Nucleon partonic structure: concepts and measurements

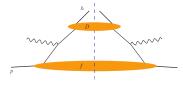
Part 6: TMDs

M. Diehl

Deutsches Elektronen-Synchroton DESY

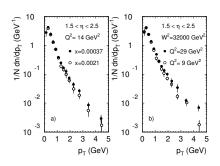
Frontiers in Nuclear and Hadronic Physics 2022 GGI, Firenze, 21 Feb – 4 March

Measured transverse momentum



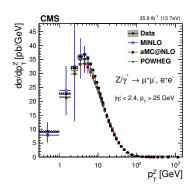
- consider
 - Drell-Yan with measured small q_T of γ^*
 - ullet SIDIS with measured small q_T of hadron
 - ullet $e^+e^ightarrow h_1h_2+X$ with h_1 , h_2 approx. opposite momenta and small relative q_T
- $ightharpoonup k_T \sim m$ from collinear graphs matters in final state
 - ullet can still neglect parton k_T in hard scattering
 - but do not $\int d^2 \mathbf{k}$ in parton densities and fragm. fcts.
 - \leadsto k_T dependent/unintegrated PDFs also called TMDs (transverse-momentum distributions)
- theoretical framework: TMD factorisation
 - also called k_T factorisation different from (but related to) k_T factorisation at small x

Measured transverse momentum



$$e + p \rightarrow e + h^{\pm} + X$$

 $h^{\pm} = \text{charged hadron}$
H1, hep-ex/9610006



$$p+p \rightarrow \ell^+\ell^- + X$$
 CMS, arXiv:1909.04133

κ_T dependent parton densities

 k_T integrated:

TMD factorisation

0000000

$$f_1(x) = \int \frac{dz^-}{4\pi} e^{iz^- p^+ x} \langle p, s | \bar{q}(0) \gamma^+ W(0, \infty) W(\infty, z^-) q(z^-) | p, s \rangle \Big|_{z^+ = 0, z = 0}$$

 k_T dependent:

$$\int \frac{dz^{-}}{4\pi} \frac{d^{2}\mathbf{z}}{(2\pi)^{2}} e^{iz^{-}p^{+}x} e^{-i\mathbf{k}\mathbf{z}} \langle p, s | \bar{q}(0)\gamma^{+}W(0, \infty)W(\infty, z^{-}, \mathbf{z}) q(z^{-}, \mathbf{z}) | p, s \rangle \Big|_{z^{+}=0}$$

- ► fields at different transv. positions implications on Wilson lines → later
- **ightharpoonup** notation: write k_T in text, omit T in boldface vector k etc.

k_T dependent parton densities

 k_T integrated:

$$f_1(x) = \int \frac{dz^-}{4\pi} e^{iz^- p^+ x} \langle p, s | \bar{q}(0) \gamma^+ W(0, \infty) W(\infty, z^-) q(z^-) | p, s \rangle \Big|_{z^+ = 0, z = 0}$$

 k_T dependent:

$$\begin{split} &\int \frac{dz^{-}}{4\pi} \frac{d^{2}\boldsymbol{z}}{(2\pi)^{2}} \, e^{iz^{-}p^{+}x} \, e^{-i\boldsymbol{k}\boldsymbol{z}} \big\langle p, s \big| \bar{q}(0)\gamma^{+}W(0, \infty)W(\infty, z^{-}, \boldsymbol{z}) q(z^{-}, \boldsymbol{z}) \big| p, s \big\rangle \Big|_{z^{+}=0} \\ &= f_{1}(\boldsymbol{x}, \boldsymbol{k}^{2}) - \frac{\epsilon^{ij}\boldsymbol{k}^{i}\boldsymbol{s}^{j}}{m} \, f_{1T}^{\perp}(\boldsymbol{x}, \boldsymbol{k}^{2}) & \epsilon^{12} &= -\epsilon^{21} = 1 \\ &\epsilon^{11} &= \epsilon^{22} = 0 \end{split}$$

- ► fields at different transv. positions implications on Wilson lines → later
- correlations between spins and transv. momentum e.g. Sivers function f_{1T}^{\perp}

A zoo of distributions

- collinear twist 2 densities:
 - f_1 unpol. quark in unpol. proton
 - g_1 correlate s_L of quark with S_L of proton
 - h_1 correlate s_T of quark with S_T of proton
- $ightharpoonup k_T$ dependent twist 2 densities:

$$f_1, g_1, h_1$$
 as above

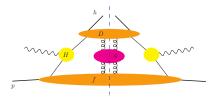
 f_{1T}^{\perp} correlate k_T of quark with S_T of proton (Sivers)

 h_1^{\perp} correlate k_T and s_T of quark (Boer-Mulders)

 $g_{1T}, h_{1T}^{\perp}, h_{1L}^{\perp}$ three more densities

- analogous for fragmentation functions:
 - $f_1 \leftrightarrow D_1$ unpolarized
 - $h_1^{\perp} \leftrightarrow H_1^{\perp}$ Collins fragm. fct.

ightharpoonup take Q large and q_T small ($\sim m$ for power counting purposes)



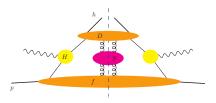
- transverse-momentum dep't distribution and fragmentation fcts.
- ▶ only virtual corrections to hard subgraph no radiation of high-p_T partons allowed

TMD factorisation

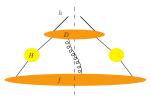
00000000

TMD factorisation (SIDIS as example)

ightharpoonup take Q large and q_T small ($\sim m$ for power counting purposes)

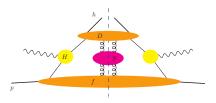


- ► soft gluon exchange does not cancel in sum over hadronic final state at leading-power accuracy gives soft factor in factorisation formula
 - S= universal non-perturbative fct
 - $\rightarrow 1$ when integrate over k_T cancellation between real

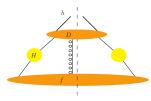


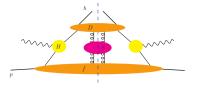
TMD factorisation (SIDIS as example)

ightharpoonup take Q large and q_T small ($\sim m$ for power counting purposes)



- ▶ soft gluon exchange does not cancel in sum over hadronic final state at leading-power accuracy gives soft factor in factorisation formula
 - S =universal non-perturbative fct
 - ightarrow 1 when integrate over k_T cancellation between real and virtual graphs

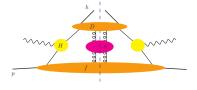




factorisation formula

$$\begin{split} \frac{d\sigma_{\gamma^*p}}{dz\,d\boldsymbol{q}^2} &= \left(\text{kin. fact.}\right) \times \left|H(\mu)\right|^2 \int d^2\boldsymbol{p}\; d^2\boldsymbol{k}\; d^2\boldsymbol{l}\; \delta^{(2)} \left(\boldsymbol{p} - \boldsymbol{k} + \boldsymbol{l} + \boldsymbol{q}\right) \\ &\times \sum_{i=q,\bar{q}} e_i^2 \, f^i(x,\boldsymbol{p},\mu) \, D^i(z,\boldsymbol{k},\mu) \, S(\boldsymbol{l},\mu) \end{split}$$

- ▶ no $\int d^2k$ in parton densities \rightsquigarrow no DGLAP type evolution !!
- various azimuthal and spin asymmetries



factorisation formula

$$\begin{split} \frac{d\sigma_{\gamma^*p}}{dz\,d\boldsymbol{q}^2} &= \left(\text{kin. fact.}\right) \times |H(\mu)|^2 \int d^2\boldsymbol{p}\; d^2\boldsymbol{k}\; d^2\boldsymbol{l}\; \delta^{(2)} \big(\boldsymbol{p}-\boldsymbol{k}+\boldsymbol{l}+\boldsymbol{q}\big) \\ &\quad \times \sum_{i=q,\bar{q}} e_i^2 \, f^i(x,\boldsymbol{p},\mu) \, D^i(z,\boldsymbol{k},\mu) \, S(\boldsymbol{l},\mu) \end{split}$$

simplifies if Fourier transform

$$f(\boldsymbol{p}) \rightarrow f(\boldsymbol{b}), \ D(\boldsymbol{k}) \rightarrow D(\boldsymbol{b}), \ S(\boldsymbol{l}) \rightarrow S(\boldsymbol{b})$$
:

$$\frac{d\sigma_{\gamma^*p}}{dz\,d\boldsymbol{q}^2} = \left(\text{kin.fact.}\right) \times |H(\mu)|^2 \int d^2\boldsymbol{b} \; e^{-i\boldsymbol{b}\boldsymbol{q}} \sum_{i=q,\bar{q}} e_i^2 \, f^i(x,\boldsymbol{b},\mu) \, D^i(z,\boldsymbol{b},\mu) \, S(\boldsymbol{b},\mu)$$

note: b here not the same as b in GPDs (will later call z)

redefine f and D to each absorb factor \sqrt{S}

- TMD distributions also depend on rapidity parameter ζ
- Collins-Soper equation and RGE for f (same for D):

$$\begin{split} \frac{d}{d\ln\sqrt{\zeta}}\,f(x,b,\zeta,\mu) &= K(b,\mu)\,f(x,b,\zeta,\mu) \\ \frac{d}{d\ln\mu}\,f(x,b,\zeta,\mu) &= \gamma_F(\zeta,\mu)\,f(x,b,\zeta,\mu) \quad \text{(no x integral as in DGLAP eq.)} \end{split}$$

"cusp anomalous dimension"

$$\frac{dK(b,\mu)}{d\ln\mu} = \frac{d\gamma_F(\zeta,\mu)}{d\ln\sqrt{\zeta}} = -\gamma_K(\mu) = -C_F \frac{2\alpha_s(\mu)}{\pi} + \dots$$

$$C_F = rac{N_c^2 - 1}{2N_c}$$
 for colour group $SU(N_c)$

- TMD distributions also depend on rapidity parameter ζ
- ► Collins-Soper equation and RGE for *f* (same for *D*):

$$\frac{d}{d\ln\sqrt{\zeta}}\,f(x,b,\zeta,\mu) = K(b,\mu)\,f(x,b,\zeta,\mu)$$

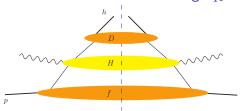
$$\frac{d}{d\ln\mu}\,f(x,b,\zeta,\mu) = \gamma_F(\zeta,\mu)\,f(x,b,\zeta,\mu) \quad \text{(no x integral as in DGLAP eq.)}$$

solution:

$$\frac{f(x, b, \zeta, \mu)}{f(x, b, \zeta_0, \mu_0)} = \exp\left\{-\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_K(\mu') \ln \frac{\sqrt{\zeta}}{\mu'} - \gamma_F(\mu'^2, \mu')\right] + K(b, \mu_0) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\}$$

- $ightharpoonup \exp\{\ldots\} = \mathsf{Sudakov} \; \mathsf{factor}$
- ▶ in exponent have "double logarithms" $\ln^2(\mu/\mu_0)$ for $\zeta \sim \mu^2$ in cross section set $\sqrt{\zeta} \sim \mu \sim Q$ and $\sqrt{\zeta}_0 \sim \mu_0 \sim q_T$
- $ightharpoonup K(b,\mu)$ calculable in pert. theory only if b is small need to interpolate between small and large b

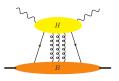
Compare with collinear factorisation for large q_T



$$\begin{split} \frac{d\sigma_{\gamma^*p}}{dz\,d\boldsymbol{q}^2} &= (\text{kin. fact.}) \times \int_x^1 \frac{d\hat{x}}{\hat{x}} \, \int_z^1 \frac{d\hat{z}}{\hat{z}} \, \delta\!\left(\frac{\boldsymbol{q}^2}{Q^2} - \frac{(1-\hat{x})(1-\hat{z})}{\hat{x}\hat{z}}\right) \\ &\times \sum_{i,j=n,\bar{q},q} f_i\!\left(\frac{x}{\hat{x}},\mu^2\right) \! D_j\!\left(\frac{z}{\hat{z}},\mu^2\right) C_{ij}\!\left(\hat{x},\hat{z},\ln\frac{\mu^2}{Q^2}\right) \end{split}$$

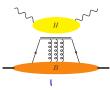
- $ightharpoonup C_{ij}$ start at $\mathcal{O}(\alpha_s)$, must emit partons recoiling against q
- convolution in momentum fractions

Wilson lines in short-distance factorisation



- lacktriangle exchange of >2 partons between H and B power suppressed
- except for A^+ gluon exchange \sim resum to all orders
- $\begin{array}{ll} \blacktriangleright \ H^{\mu}(l) & \text{all components big} \\ B^{\mu}(l) \propto l^{\mu} & \text{only plus-component big } (p^{\mu} \text{ and } l^{\mu} \text{ collinear momenta}) \\ & \leadsto \quad H_{\mu} \, B^{\mu} \approx H^{-} B^{+} \end{array}$

Wilson lines in short-distance factorisation

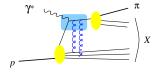


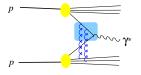
- lacktriangle exchange of >2 partons between H and B power suppressed
- ▶ except for A⁺ gluon exchange ~ resum to all orders
- $H^{\mu}(l)$ all components big $B^{\mu}(l) \propto l^{\mu}$ only plus-component big $(p^{\mu} \text{ and } l^{\mu} \text{ collinear momenta})$ $\hookrightarrow H_{\mu} B^{\mu} \approx H^{-} B^{+}$
- ▶ Ward identities \leadsto gluons removed from H in B obtain Wilson line $W(a,b) = \operatorname{P}\exp\left[ig\int_a^b dz^- \,A^+(z)\right]_{z^+=0,\, \pmb{z}=\pmb{0}}$

$$q(x) \propto \int dz^{-} e^{ixp^{+}z^{-}} \langle p | \bar{q}(0) W(0,z) \gamma^{+} q(z) | p \rangle \Big|_{z^{+}=0, z=0}$$

Wilson lines in TMDs

TMD factorisation

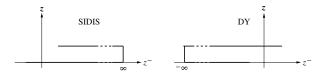




$$q(x, \mathbf{k}^2) \propto \int dz^- d^2 \mathbf{z} \, e^{ixp^+z^-} e^{-i\mathbf{k}\mathbf{z}} \langle p | \, \bar{q}(0) \, W_P(0, z) \, \gamma^+ q(z) \, | p \rangle \Big|_{z^+=0}$$

- ightharpoonup space-time structure of process \leadsto path P in Wilson line
- ► SIDIS: interactions after quark struck by photon DY: interactions before quark annihilates

Wilson lines in TMDs



$$q(x, \mathbf{k}^2) \propto \int dz^- d^2 \mathbf{z} \, e^{ixp^+z^-} e^{-i\mathbf{k}\mathbf{z}} \langle p | \, \bar{q}(0) \, W_P(0, z) \, \gamma^+ q(z) \, | p \rangle \Big|_{z^+=0}$$

- ightharpoonup space-time structure of process \leadsto path P in Wilson line
- ► SIDIS: interactions after quark struck by photon DY: interactions before quark annihilates
- obtain "staple like" paths
 - Feynman gauge: pieces at $z^- \to \pm \infty$ not important
 - light-cone gauge $A^+=0$: straight sections $\to 1$ all effects from $z^-\to +\infty$

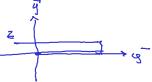
Wilson lines at lowest order

$$\frac{e^{2\pi i k+q}}{e^{2\pi i k+q}} = \frac{e^{2\pi i k+q}}{e^{2\pi i k+q$$

$$=\int \frac{dz}{2\pi} e^{ik^{+}z-ik^{+}z^{-}} \int \frac{de^{+}}{2\pi} e^{ie^{+}(y^{-}-z^{-})} \frac{i}{e^{+-ie}}$$

$$= - \frac{1}{\sqrt{2}} \int_{\mathbb{R}^{2}} dy \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$$

TMD factorisation



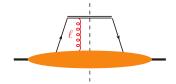
Drell-Yan

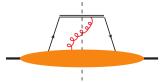
$$\frac{i}{(q-\widehat{k}+\widehat{\varrho})^2+i\varepsilon}$$

Rapidity divergences revisited

- ▶ arise as $\int\limits_0^{} d\ell^+/\ell^+$ from region $\ell^+ \to 0$ at nonzero $\ell^ \leadsto$ negative rapidity, should not be inside TMD
- ightharpoonup need to regulate $\ \leadsto$ rapidity "cutoff" parameter ζ

$$\frac{d}{d\ln\sqrt{\zeta}} = \frac{d}{d({\sf rapidity})}$$





▶ $\int d^2 {m k} \sim$ divergences cancel between real and virtual graphs \sim not present in usual PDFs (or GPDs)

Wilson line has physical consequences

lacktriangle transverse proton polarization \leadsto anisotropic k distribution

$$f_{q/p\uparrow}(x, \mathbf{k}) = f_1(x, \mathbf{k}^2) + \frac{(\mathbf{S} \times \mathbf{k}) \cdot \mathbf{p}}{m|\mathbf{p}|} f_{1T} \perp (x, \mathbf{k}^2)$$

- lacktriangleright induces anisotropic p_T distribution in SIDIS (Sivers effect) observed experimentally
- ► time reversal changes sign of $(S \times k) \cdot p$ \Rightarrow Sivers function = 0 ??

Wilson line has physical consequences

ightharpoonup transverse proton polarization ightharpoonup anisotropic k distribution

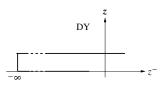
$$f_{q/p\uparrow}(x, \mathbf{k}) = f_1(x, \mathbf{k}^2) + \frac{(\mathbf{S} \times \mathbf{k}) \cdot \mathbf{p}}{m|\mathbf{p}|} f_{1T} \perp (x, \mathbf{k}^2)$$

- ightharpoonup induces anisotropic p_T distribution in SIDIS (Sivers effect) observed experimentally
- ▶ time reversal changes sign of $(S \times k) \cdot p$ \Rightarrow Sivers function = 0 ??
- no: time reversal interchanges Wilson lines for SIDIS (future pointing) and DY (past pointing)

$$\leftrightarrow f_{1T}^{\perp,\text{SIDIS}}(x, \mathbf{k}^2) = -f_{1T}^{\perp,\text{DY}}(x, \mathbf{k}^2)$$

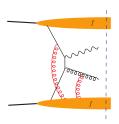
J. Collins '02

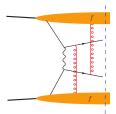




- ightharpoonup examples: $pp \to \gamma + \text{jet} + X$, $pp \to \pi + \text{jet} + X$
- more partons in initial and final state
 - \leadsto more complicated Wilson lines
 - → more parton densities and fragm. functions

Bomhof, Mulders, Pijlman, Buffing '04-'15





► two-loop analysis \rightsquigarrow breakdown of TMD factorisation

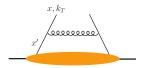
Mulders, Rogers '10

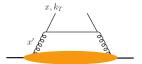
TMD factorisation

Two-scale regime

Relation between high- q_T and low- q_T descriptions

• for $q_T \gg m$ calc. k_T dependent densities from coll. ones:



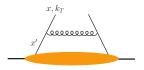


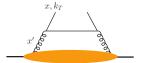
$$f_1^i(x, \mathbf{k}^2; \zeta, \mu) = \frac{1}{\mathbf{k}^2} \sum_j \int_x^1 \frac{dx'}{x'} K^{ij} \left(\frac{x}{x'}, \ln \frac{\mathbf{k}^2}{\zeta}\right) f_1^j(x'; \mu)$$

K closely related with DGLAP splitting functions P

Relation between high- q_T and low- q_T descriptions

• for $q_T \gg m$ calc. k_T dependent densities from coll. ones:





$$f_1^i(x, \boldsymbol{b}^2; \zeta, \mu) = f_1^i(x; \mu) + \sum_j \int_x^1 \frac{dx'}{x'} \, \widetilde{K}^{ij} \Big(\frac{x}{x'}, \ln \frac{\mu^2}{\zeta}, \ln(\mu^2 \boldsymbol{b}^2) \Big) \, f_1^j(x'; \mu)$$

 \widetilde{K} closely related with DGLAP splitting functions P

Comparison between high- q_T and low- q_T descriptions

- ▶ collinear fact. requires $q_T \gg m$ k_T fact. requires $q_T \ll Q$ \leadsto in region $m \ll q_T \ll Q$ both approaches are valid
- ▶ compare $q_T\gg m$ limit of k_T fact. result with $q_T\ll Q$ limit of coll. fact. result \leadsto full agreement for unpol. cross section

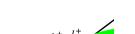
Collins, Soper, Sterman '85; Bacchetta et al. '08

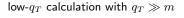
 \blacktriangleright detailed comparison also for various spin asymmetries e.g. Sivers asy. in SIDIS or Drell-Yan at low q_T (Sivers fct.) and high q_T (Qiu-Sterman fct.)

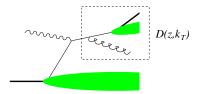
Ji, Qiu, Vogelsang, Yuan '06; Koike, Vogelsang, Yuan '07

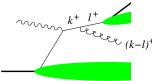
Correspondence at level of graphs

high- q_T calculation



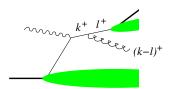




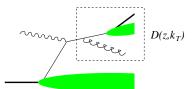


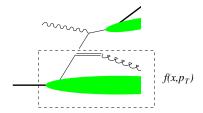
Correspondence at level of graphs

high- q_T calculation



low- q_T calculation with $q_T\gg m$





Transverse momentum vs. position

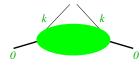
- variables related by 2d Fourier transforms, e.g.
 - quark fields $\tilde{q}({\pmb k},z^-)=\int d^2{\pmb z}\;e^{i{\pmb z}{\pmb k}}q({\pmb z},z^-)$
 - proton states $|p^+, {m b}\rangle = \int d^2{m p} \; e^{-i{m b}{m p}} |p^+, {m p}\rangle$
- in bilinear operators

$$\begin{split} & \overline{\tilde{q}}(\boldsymbol{k}) \, \tilde{q}(\boldsymbol{l}) = \int \! d^2 \boldsymbol{y} \, d^2 \boldsymbol{z} \, e^{-i(\boldsymbol{y}\boldsymbol{k} - \boldsymbol{z}\boldsymbol{l})} \, \overline{q}(\boldsymbol{y}) \, q(\boldsymbol{z}) \\ & \boldsymbol{y} \, \boldsymbol{k} - \boldsymbol{z} \, \boldsymbol{l} = \frac{1}{2} (\boldsymbol{y} + \boldsymbol{z}) (\boldsymbol{k} - \boldsymbol{l}) + \frac{1}{2} (\boldsymbol{y} - \boldsymbol{z}) (\boldsymbol{k} + \boldsymbol{l}) \end{split}$$

- 'average' transv. momentum ↔ position difference transv. momentum transfer ↔ 'average' position
- 'average' transv. mom. and position not Fourier conjugate

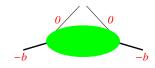
Mind the difference

TMDs



$$\int d^2 \mathbf{z} \, e^{-i\mathbf{z}\mathbf{k}} \, \langle \mathbf{0} | \bar{q}(-\frac{1}{2}\mathbf{z}) \dots q(\frac{1}{2}\mathbf{z}) | \mathbf{0} \rangle$$

impact parameter distributions



$$\int d^2 \Delta \, e^{-i\mathbf{b}\Delta} \, \langle -\frac{1}{2}\Delta | \bar{q}(\mathbf{0}) \dots q(\mathbf{0}) | \frac{1}{2}\Delta \rangle$$

(longitudinal variables not shown for simplicity)

Fourier conjugates:

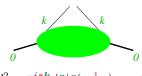
difference of transv. momenta
$$\leftrightarrow$$
 $H(x, \Delta)_{\varepsilon=0}$

average transv. position
$$q(x, \mathbf{b})$$

Mind the difference

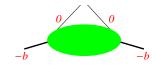
TMDs

TMD factorisation



$$\int d^2 \mathbf{z} \, e^{-i\mathbf{z}\mathbf{k}} \, \langle \mathbf{0} | \bar{q}(-\frac{1}{2}\mathbf{z}) \dots q(\frac{1}{2}\mathbf{z}) | \mathbf{0} \rangle$$

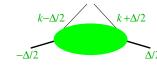
impact parameter distributions



$$\int d^2 \Delta \, e^{-i\mathbf{b}\Delta} \, \langle -\frac{1}{2}\Delta | \bar{q}(\mathbf{0}) \dots q(\mathbf{0}) | \frac{1}{2}\Delta \rangle$$

more general:

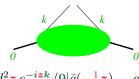
GTMDs



$$\int d^2 \boldsymbol{z} \, e^{-i \boldsymbol{z} \boldsymbol{k}} \, \langle -\tfrac{1}{2} \boldsymbol{\Delta} | \bar{q} (-\tfrac{1}{2} \boldsymbol{z}) \dots q (\tfrac{1}{2} \boldsymbol{z}) | \tfrac{1}{2} \boldsymbol{\Delta} \rangle$$

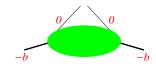
Two-scale regime

TMDs



$$\int d^2 \boldsymbol{z} \, e^{-i\boldsymbol{z}\boldsymbol{k}} \, \langle \boldsymbol{0} | \bar{q}(-\frac{1}{2}\boldsymbol{z}) \dots q(\frac{1}{2}\boldsymbol{z}) | \boldsymbol{0} \rangle$$

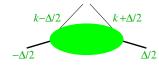
impact parameter distributions



$$\int d^2 \Delta \, e^{-ib\Delta} \, \langle -\frac{1}{2} \Delta | \bar{q}(\mathbf{0}) \dots q(\mathbf{0}) | \frac{1}{2} \Delta \rangle$$

more general:

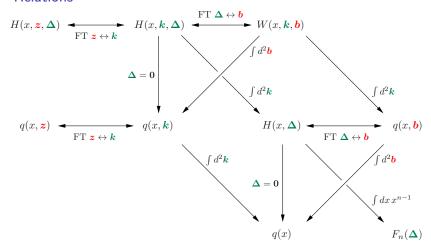
GTMDs



$$\int d^2 {m z} \, e^{-i {m z} {m k}} \, \langle - {1 \over 2} {m \Delta} | ar q (- {1 \over 2} {m z}) \dots q ({1 \over 2} {m z}) | {1 \over 2} {m \Delta}
angle$$

Fourier transf. from Δ to b \rightsquigarrow Wigner functions parton momentum and position within limits of uncertainty rel'n

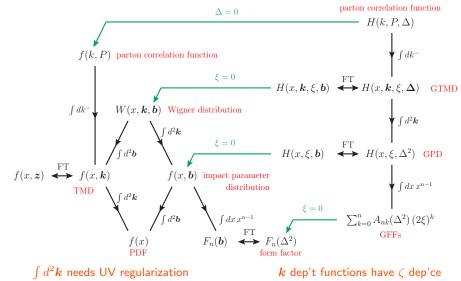
TMD factorisation



 $\int d^2 {m k}$ needs UV regularization

GPDs taken at zero skewness $\xi = 0$ \boldsymbol{k} dep't functions have ζ dep'ce

More relations



 $\int d^2 \mathbf{k}$ needs UV regularization

k dep't functions have ζ dep'ce

naive:

$$\int d^2 \mathbf{k} \, q(x, \mathbf{k}) = q(x)$$

cannot be true because $q(x, \mathbf{k}) \sim 1/\mathbf{k}^2$ at large \mathbf{k}

correct:

$$\int\limits_{\pmb k^2<\mu^2}\!\!\!\!d^2\pmb k\,q(x,\pmb k;\zeta,\mu)=q(x;\mu)+\text{calculable terms of }\mathcal O(\alpha_s)$$

 \blacktriangleright Fourier trf. from k to z:

instead of
$$\int\limits_{{\bm k}^2<\mu^2}\!\!\!d^2{\bm k}$$
 take $\int d^2{\bm k}\,e^{i{\bm k}{\bm z}}$ with $|{\bm z}|=1/\mu$

oscillations suppress region $|{m k}|\gg 1/|{m z}|$

$$q(x, \mathbf{z}; \zeta, \mu) = q(x; \mu) + \text{calculable terms of } \mathcal{O}(\alpha_s)$$

see earlier slide

Summary of part 6

- ▶ TMD factorisation for measured p_T ≪ hard scale
- important differences with collinear factorisation, different evolution
- ▶ subtle dynamical effects due to gluons ~> Wilson lines
- ightharpoonup valid for restricted class of processes for some cases smooth theoretical transition to high p_T regime
- theoretically controlled access to transverse parton momentum
- Wigner functions: unifying framework for describing transverse momentum and position

Notes

TMD factorisation

Notes

TMD factorisation

Notes