Nucleon partonic structure: concepts and measurements Part 5: GPDs and exclusive processes

M. Diehl

Deutsches Elektronen-Synchroton DESY

Frontiers in Nuclear and Hadronic Physics 2022 GGI, Firenze, 21 Feb – 4 March

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
•	00000	0	000	00	0000

 $F^{q} = \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p', s' \right| \bar{q}(-\frac{1}{2}z) W[-\frac{1}{2}z, \frac{1}{2}z] \gamma^{+}q(\frac{1}{2}z) \left| p, s \right\rangle_{z^{+}=0, \ z=0}$

kinematic variables:

 x, ξ momentum fractions w.r.t. $P = \frac{1}{2}(p + p')$ $\xi = (p - p')^+/(p + p')^+$ plus-momentum transfer in DVCS: $\xi = x_B/(2 - x_B)$, x integrated over

t can trade for transverse momentum transfer ${\bf \Delta}={\bf p}'-{\bf p}$ $t=-\frac{4\xi^2m^2+{\bf \Delta}^2}{1-\xi^2}$

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
•	00000	0	000	00	0000

- ▶ nonzero for $-1 \le x \le 1$
- $|x| > \xi \ \text{similar to parton densities} \\ \text{correlation } \psi^*_{x-\xi} \psi_{x+\xi} \ \text{instead of probability} \ |\psi_x|^2$
 - $|x|<\xi~$ coherent emission of qar q pair
- regions related by Lorentz invariance spacelike partons incoming in some frames, outgoing in others

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
•	00000	0	000	00	0000

$$F^{q} = \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p', s' | \bar{q}(-\frac{1}{2}z) W[-\frac{1}{2}z, \frac{1}{2}z] \gamma^{+}q(\frac{1}{2}z) | p, s \rangle_{z^{+}=0, z=0}$$

= $H^{q} \bar{u}(p', s') \gamma^{+}u(p, s) + E^{q} \bar{u}(p', s') \frac{i}{2m_{p}} \sigma^{+\alpha}(p'-p)_{\alpha} u(p, s)$

proton spin structure:

 $H^q \leftrightarrow \mathbf{s} = \mathbf{s}'$ for p = p' recover usual densities:

$$H^{q}(x,\xi = 0, t = 0) = \begin{cases} q(x) & x > 0\\ -\bar{q}(-x) & x < 0 \end{cases}$$

 $E^q \leftrightarrow s \neq s' \quad \text{ decouples for } p = p'$

► similar definitions for polarized quarks \tilde{H}^q, \tilde{E}^q and for gluons $H^g(x, \xi = 0, t = 0) = xg(x)$ for x > 0

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
•	00000	0	000	00	0000

$$\begin{split} F^{q} &= \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p', s' \right| \bar{q}(-\frac{1}{2}z) W[-\frac{1}{2}z, \frac{1}{2}z] \gamma^{+}q(\frac{1}{2}z) \left| p, s \right\rangle_{z^{+}=0, \, \boldsymbol{z=0}} \\ &= H^{q} \, \bar{u}(p', s') \gamma^{+}u(p, s) + E^{q} \, \bar{u}(p', s') \, \frac{i}{2m_{p}} \sigma^{+\alpha}(p'-p)_{\alpha} \, u(p, s) \end{split}$$

▶ Mellin moments: $\int dx x^n \rightarrow \text{local operator} \rightarrow \text{form factors}$ ▶ can be calculated in lattice QCD

$$\begin{split} \blacktriangleright \int dx &\to \text{vector current } \bar{q}(0) \gamma^+ q(0) \\ \sum_q e_q \int dx \, H^q(x,\xi,t) &= F_1(t) \quad \text{Dirac f.f.} \\ \sum_q e_q \int dx \, E^q(x,\xi,t) &= F_2(t) \quad \text{Pauli f.f.} \end{split}$$

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	0000	0	000	00	0000

Localizing partons: impact parameter

 states with definite light-cone momentum p⁺ and transverse position (impact parameter):

$$|p^+, \boldsymbol{b}\rangle = rac{1}{(2\pi)^2} \int d^2 \boldsymbol{p} \, e^{-i\boldsymbol{b} \cdot \boldsymbol{p}} \, |p^+, \boldsymbol{p}\rangle$$

formal: eigenstates of 2 dim. position operator

- can exactly localize proton in 2 dimensions no limitation by Compton wavelength
- different from localization in 3 spatial dimensions well-known for form factors; also for GPDs

Belitsky, Ji, Yuan '03; Brodsky et al. '06

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	●0000	0	000	00	0000

Localizing partons: impact parameter

 states with definite light-cone momentum p⁺ and transverse position (impact parameter):

$$|p^+, \boldsymbol{b}\rangle = \frac{1}{(2\pi)^2} \int d^2 \boldsymbol{p} \, e^{-i\boldsymbol{b} \cdot \boldsymbol{p}} \, |p^+, \boldsymbol{p}\rangle$$

formal: eigenstates of 2 dim. position operator

b is center of momentum of the partons in proton

$$\boldsymbol{b} \underbrace{ \begin{array}{c} \boldsymbol{b} \\ \boldsymbol{p}_{i}^{+}, \boldsymbol{b}_{i} \end{array}}_{\boldsymbol{p}_{i}^{+}, \boldsymbol{b}_{i}} \qquad \boldsymbol{b} = \frac{\sum_{i} p_{i}^{+} \boldsymbol{b}_{i}}{\sum_{i} p_{i}^{+}} \qquad (i = q, \bar{q}, g)$$

consequence of Lorentz invariance: transverse boosts

$$k^+
ightarrow k^+ \qquad oldsymbol{k}
ightarrow oldsymbol{k} - k^+ oldsymbol{v}$$

nonrelativistic analog: Galilei invariance $\stackrel{\text{Noether}}{\longrightarrow}$ center of mass

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	0000	0	000	00	0000

Impact parameter GPDs

for simplicity take $\xi = 0$

 $(\xi \neq 0 \text{ and } s \neq s' \text{ later})$

• operator
$$\mathcal{O} = \int \frac{dz^-}{4\pi} e^{ixP^+z^-} \bar{q}(-\frac{1}{2}z) W[-\frac{1}{2}z, \frac{1}{2}z] \gamma^+ q(\frac{1}{2}z) \Big|_{z^+=0, z=0}$$

$$\langle \beta^{*}, \overline{b}' \mid \mathcal{O} \mid \beta^{+}, \overline{b} \rangle =$$

 $\delta^{(2)}(\overline{b}' - \overline{b}) \int \frac{d^{2}\Delta}{(2\pi)^{2}} e^{i\overline{b}\overline{\Delta}} H(x, \overline{s}=0, \pm = \overline{\Delta}^{2})$

mo Exercise & in Barbara Pasquini's lectures

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	0000	0	000	00	0000

Impact parameter GPDs

for simplicity take $\xi = 0$

 $(\xi \neq 0 \text{ and } s \neq s' \text{ later})$

►
$$q(x, b^2) = (2\pi)^{-2} \int d^2 \Delta e^{-ib\Delta} H^q(x, \xi = 0, t = -\Delta^2)$$

gives distribution of quarks with

- longitudinal momentum fraction x
- transverse distance b from proton center

average impact parameter

$$\langle b^2 \rangle_x = \frac{\int d^2 b \ b^2 \ q(x, b^2)}{\int d^2 b \ q(x, b^2)} = 4 \frac{\partial}{\partial t} \log H(x, \xi = 0, t) \Big|_{t=0}$$

 \blacktriangleright integrated over $x \rightsquigarrow$ form factor

$$\langle b^2 \rangle = \frac{\int dx \int d^2 b \ b^2 \ q(x, b^2)}{\int dx \int d^2 b \ q(x, b^2)} = 4 \frac{\partial}{\partial t} \log F_1(t) \Big|_{t=0}$$

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

Impact parameter GPDs: $\xi \neq 0$

DGLAP region

ERBL region

- Fourier transf. w.r.t. Δ
- hadron center of momentum shifts because of plus-momentum transfer
- lacktriangletic key observable: t dependence of cross sections at given ξ

 $t = -\frac{4\xi^2 m^2 + \Delta^2}{1 - \xi^2}$

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

Impact parameter GPDs: $\xi \neq 0$

especially simple for x = ξ
 change to asymmetric variables:

$$\xi = rac{\zeta}{2-\zeta}$$
 and $t = -rac{\zeta^2 m_p^2 + \Delta^2}{1-\zeta}$

Fourier transf. w.r.t. Δ

 \rightsquigarrow distance of struck parton from spectator system

in following concentrate on $\xi=0$

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

Apples, oranges, and other fruit

form factor	distribution	$\langle b^2 \rangle$
F_1^p	$\sum e_q \left(q - \bar{q}\right)$	$(0.66{ m fm})^2$
G_E^p	q	$(0.71\mathrm{fm})^2 = (0.66\mathrm{fm})^2 + \frac{\kappa_p}{m_p^2}$
G_A	$\Delta u + \Delta \bar{u} - (\Delta d + \Delta \bar{d})$	$(0.52 \text{ to } 0.54 \text{ fm})^2$

 \blacktriangleright in form factor integral parton distributions have average $x\sim 0.2$

▶ generalized gluon dist. at $x = 10^{-3} \iff \langle b^2 \rangle = (0.57 \text{ to } 0.60 \text{ fm})^2$ from J/Ψ photoproduction at HERA

note:

 $\begin{array}{l} 4 \frac{\partial}{\partial t} \log G(t) \big|_{t=0} = \text{squared impact parameter} \\ 6 \frac{\partial}{\partial t} \log G(t) \big|_{t=0} = \text{squared radius} \end{array}$

numbers: G_E and F_1 from Particle Data Group; G_A from Bernard et al. '01

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

Lattice calculations

results for GPD moments

 $A_{n,0}(t) = \int dx \, x^{n-1} H(x,\xi=0,t) = \int d^2 b \, e^{ib\Delta} \int dx \, x^{n-1} q(x,b^2)$

LHPC Collaboration, arXiv:0705.4295

▶ steeper t slope for larger n

$$\rightsquigarrow$$
 decrease of $\langle b^2 \rangle_x$ with x

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	•	000	00	0000

Evolution

• for non-singlet combinations (e.g. $q - \bar{q}$ or u - d)

$$\mu^{2} \frac{d}{d\mu^{2}} H^{\rm NS}(x,\xi,t) = \int dx' V^{\rm NS}(x,x',\xi) H^{\rm NS}(x',\xi,t)$$

▶ for singlet ∑_q(q + q̄): matrix equation for mixing with gluon GPD
 ▶ same evolution for E (independent of proton spin)

generalization of DGLAP evolution to $\xi \neq 0$ recover usual DGLAP for $\xi = 0$

ERBL evolution as for meson distribution amplitudes

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	•	000	00	0000

Evolution

• for non-singlet combinations (e.g. $q - \bar{q}$ or u - d)

$$\mu^{2} \frac{d}{d\mu^{2}} H^{\rm NS}(x,\xi,t) = \int dx' V^{\rm NS}(x,x',\xi) H^{\rm NS}(x',\xi,t)$$

▶ for singlet $\sum_{q} (q + \bar{q})$: matrix equation for mixing with gluon GPD

- same evolution for E (independent of proton spin)
- ► evolution local in t Fourier trf ~→ evolution local in b

(take $-t \ll \mu^2$ to be safe) (take $1/\mu \ll b$ to be safe)

• for $\xi = 0$: $q(x, b^2)$ fulfills usual DGLAP evolution equation

$$\mu^{2} \frac{d}{d\mu^{2}} q_{\rm NS}(x, b^{2}) = \int_{x}^{1} \frac{dz}{z} P_{\rm NS}\left(\frac{x}{z}\right) q_{\rm NS}(z, b^{2})$$

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	•	000	00	0000

Evolution

• for non-singlet combinations (e.g. $q - \bar{q}$ or u - d)

$$\mu^{2} \frac{d}{d\mu^{2}} H^{\rm NS}(x,\xi,t) = \int dx' V^{\rm NS}(x,x',\xi) H^{\rm NS}(x',\xi,t)$$

▶ for singlet $\sum_{q} (q + \bar{q})$: matrix equation for mixing with gluon GPD

- same evolution for E (independent of proton spin)
- ► evolution local in t Fourier trf ~→ evolution local in b

(take $-t \ll \mu^2$ to be safe) (take $1/\mu \ll b$ to be safe)

average impact parameter

$$\langle b^2 \rangle_x = \frac{\int d^2 b \ b^2 \ q(x, b^2)}{\int d^2 b \ q(x, b^2)}$$

evolves as

$$\mu^2 \frac{d}{d\mu^2} \langle b^2 \rangle_x = -\frac{1}{q_{\rm NS}(x)} \int_x^1 \frac{dz}{z} P_{\rm NS}\left(\frac{x}{z}\right) q_{\rm NS}(z) \left[\langle b^2 \rangle_x - \langle b^2 \rangle_z \right]$$

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

Key processes involving GPDs

deeply virtual Compton scattering (DVCS)

also: $\gamma p \to \gamma^* p$ with $\gamma^* \to \ell^+ \ell^-$ (timelike CS) $\gamma^* p \to \gamma^* p$ (double DVCS)

• meson production: large Q^2 or heavy quarks

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

DVCS amplitudes and GPDs

twist-two amplitudes involve 4 four GPDs per parton

- H, E: unpolarized quark/gluon
- \tilde{H}, \tilde{E} : long. pol. quark/gluon
- for photon helicity conserving amplitudes write

$$e^{-2}\mathcal{A}(\gamma^* p \to \gamma p) = \bar{u}(p')\gamma^+ u(p) \mathcal{H} + \bar{u}(p') \frac{i}{2m_p} \sigma^{+\alpha}(p'-p)_{\alpha} u(p) \mathcal{E}$$
$$+ \bar{u}(p')\gamma^+ \gamma_5 u(p) \widetilde{\mathcal{H}} + \bar{u}(p') \frac{(p'-p)^+}{2m_p} \gamma_5 u(p) \widetilde{\mathcal{E}}$$

- Compton form factors $\,\mathcal{H},\mathcal{E},\widetilde{\mathcal{H}},\widetilde{\mathcal{E}}\,$ depend on ξ,t,Q^2
- representation holds for any Q^2 , not only at twist two

• at leading twist and LO in α_s

$$\mathcal{H} = \sum_{q} e_q^2 \int_{-1}^{1} dx \left[\frac{1}{\xi - x - i\varepsilon} - \frac{1}{\xi + x - i\varepsilon} \right] H^q(x, \xi, t)$$

same kernels for E, different set for $\widetilde{H},\widetilde{E}$

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

Why DVCS?

- theoretical accuracy at NNLO
- very close to inclusive DIS power corrections empirically not too large, in part computed

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

Why not only DVCS?

- theoretical accuracy at NNLO
- very close to inclusive DIS power corrections empirically not too large, in part computed
- ▶ only quark flavour combination ⁴/₉u + ¹/₉d + ¹/₉s with neutron target in addition ⁴/₉d + ¹/₉u + ¹/₉s
- ▶ gluons only through Q² dependence via LO evolution, NLO hard scattering most promonent at small x, ξ

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

Why not only DVCS?

- theoretical accuracy at NNLO
- very close to inclusive DIS power corrections empirically not too large, in part computed

▶ only quark flavour combination ⁴/₉u + ¹/₉d + ¹/₉s with neutron target in addition ⁴/₉d + ¹/₉u + ¹/₉s

- ▶ gluons only through Q² dependence via LO evolution, NLO hard scattering most promonent at small x, ξ
- useful to get information from meson production

• e.g.
$$\mathcal{A}_{\rho^0} \propto \frac{2}{3}(u+\bar{u}) + \frac{1}{3}(d+\bar{d}) + \frac{3}{4}g$$

 $\mathcal{A}_{\phi} \propto \frac{1}{3}(s+\bar{s}) + \frac{1}{4}g$

- but theory description more difficult meson wave function, larger corrections in 1/Q² and α_s
- J/Ψ production: directly sensitive to gluons

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	•0	0000

Deeply virtual Compton scattering

competes with Bethe-Heitler process at amplitude level

analogy with optics:

- DVCS \sim diffraction experiment
- BH \sim reference beam with known phase

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	•0	0000

Deeply virtual Compton scattering

competes with Bethe-Heitler process at amplitude level

 \blacktriangleright cross section for $\ell p \to \ell \gamma p$

$$\frac{d\sigma_{\rm VCS}}{dx_B \, dQ^2 \, dt} : \frac{d\sigma_{\rm BH}}{dx_B \, dQ^2 \, dt} \sim \frac{1}{y^2} \frac{1}{Q^2} : \frac{1}{t} \qquad \qquad y = \frac{Q^2}{x_B \, s_{\ell p}}$$

- ▶ $1/Q^2$ and 1/t from photon propagators $1/y^2$ from vertex $e \rightarrow e\gamma^*$
- small y: σ_{VCS} dominates → high-energy collisions moderate to large y: get VCS via interference with BH
 → separate Re A(γ*p → γp) and Im A(γ*p → γp)

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	0•	0000

general structure:

- filter out interference term using cross section dependence on
 - beam charge e_l
 - \blacktriangleright azimuth ϕ
 - beam polarization P_l
 - target polarizaton S_L , S_T , ϕ_S

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

Summary of part 5

- generalised parton distributions: extend factorisation concept to exclusive processes
- factorisation of amplitude instead of cross section
- gives access to transverse spatial distribution of partons

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

Notes

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

Notes

Properties	Impact parameter	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
0	00000	0	000	00	0000

Notes