aybat and T Rogers, arXiv:1101.5057
 - T Rogers, arXiv:1509.04766
- multiparton interactions

Multiple Parton Interactions at LHC, eds. P Bartalini and J Gaunt, 2018 https://doi.org/10.1142/10646 (individual chapters on arXiv)

Quantum chromodynamics (QCD)

- theory of interactions between quarks and gluons
- ▶ very different from weak and electromagnetic interactions because coupling α_s is large at small momentum scales
 - quarks and gluons are confined inside bound states: hadrons (proton, neutron, pion, ...)
 - perturbative expansion in α_s only at high momentum scales
- symmetries
 - gauge invariance: group SU(3) ↔ colour charge electromagnetism: U(1) ↔ electric charge
 - Lorentz invariance and discrete symmetries:
 - P (parity = space inversion) T (time reversal)
 - C (charge conjugation)
 - chiral symmetry for zero masses of $\boldsymbol{u},\boldsymbol{d}$ and \boldsymbol{s}

• embedded in Standard Model: quarks couple to γ , W, Z and H

Why care about QCD?

without quantitative understanding of QCD would have very few physics results from LHC, Belle, ...

 $\blacktriangleright \ \alpha_s$ and quark masses are fundamental parameters of nature need e.g.

- m_t for precision fits in electroweak sector \rightarrow Higgs physics
- α_s to discuss possible unification of forces
- QCD is the one strongly interacting quantum field theory that we can study in experiment many interesting phenomena:
 - structure of proton
 - confinement
 - breaking of chiral symmetry
 - convergence of perturbative series

The QCD Lagrangian

$$\mathcal{L}_{\mathsf{QCD}} = -\frac{1}{2} \operatorname{tr} F^{\mu\nu} F_{\mu\nu} + \sum_{q=u,d,s,\dots} \overline{q} \left[i D^{\mu} \gamma_{\mu} - m_q \right] q$$

use implicit vector/matrix notation in colour space

- quark field q_i with i = 1, 2, 3
- covariant derivative $D^{\mu}_{ij} = \partial^{\mu} \delta_{ij} + ig A^{\mu}_{ij}$
- gluon potential $A^{\mu}_{ij} = A^{\mu a} t^a_{ij}$ with a = 1, ..., 8where $t^a_{ij} = \frac{1}{2} \lambda^a_{ij}$ are the generators of SU(3)
- gluon field strength

$$\begin{split} F^{\mu\nu} &= F^{\mu\nu a} t^{a} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} + ig[A^{\mu}, A^{\nu}] \\ \Rightarrow F^{\mu\nu a} &= \partial^{\mu} A^{\nu a} - \partial^{\nu} A^{\mu a} - g f^{abc} A^{\mu b} A^{\nu c} \end{split} \tag{Exercise}$$

where $f^{abc} =$ structure constants of SU(3): $[t^a, t^b] = i f^{abc} t^c$

Exercise: write out \mathcal{L}_{QCD} in terms of the fields $q_i, A^{\mu a}, F^{\mu \nu a}$

The QCD Lagrangian

$$\mathcal{L}_{\mathsf{QCD}} = -\frac{1}{2} \operatorname{tr} F^{\mu\nu} F_{\mu\nu} + \sum_{q=u,d,s,\dots} \overline{q} \left[i D^{\mu} \gamma_{\mu} - m_q \right] q$$

use implicit vector/matrix notation in colour space

- quark field q_i with i = 1, 2, 3
- covariant derivative $D^{\mu}_{ij} = \partial^{\mu} \delta_{ij} + ig A^{\mu}_{ij}$
- gluon potential $A^{\mu}_{ij} = A^{\mu a} t^a_{ij}$ with a = 1, ..., 8where $t^a_{ij} = \frac{1}{2} \lambda^a_{ij}$ are the generators of SU(3)
- gluon field strength

$$F^{\mu\nu}=F^{\mu\nu a}t^a=\partial^\mu A^\nu-\partial^\nu A^\mu+ig[A^\mu,A^\nu]=[D^\mu,D^\nu]/(ig)$$

gauge transformation:

$$\begin{split} q(x) &\to U(x) q(x) & \text{with } U(x) \in \mathsf{SU(3)} \\ D^{\mu}(x) &\to U(x) D^{\mu}(x) U^{\dagger}(x) & F^{\mu\nu}(x) \to U(x) F^{\mu\nu}(x) U^{\dagger}(x) \end{split}$$

Exercise: show that $\mathcal{L}_{\mathsf{QCD}}$ is gauge invariant

00000000000

Basics of perturbation theory

split Lagrangian into free and interacting parts:

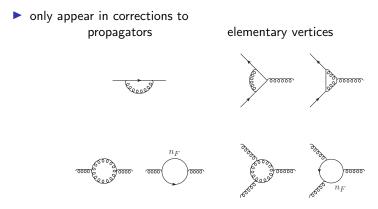
 $\mathcal{L}_{\mathsf{QCD}} = \mathcal{L}_{\mathsf{free}} + \mathcal{L}_{\mathsf{int}}$

- $\mathcal{L}_{\mathsf{int}}$: interaction terms $\propto g$ or g^2
- expand process amplitudes, cross sections, etc. in g
- Feynman graphs visualise individual terms in expansion
- \blacktriangleright from $\mathcal{L}_{\text{free}}$: free quark and gluon propagators
 - in position space: propagation from x^{μ} to y^{μ}
 - in momentum space: propagation with four-momentum k^{μ}
- ▶ from *L*_{int}: elementary vertices

Introduction	Renormalisation	Summary	Ex.
0000	•00000000000000	O	000000

Loop corrections

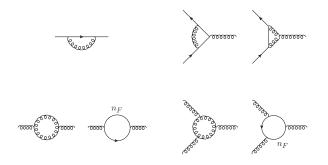
in loop corrections find ultraviolet (UV) divergences



Exercise: Draw the remaining one-loop graphs for all propagators and elementary vertices

Renormalisation	Summary	Ex.
000000000000000000000000000000000000000	0	00

- ► origin of UV divergences: region of ∞ ly large loop momenta ↔ quantum fluctuations at ∞ ly small space-time distances
- ▶ idea: encapsulate UV effects in (a few) parameters when describe physics at a given scale $\mu \rightsquigarrow$ renormalisation



- ▶ origin of UV divergences: region of ∞ ly large loop momenta ↔ quantum fluctuations at ∞ ly small space-time distances
- ▶ idea: encapsulate UV effects in (a few) parameters when describe physics at a given scale $\mu \rightsquigarrow$ renormalisation
- technically:
 - 1. regulate: artificial change of theory making div. terms finite
 - physically intuitive: momentum cutoff
 - in practice: dimensional regularisation
 - 2. renormalise: absorb UV effects into
 - coupling constant $\alpha_s(\mu)$
 - quark masses $m_q(\mu)$
 - quark and gluon fields (wave function renormalisation)
 - 3. remove regulator: quantities are finite when expressed in terms of renormalised parameters and fields

► renormalisation scheme: choice of which terms to absorb " ∞ " is as good as " $\infty + \log(4\pi)$ "

Dimensional regularisation in a nutshell

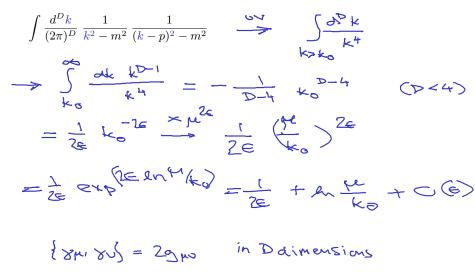
- choice of regulator pprox choice between evils
- dim. reg.: little (any?) physics intuition, but keeps intact essential symmetries (gauge and Lorentz invariance)
- idea: integrals for Feynman graphs become UV finite in lower space-time dimension, e.g.

$$\int \frac{d^D k}{(2\pi)^D} \frac{1}{k^2 - m^2} \frac{1}{(k - p)^2 - m^2}$$
 log. div. for $D = 4$ converg. for $D = 3, 2, 1$

procedure:

- 1. formulate theory in D dimensions (with D small enough)
- 2. analytically continue results from integer to complex D original divergences appear as poles in $1/\epsilon$ $(D = 4 2\epsilon)$
- 3. renormalise
- 4. take $\epsilon \to 0$

Dimensional regularisation in a nutshell: how poles arise



- enter: a mass scale μ
 - coupling in $4 2\epsilon$ dimensions is $\mu^{\epsilon}g$ with g dimensionless Exercise: see how this happens in detail
 - any other regularisation introduces a mass parameter as well
 - \leadsto renormalised quantities depend on μ

Renormalisation group equations (RGE)

scale dependence of renormalised quantities described by differential equations:

$$\frac{d}{d\log\mu^2} \alpha_s(\mu) = \beta \left(\alpha_s(\mu) \right)$$
$$\frac{d}{d\log\mu^2} m_q(\mu) = m_q(\mu) \gamma_m \left(\alpha_s(\mu) \right)$$

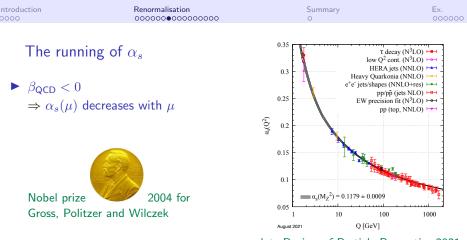
▶ β , γ_m = perturbatively calculable functions in region where $\alpha_s(\mu)$ is small enough

$$\beta = -b_0 \alpha_s^2 \left[1 + b_1 \alpha_s + b_2 \alpha_s^2 + b_3 \alpha_s^3 + \dots \right]$$

$$\gamma_m = -c_0 \alpha_s \left[1 + c_1 \alpha_s + c_2 \alpha_s^2 + c_3 \alpha_s^3 + \dots \right]$$

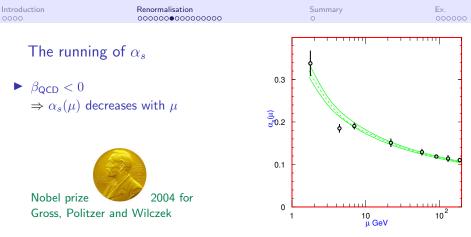
coefficients known including b_4, c_4 (b_4 since 2016)

$$b_0 = \frac{1}{4\pi} \left(11 - \frac{2}{3} n_F \right) \qquad c_0 = \frac{1}{\pi}$$



plot: Review of Particle Properties 2021

- asymptotic freedom at large μ
- perturbative expansion becomes invalid at low μ quarks and gluons are strongly bound inside hadrons: confinement momenta below $1 \text{ GeV} \leftrightarrow \text{distances above } 0.2 \text{ fm}$



plot: Review of Particle Properties 2003

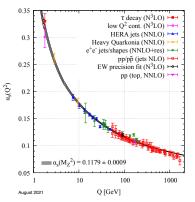
- asymptotic freedom at large μ
- perturbative expansion becomes invalid at low μ quarks and gluons are strongly bound inside hadrons: confinement momenta below $1 \text{ GeV} \leftrightarrow \text{distances above } 0.2 \text{ fm}$

The running of α_s

• truncating
$$eta = -b_0 \, lpha_s^2 (1+b_1 lpha_s)$$
 get

$$\begin{split} \alpha_s(\mu) &= \frac{1}{b_0 L} - \frac{b_1 \log L}{(b_0 L)^2} + \mathcal{O}\Big(\frac{1}{L^3}\Big) \end{split}$$
 with $L = \log \frac{\mu^2}{\Lambda_{\rm QCD}^2}$

Exercise: check this equation



plot: Review of Particle Properties 2021

• dimensional transmutation:

mass scale Λ_{QCD} not in Lagrangian, reflects quantum effects

Introduction Renor	rmalisation		Ex.
0000 0000	0000000000	0	000000

Solving the RGE for α_s

$$\frac{d}{d\log\mu^{2}}\alpha_{s}(\mu) = \beta(\alpha_{s}(\mu)) : \mu(\alpha_{s}) : \frac{d(n\mu^{2}(\kappa_{s}))}{d\alpha_{s}} = \frac{1}{\beta(\kappa_{s})}$$

$$\Rightarrow \beta_{m}\frac{\mu^{2}}{Q^{2}} = \int_{-\infty}^{\infty} \frac{d(n\mu)}{\beta(\kappa)} \frac{d(n\mu)}{\omega_{s}} \int_{-\infty}^{\infty} \frac{1}{\beta(\kappa)} \frac{d(n\mu)}{\beta(\kappa)} - \frac{1}{\alpha_{s}(\mu)} \int_{-\infty}^{\infty} \frac{1}{\beta(\kappa)} \int_{-\infty}^{\infty} \frac{d(n\mu)}{\beta(\kappa)} \int_{-\infty}^{\infty}$$

Introduction	Renormalisation	Summary	Ex.
0000	000000000000000	O	000000

Solving the RGE for α_s

let $\alpha_s(n) = \infty \implies \alpha_s(\mu) = -\frac{1}{2}$ beyond LO : B= -boxs2 (1+b,xs +...) $g_{n} \frac{q_{t}^{2}}{\Lambda^{2}} = \cdot \int_{-\infty}^{\infty} \frac{dq}{\beta(q)} + \Delta$ $=\frac{1}{b_{0}}\left(\frac{1}{\alpha_{s}}+b_{1}\ln\alpha_{s}-b_{1}\ln\left(1+b_{1}\alpha_{s}\right)\right)+\Delta$ $\Rightarrow \frac{0(\pi s)}{\sqrt{s(\mu)}} = b_0 h_{\sqrt{2}}^{\frac{\mu^2}{2}} - b_1 h(\pi s(\mu)) - b_0 \Delta + O_{S}^{\frac{\mu^2}{2}}$

Introduction	Renormalisation	Summary	Ex.
0000	000000000000000	0	000000

Solving the RGE for α_s

Introduction	Renormalisation	Summary	Ex.
0000	00000000000000	0	000000

Scale dependence of observables

- observables computed in perturbation theory depend on renormalisation scale μ
 - implicitly through $\alpha_s(\mu)$
 - explicitly through terms $\propto \log(\mu^2/Q^2)$ where Q = typical scale of process

e.g. $Q = p_T$ for production of particles with high p_T $Q = M_H$ for decay Higgs \rightarrow hadrons Q = c.m. energy for $e^+e^- \rightarrow$ hadrons

µ dependence of observables must cancel at accuracy of the computation

Introduction	Renormalisation	Summary	Ex.
0000	0000000000000000	0	000000

Scale dependence of observables

see how this works (consider problem without running masses)

$$C(Q) = \alpha_s^n(Q) \left[C_0 + \alpha_s(Q) C_1 + \mathcal{O}(\alpha_s^2) \right]$$

$$\alpha_{s}^{m}(\alpha) = \alpha_{s}^{h}(\mu) \left(1 + n \alpha_{s}(\mu) b_{0} \ln \frac{\mu^{2}}{Q^{2}} + \dots \right)$$

$$\Rightarrow C(Q) = \alpha_s (\mu) \left(C_0 + \kappa_s(\mu) C_1 + \alpha_s(\mu) C_0 \right)$$

 $\times n b_0 \partial u \frac{\mu^2}{\beta^2} + O(\kappa_0^2)$

Introduction	Renormalisation	Summary	Ex.
0000	000000000000000000000000000000000000000	0	000000

Scale dependence of observables

 \blacktriangleright for generic observable C have expansion

$$C(Q) = \alpha_s^n(\mu) \left[C_0 + \alpha_s(\mu) \left\{ C_1 + nb_0 C_0 \log \frac{\mu^2}{Q^2} \right\} + \mathcal{O}(\alpha_s^2) \right]$$

Exercise: check that this satisfies

$$\frac{d}{d\log\mu^2}C = \mathcal{O}\big(\alpha_s^{n+2}\big)$$

 \Rightarrow residual scale dependence when truncate perturbative series

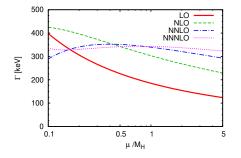
> at higher orders:

 $\alpha_s^{n+k}(\mu)$ comes with up to k powers of $\log(\mu^2/Q^2)$

• choose $\mu \sim Q$ so that $\alpha_s \log(\mu/Q) \ll 1$ otherwise higher-order terms spoil series expansion

Example

- inclusive hadronic decay of Higgs boson via top quark loop (i.e. without direct coupling to b quark)
- ▶ in perturbation theory: $H \rightarrow 2g$, $H \rightarrow 3g$, ... known to N³LO Baikov, Chetyrkin 2006



- scale dependence decreases at higher orders
- scale variation by factor 2 up- and downwards often taken as estimate of higher-order corrections
- choice $\mu < M_H$ more appropriate

Introduction F	Renormalisation	Summary	Ex.
0000 0	000000000000000000000000000000000000000	0	000000

Quark masses

▶ recall: α_s and m_q depend on renormalisation scheme

- standard in QCD: $\overline{\text{MS}}$ scheme \rightsquigarrow running $\alpha_s(\mu)$ and $m_q(\mu)$
- for heavy quarks c, b, t can also use pole mass def. by condition: quark propagator has pole at $p^2 = m_{pole}^2$ possible in perturbation theory, but in nature quarks confined scheme transformation:

$$m_{\text{pole}} = m(\mu) \left[1 + \frac{\alpha_s(\mu)}{\pi} \left(\frac{4}{3} - \log \frac{m^2(\mu)}{\mu^2} \right) + \mathcal{O}(\alpha_s^2) \right]$$

MS masses from Review of Particle Properties 2021

$$m_u = 2.16^{+0.49}_{-0.26} \text{ MeV}$$
 $m_d = 4.67^{+0.48}_{-0.17} \text{ MeV}$ $m_s = 93^{+11}_{-5} \text{ MeV}$
at $\mu = 2 \text{ GeV}$

$$\overline{m}_c = 1.27 \pm 0.02 \text{ GeV} \quad \overline{m}_b = 4.18^{+0.03}_{-0.02} \text{ GeV} \quad \overline{m}_t = 162.5^{+2.1}_{-1.5} \text{ GeV}$$
with $m_q(\mu = \overline{m}_q) = \overline{m}_q$

Introduction	Renormalisation	Summary	Ex.
0000	00000000000000	0	000000

Quark masses

solution of the RGE

$$\frac{d}{d\log\mu^2} m_q(\mu) = m_q(\mu) \gamma_m \left(\alpha_s(\mu)\right)$$

 \blacktriangleright switch variables from μ to $\alpha_s \rightsquigarrow$

$$\frac{d}{d\alpha_s} \log m_q(\alpha_s) = \frac{\gamma_m(\alpha_s)}{\beta(\alpha_s)}$$
$$\Rightarrow \quad m_q(\mu) = m_q(\mu_0) \exp\left[\int_{\alpha_s(\mu_0)}^{\alpha_s(\mu)} d\alpha \, \frac{\gamma_m(\alpha)}{\beta(\alpha)}\right]$$

Exercise:

evaluate the integral with $\gamma_m(\alpha_s)$ and $\beta(\alpha_s)$ approximated at NLO

 \blacktriangleright important other RGEs have the same form \rightsquigarrow same form of solution

Summary of part 1: renormalisation

- ▶ beyond all technicalities reflects physical idea: eliminate details of physics at scales ≫ scale Q of problem
- running of $\alpha_s \rightsquigarrow$ characteristic features of QCD:
 - asymptotic freedom at high scales \rightsquigarrow use perturbation theory
 - strong interactions at low scales \rightsquigarrow need other methods
 - introduces mass scale Λ_{QCD} into theory
- dependence of observable on µ governed by RGE reflects (and estimates) particular higher-order corrections ... but not all

Introduction	Renormalisation	Summary	Ex.
0000	00000000000000	O	●00000

Exercises

- 1. QCD Lagrangian
 - Deduce the expression of $F^{\mu\nu a}$ from the representation of $F^{\mu\nu} = F^{\mu\nu a} t^a$ given on slide 6.
 - Write out \mathcal{L}_{QCD} with explicit colour indices in terms of the fields $q_i, A^{\mu a}, F^{\mu \nu a}$. useful relation: tr $t^a t^b = \delta^{ab}/2$
 - Verify the identity $F^{\mu\nu} = [D^{\mu}, D^{\nu}]/(ig)$. note: $[\partial^{\mu}, f]g = \partial^{\mu}fg - f\partial^{\mu}g = (\partial^{\mu}f)g$ for any f and g.
 - Show that the QCD Lagrangian is invariant under local SU(3) gauge transformations.
- 2. Draw the one-loop graphs for all propagators and elementary vertices that are not given on slide 9.

Introduction	Renormalisation	Summary	Ex.
0000	00000000000000	O	0●0000

Exercises

- 3. Dimensional regularisation
 - Determine the mass dimension of fields q and A^{μ} for QCD in $D=4-2\epsilon$ space-time dimensions.
 - Deduce the mass dimension of the coupling, taking into account all places where it appears in $\mathcal{L}_{\text{QCD}}.$

Use that the action $\int d^D x \mathcal{L}_{QCD}$ is dimensionless (in natural units, where $\hbar = 1$).

Introduction	Renormalisation	Summary	Ex.
0000	00000000000000	O	00●000

Exercises

- 4. Scale dependence
 - Prove the expression for $\alpha_s(\mu)$ given on slide 18. Start from the expression $1/\alpha_s(\mu) = b_0 L - b_1 \log \alpha_s(\mu) - b_0 \Delta + O(\alpha_s)$ derived in the lecture.
 - Verify that the scale dependence of C given on slide 24 is of order αⁿ⁺²_s.
 - Evaluate the explicit expression for the scale dependence of $m_q(\mu)$ on slide 27 to NLO, i.e. keeping the leading and the first subleading term in the exponent.

Introduction	Renormalisation	Summary	Ex.
0000	00000000000000	0	000000

Notes

Introduction	Renormalisation	Summary	Ex.
0000	00000000000000	0	000000

Notes

Introduction	Renormalisation	Summary	Ex.
0000	00000000000000	0	000000

Notes