Lecture 6. Born-Oppenheimer approximation for double charm baryons and tetraquarks

• Summary

- 1. The overall panorama \checkmark
- 2. Constituent Quark Model and masses of conventional mesons and baryons \checkmark
- 3. Light and Heavy Tetraquarks. First comparison with hadron molecules \checkmark
- 4. Tetraquarks and the EightFold Way. Di-J/ Ψ resonances. \checkmark
- 5. X(3872) and its missing partners \checkmark
- 6. Born-Oppenheimer approximation for double charm baryons and tetraquarks \checkmark
- 7. Multiquark states in N colours, in the $N \rightarrow \infty$ limit
- 8. Tetraquarks vs. molecules: the Weinberg criterium for X(3872) and the double charm $\mathcal{T}_{cc}^+(3875)$

GGI Firenze. Feb. 21-25, 2022

The new sensation: doubly heavy baryons

Esposito, M. Papinutto, A. Pilloni, A. D. Polosa, and N. Tantalo, Phys. Rev. D88, 054029 (2013) M. Karliner and J. L. Rosner, arXiv:1707.07666 [hep-ph]. E. J. Eichten and C. Quigg, arXiv:1707.09575 [hep-ph].

 \overline{C}

q

a

E. Braaten, 10th Workshop on CHARM Physics 2021, Mexico City

Born-Oppenheimer Approximation for Quarkonium Hybrids

pioneered by Juge, Kuti, Morningstar 1999

- heavy quark mass $\gg \Lambda_{QCD}$
- Q and \overline{Q} move nonrelativisticly
- gluons respond almost instantaneously to the motion of the Q and \overline{Q}

S. Fleck and J. M. Richard, Prog. Theor. Phys. 82 (1989) 760.
E. Braaten, C. Langmack and D. H. Smith, Phys. Rev. D 90 (2014) 014044.
N. Brambilla, G. Krein, J. Tarrs Castell and A. Vairo, Phys. Rev. D 97, 016016 (2018);

E. Braaten, 10th Workshop on CHARM Physics 2021, Mexico City

Doubly Heavy Hadrons

Born-Oppenheimer approximation Light QCD fields in the presence of static Q Q sources can have light-quark flavor q or $\bar{q} \bar{q}$!

doubly heavy baryon

QQQ

Maiani, Polosa & Riquer arXiv:1903.10253 Soto & Tarrus Castella arXiv:2005.00551 doubly heavy tetraquark

Bicudo & Wagner arXiv:1209.6724 Maiani, Polosa & Riquer arXiv:1903.10253

30

GGI Firenze. Feb. 21-25, 2022

3. The Born-Oppenheimer approximation, in brief

S. Weinberg, Lectures on Quantum Mechanics, Cambridge University Press (2015)

• A system with (say, two) heavy and (say, two) light particles

$$H = (H_{\text{heavy}} + H_{\text{light}}) \neq \frac{1}{2M} \sum_{\text{heavy}} P_i^2 + V(\mathbf{x}_A, \mathbf{x}_B) + \frac{1}{2m} \sum_{\text{light}} p_i^2 + V_I(\mathbf{x}_A, \mathbf{x}_B, \mathbf{x}_1, \mathbf{x}_2)$$

• First, find the *ground state of the light particles*, for fixed coordinates of the heavy particles, solving the eigenvalue equation:

$$H_{ligth}f_0 = \mathscr{E}f_0; \ f_0 = f_0(\mathbf{x}_A, \mathbf{x}_B, \mathbf{x}_1, \mathbf{x}_2); \ \mathscr{E} = \mathscr{E}(\mathbf{x}_A, \mathbf{x}_B)$$

• Then look for solutions of the complete Schroedinger equation, for wave functions of the form:

$$\Psi = \psi(\mathbf{x}_A, \mathbf{x}_B) f_0(\mathbf{x}_A, \mathbf{x}_B, \mathbf{x}_1, \mathbf{x}_2)$$

- Applying H to Ψ one encounters terms of the kind. $-iP\Psi = \frac{\partial}{\partial x_A}\Psi = \frac{\partial\psi}{\partial x_A}f_0 + \psi\frac{\partial f_0}{\partial x_A}$
- The *Born-Oppenheimer approximation* consists in *neglecting systematically the second with respect to the first term*.
- The error vanishes for $m/M \rightarrow 0$ (see Weinberg's book).
- The upshot is the BO equation:

GGI Firenze. Feb. 21-25, 2022

 $\left(\sum_{\text{heavy}} \frac{P_i^2}{2M} + V_{BO}(\mathbf{x}_A, \mathbf{x}_B)\right) \psi = E\psi$ $V_{BO}(\mathbf{x}_A, \mathbf{x}_B) = V(\mathbf{x}_A, \mathbf{x}_B) + \mathcal{E}(\mathbf{x}_A, \mathbf{x}_B)$ L. Maiani. Exotic Hadrons. 6

Orbitals (borrowed from molecular physics)

- To start, we associate each light to one heavy particle, solving Schroedinger for the mutual interaction, if attractive, and neglecting the others
- this wave function is called an "orbital" and we choose f₀ as the product of all orbitals:

$$f_0 = f(x_u - x_c)f(x_{\bar{u}} - x_{\bar{c}})$$

- if there are identical light particles, we have to (anti) symmetrize.
- •The interactions left-over from the orbitals, e.g. the interactions between light particles, are taken to first order and $\mathcal{E} = \langle f_0 | H_{\text{light}} | f_0 \rangle$

•The approximation works very well for the hydrogen ion, H_{2^+} (one orbital), and the hydrogen molecule, H_2 (two orbitals eP)

Warming-Up with H₂+

•Light particle hamiltonian: one orbital: $e-P(x_A)$ or $e-P(x_B)$.

$$H_{\text{light}} = \frac{p^2}{2m} - \alpha \left(\frac{1}{|\mathbf{x} - \mathbf{x}_A|} + \frac{1}{|\mathbf{x} - \mathbf{x}_B|} \right) \qquad f(x) = \text{H wave function}; \ \mathcal{E}_0 = \frac{1}{2} \alpha^2 m_e$$
$$f_0 = \frac{f(x_e - x_A) + f(x_e - x_B)}{\sqrt{2(1+S)}}, \ S = \int dx \ f(x - x_A) * f(x - x_B)$$
$$V_{BO} = -\alpha \ \frac{1}{|\mathbf{x}_A - \mathbf{x}_B|} + < f_0 |H_{\text{light}}| f_0 >$$

GGI Firenze. Feb. 21-25, 2022

Colour gymnastic: couplings...

- Hidden Charm
 - we take $c\bar{c}$ at *distance R*, *in color 8*: Tetraquark= $|(\bar{c}c)_8(\bar{q}q')_8 >_1$
- correspondingly, we compute the colour couplings

$$\alpha_s \lambda_{c\bar{c}} = \alpha_s [\frac{1}{2} (C_2(\mathbf{8}) - 2C_2(\mathbf{3}))] = \alpha_s \frac{1}{2} (3 - 2\frac{4}{3})] = + \alpha_s \frac{1}{6} = \lambda_{q\bar{q}'} \text{ (repulsive)}$$

?? !!

• $c\bar{c}$ repel each other as $q\bar{q}'$ do, the protons and electrons in H_2 molecule.

• Other anangements.

GGI Firenze. Feb. 21-25, 2022

• Tetraquark=
$$\langle (\bar{c}c)_8 (\bar{q}q')_8 \rangle_1 = \sqrt{\frac{2}{3}} (\bar{c}q')_1 (\bar{q}c)_1 - \sqrt{\frac{1}{3}} (\bar{c}q')_8 (\bar{q}c)_8$$
 so that:

$$\lambda_{\bar{q}c} = \frac{2}{3}\lambda_1 + \frac{1}{3}\lambda_8 = \frac{2}{3}(-\frac{4}{3}) + \frac{1}{3}(\frac{1}{6}) = -\frac{5}{6} \text{ (attractive)}$$

• similarly:
$$\lambda_{cq} = \lambda_{\bar{c}\bar{q}} = -\frac{1}{6}$$
 (attractive)

• It is natural to chose the diquark-antidiquark orbitals [cq] and $[\bar{c}\bar{q}']$ and treat the interactions $c - \bar{q}', \bar{c} - q, q - \bar{q}'$ as perturbations

$$V_{BO} = +\frac{1}{6}\alpha_s \frac{1}{|x_A - x_B|} + \Delta V(x_A, x_B) + V_{conf}$$

$$-\Delta V = \langle \Psi | V(cq) + V(qc) + V(qq) | \Psi \rangle$$
, $|\Psi \rangle$ product of orbitals wave functions $-V_{conf}$, see later

...and strings

- The prototype of non relativistic heavy quark interaction is the Cornell potential, introduced in connection with charmonium spectrum
- A heavy colour triplet pair. $Q\bar{Q}$, in an overall colour singlet state

$$V(r) = -\frac{4}{3} \frac{\alpha_S}{r} + kr + V_0 = V_C(r) + V_{\text{conf}}(r) + V_0$$

- V₀ is an unknown constant, to be determined from the mass spectrum, e.g. from the mass of the ground state;
- First term corresponds to one-gluon exchange approximation. It is generalised to any pair of coloured particles in a colour representation R by the combination of C_2 Casimir coefficients
- The second term arises from quark confinement and dominates at large separations;
- In the simplest picture, it is due to the condensation of Coulomb lines of force into a string that joins the quark and the antiquark. In this picture, it is natural to assume that the string tension, k, scales with the Coulomb coefficient: $k_{q_1q_2} \propto |\lambda_{q_1q_2}|$
- For colour charges combined in an overall colour singlet, the assumption leads to $k \propto |C_2(\mathbf{q})|$ (called Casimir scaling).

see e.g. G. S. Bali, Phys. Rept. 343} (2001) 1. [hep-ph/0001312].

In conclusion, we take k from chamonium spectrum and:

$$y = -\frac{4}{3} \frac{\alpha_S}{r} + \frac{3|\lambda_{q_1q_2}|}{4} kr + V_0 = V_C(r) + V_{\text{conf}}(r) + V_0$$

GGI Firenze. Feb. 21-25, 2022

Organizing the QCD calculation

L. Maiani, A. D.Polosa and V. Riquer, PR D100 (2019) 074002, arXiv:1908.03244 = MPR

- Orbitals with non-vanishing triality are confined and we add to the BO potential the appropriate linearly rising potential, V_{conf}
- •Triality zero orbitals, e.g. $(c\bar{q})_8$, are NOT confined because color can be neutralised by extra gluons, and the BO potential vanishes for large separation of the heavy constituent, see our PRD paper.
- Cornell potential contains the additive constant V₀

• in charmonium physics V_0 is determined from one physical mass of the spectrum, e.g. the ground state. We are able to determine V_0 :

- $Q\bar{Q}q\bar{q}$ case: V₀ is fixed by the ground state mass

- however the wave function gives an independent information about the internal structure.

baryon case: from a boundary condition from heavy quark-heavy diquark symmetry?

- $QQq\bar{q}'$ tetraquarks: V₀ is fixed by the condition that the potential gives rise at infinite separation to a 2 meson state.

Results for $(c\bar{c})_8 (q\bar{q}')_8$

$\Delta V(q\bar{q}')$ from one-gluon exchange.

- Diquark and antidiquark orbitals overlap
- similar to hadrocharmonium

$\Delta V(q\bar{q}') \sim 2 \times$ one-gluon exchange.

- Diquark and antidiquark well separated (Lect. 5)
- large potential barrrier to $c\bar{c}$ annihilation
- depends crucially upon $(\bar{q}\bar{q})_8$ repulsion

 $R \simeq (0.27 \text{ GeV})^{-1} = 3.7 \text{ GeV}^{-1} = 0.74 \text{ fm}$

GGI Firenze. Feb. 21-25, 2022

L. Maiani. Exotic Hadrons. 6

V(r)

12

14

Doubly Heavy baryon

• orbital(A)=f(x-x_A)=f_A(x) • ground state: $f_0 = \frac{f(x-x_A) + f(x-x_B)}{\sqrt{2+2S}}$ • non vanishing ovelap: $\mathcal{E}(\mathbf{x}_A - \mathbf{x}_B) = \langle f_0 | H_{\text{light}} | f_0 \rangle = E_0 + \Delta E(r_{AB} = E_0 - \frac{2}{3}\alpha_S \frac{1}{1+S} [I_1(r_{AB}) + I_2(r_{AB})]$ • energy of the orbital: $E_0 = V_0 + E_{0,\text{orb}} + 2M_c + M_q$ $I_1(r_{AB}) = \int d^3\xi |f_A(\xi)|^2 \frac{1}{|\xi - \mathbf{x}_B|}$

GGI Firenze. Feb. 21-25, 2022

$$\begin{aligned} \mathscr{E}(\mathbf{x}_{A} - \mathbf{x}_{B}) &= \langle f_{0} | H_{light} | f_{0} \rangle = E_{0} + \Delta E(r_{AB}) = \\ &= E_{0} - \frac{2}{3} \alpha_{s} \frac{1}{1 + S} [I_{1}(r_{AB}) + I_{2}(r_{AB})] \\ &E_{0} &= V_{0} + E_{0,\text{orb}} + 2M_{c} + M_{q} \\ &\bullet \text{let } r_{AB} \rightarrow 0 \\ &\bullet E_{0} + \Delta E_{0} - M_{c} = \\ &\bullet = V_{0} + E_{0,\text{orb}} + M_{c} + M_{q} + \Delta E_{0}(0) \end{aligned}$$

Doubly Heavy baryon (cont'd)

- The result must be equal to the mass of $(c\bar{q})$ meson without spin correction, i.e. = M_c+M_q this is the *single heavy quark-double heavy quark* symmetry
 - Result:

$$\mathcal{E}(\mathbf{x}_A - \mathbf{x}_B) = E_0 + \Delta E(r_{AB} = 2M_c + M_q - \Delta E(0) + \Delta E(r_{AB})$$

$$V_{\rm BO}(\mathbf{x}_A, \mathbf{x}_B) = V(\mathbf{x}_A, \mathbf{x}_B) + \mathcal{E}(\mathbf{x}_A, \mathbf{x}_B) + \text{linear confining potential} = 2M_c + M_q - \frac{2}{3}\alpha_S \frac{1}{r_{AB}} + \Delta E(r_{AB}) - \Delta E(0) + k \times (r - R_0) \times \theta(r - R_0)$$

The eigenvalue of the Schroedinge equation of mass M_c and potential inscribed in red is the correction to the naive constituent quark mass formula for Ξcc (spin corrections to be added). Only unknown $R_0 \sim 1-2$ fm \geq orbital radius

GGI Firenze. Feb. 21-25, 2022

Doubly heavy baryons (QQ'q): Summary

GGI Firenze. Feb. 21-25, 2022

 $= 3.0 \ GeV^{-1} = 0.6 \ fm$ *However*:

- Taking κ_{qq} and κ_{bb} from meson spectrum is not justified:
- h.f. couplings depend crucially from the overlap probability of the quark pair, which, in tetraquarks, cannot be assumed to be equal to the overlap probabilities of the same pair in mesons and baryons

 In our Born-Oppenheimer scheme, we may estimate deviations from this hypothesis and obtain an improved estimate of tetraquark masses.

GGI Firenze. Feb. 21-25, 2022

R_b

 $b(x_A)$

 $\bar{q}(x)$

The revised estimate

- Light antiquarks are each bound to a heavy quark in orbitals with wave functions $\psi(\xi)$ and $\phi(\eta)$; $\xi = \mathbf{x}_A, \eta = \mathbf{x}_B$
- the average distance of the light quarks is a function of the heavquarks distance, r_{AB}

$$D(r_{AB}) = \int d^{3}\xi d^{3}\eta |\psi(\xi)|^{2} |\phi(\eta)|^{2} |\xi - \eta|$$

The average distance in the tetraquark is then given by $D_{qq} = \int dr_{AB} \chi^2(r_{AB})D(r_{AB})$ which leads to: $\kappa_{qq}^{QQ} = \kappa_{qq} \left(\frac{R_{qq}^B}{D_{qq}^{QQ}}\right)^3 \quad \kappa_{qq}^{cc} = +4.8 \ (+4.7) \ \kappa_{qq}^{bb} = +1.2 \ (+1.9)$

analogous reduction for κ_{bb}

$QQ' \bar{u} \bar{d}$	BO revised	[3]	[4]	[6]	Lattice QCD
$cc\bar{u}\bar{d}$	+133 (+117)	+140	+102	+39	-23 ± 11 [7]
		~ 0	+83	-108	$+8 \pm 23$ [8]
					-143 ± 34 [7]
$bbar{u}ar{d}$	-1.4 (-11)	-170	-121	-75	-143(1)(3) 9
					$-82 \pm 24 \pm 10$ [10]

preliminary !

[3] M. Karliner and J. L. Rosner, arXiv:1707.07666 [hep-ph]; [4] E. J. Eichten and C. Quigg, arXiv:1707.09575 [hep-ph]. [7] Junnarkar et al. arXiv:1810.12285, [8,9,10] A. Francis arXiv:1810.10550, arXiv:1607.05214; 014002 (2019)

Born-Oppenheimer:

Estimate of T_{cc} mass much closer to the observed mass of the double charm meson:

 $M(T_{cc}^{BO}) = 3863(3847) \leftrightarrow LHCb : T_{cc}^{+}(3875)$

Stable Double Beauty tetraquarks: possible but only marginally

GGI Firenze. Feb. 21-25, 2022