Nucleon partonic structure: concepts and measurements Part 4: Parton distributions | Event generators

M. Diehl

Deutsches Elektronen-Synchroton DESY

Frontiers in Nuclear and Hadronic Physics 2022 GGI, Firenze, 21 Feb – 4 March

Fits of parton distributions

Parton densities involve QCD at low momentum scales \leftrightarrow large coupling

- \blacktriangleright can compute $\partial f(x,\mu)/\partial \mu$ in perturbation theory, but not $f(x,\mu)$
- ongoing effort to compute with non-perturbative methods e.g. in lattice QCD
- in practice: determined from experimental data

Principle of PDF determinations:

- data for observables with factorisation formulae most important: DIS (ep → e + X), Drell-Yan (pp → ℓ+ℓ⁻ + X, pp → ℓν + X), jets in ep and pp, tt̄ production in pp, ...
- parameterise PDFs at "starting" scale µ₀ use DGLAP eqs. to evolve to scales µ needed in fact. formulae
- determine PDF parameters by fit to data

Uncertainties on extracted PDFs "PDF errors"

- errors (stat. and syst.) of fitted data propagated to PDF parameters
- "systematic theory uncertainties"
 - selection of data sets and kinematics
 - perturbative order of evolution and hard-scattering cross sections
 - ▶ values of α_s and m_c, m_b and possibly other constants if taken as external parameters rather than fitted
 - fine details of perturbative calculations
 e.g. treatment of heavy quarks, resummation
 - ▶ power corrections (try to avoid by using data with $Q > Q_{\min}$)

recent work: include uncertainties from higher orders in PDF errors (using scale variation) Harland-Lang, Thorne 2018; Khalek et al. 2019

Illustration of PDF sets and their errors

- spread between different parameterisation often larger than error bands of single parameterisation
- error bands propagate uncertainties of fitted data into PDFs but do not reflect "systematic theory uncertainties" of extraction

Illustration of PDF sets and their errors

Strangeness distribution remains poorly known sometimes assume s(x) ∝ ū(x) + d̄(x) or s(x) ∝ d̄(x) at μ = μ₀ → small errors in fit

Illustration of PDF sets and their errors

 \blacktriangleright evolution to higher scales $\,\, \rightsquigarrow \,\, q \bar{q}$ pairs at low x

Illustration of PDF sets and their errors

- \blacktriangleright evolution to higher scales $~\leadsto~~q\bar{q}$ pairs at low x
- \blacktriangleright all q(x) and $\bar{q}(x)$ become similar at high scales and low x
- relative uncertainties shrink

Illustration of PDF sets and their errors

▶ $g(x) \gg q(x)$ for x below 0.1

 \blacktriangleright at low scale and low x gluon known very poorly

Illustration of PDF sets and their errors

•
$$g(x) \gg q(x)$$
 for x below 0.1

• evolution for g(x) even stronger than for q(x)

Strange quarks: recent results

ratio of strange to non-strange sea quarks:

$$R_s(x) = \frac{s(x) + \bar{s}(x)}{\bar{u}(x) + \bar{d}(x)}$$

ATLAS, arXiv:2112.11266

Polarised PDFs

figures: Khorramian et al, arXiv:2009.04808

 \blacktriangleright less data than for unpolarised case \rightsquigarrow PDFs less well known

• much of available DIS data at low-ish Q^2

Polarised PDFs

figures: Khorramian et al, arXiv:2009.04808

- uncertainties on strangeness much bigger than in unpolarised case
- fit results and errors strongly depend on assumed theory input

And now for something completely different

a few words about general-purpose event generators e.g. Herwig, Pythia, Sherpa

note: Many other generators exist, often with a specialised scope and approach. Not all of them fit the description given in the following.

Event	generators
0.	

- ▶ build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

ingredients:

• parton densities and hard-scattering matrix elements

Event	generators
0.	

- ▶ build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

ingredients:

- parton densities and hard-scattering matrix elements
- parton showers: collinear and soft radiation from partons in initial and final state (in perturbative region)

Event	generators
00	

- ▶ build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

ingredients:

- parton densities and hard-scattering matrix elements
- parton showers: collinear and soft radiation from partons in initial and final state (in perturbative region)
- models for multiparton interactions

Event	generators
0.	

- ▶ build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

ingredients:

- parton densities and hard-scattering matrix elements
- parton showers: collinear and soft radiation from partons in initial and final state (in perturbative region)
- models for multiparton interactions and hadronisation

Summary

- fits of parton distributions to experimental data have achieved a very high degree of sophistication
- shape of most unpolarised PDFs is well known, but open issues remain, e.g. strange quarks, gluon distribution at small x
- polarised PDFs generally less well-known
- general-purpose Monte Carlo event generators
 - produce fully exclusive (i.e. fully specified) final states
 - incorporate formalism and physics of factorisation but go beyond in describing the dynamics

PDFs	Event generators	Summary
000000	00	0000

Notes

PDFs	Event generators	Summary
000000	00	0000

Notes

PDFs	Event generators	Summary
000000	00	000●

Notes