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GW GENERATION

As we have seen, the solution of linearized Einstein’s equations with
source is

p BT

TV T,x
m4ma4G[;”( >&f. (1)

o 7 — 7|

If, besides the assumption of weak field (g,, = 1 + hy, with |k, | < 1),
we assume that the source is far away from the observer,
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(€ linear dimension of the source), and we assume the slow motion ap-
proximation

€ < A which is equivalent to v < c. (2)

where A is the GW wavelength and v is the typical velocity on the source,
Eq. reduces to the quadrupole formula:
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where the overdot denotes derivative with respect of time, and we have
defined the quadrupole tensor
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and we remind that on the source, due to the weak field and slow motion

approximation, Newtonian mechanics holds, and thus the matter density
is p=T%/c.
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Eq. (3) is not in the TT-gauge. If the observer detect a wave in the
direction n = %, which in spherical coordinates has components n' =
(sin f cos ¢, sin @ sin ¢, cos ), we have that in the TT-gauge nh'T% = 0
and hT:Z“ = 0. These conditions can be imposed by applying to the metric

perturbation the TT-projector

1
Pijkl = Pikle — §PZ'J'P/€1 where Pij = 5@' — TLZ'TLJ' .

Since 0 Pyjp; = n'Pijry = - -- = 0 and PP = P, it projects rank two tensor
in the TT" subspace of the tensor space. Therefore,

Note that we have defined the reduced quadrupole moment Qi; = qij —
%&jqkk, which is traceless, for later use (in the equation above the trace of
q is irrelevant since it is set to zero by the projector).

This equation tells us that the GWs far away from a weak field, slow mo-
tion source depend on the time derivatives of its quadrupole moment. This
implies that, for instance, a stationary source like an axially symmetric,
rotating star, does not emit GWs, since p = const. Spherically symmetric
source do not emit GWs even if they are dynamical (thanks to the Birkhoff
theorem). In general, in order to emit GWs, we need asymmetry; and, due
to the time derivatives, we need rapidly evolving sources to have strong

GWs.



THE ENERGY CARRIED BY GWS

In GR, it is not possible to define a tensor quantity describing the local
density of energy and momentum because at any event P it is possible to
choose a LIF, in which the metric is locally Minkwoskian and the gravi-
tational field in P vanishes. However, it is possible to define a quantity
which leads to a definition of the energy carried by GWs and, under certain
conditions, does not depend on the coordinate sytem.

We remind that the stress-energy tensor satisfies a conservation law in
flat spacetime 7", = 0:
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so [, T"d*z, the energy and momentum in V, are conserved quantities,
their change being equal to the flux of the corresponding currents outside
the voundary 0V. In curved spacetime, instead, the stress-energy tensor
satisfies 7", = 0, which is not a conservation law. This is related to the
fact that T describes the energy and momentum of non-gravitational
fields, which are not conserved, since they do not take into account those
associated to the gravitational field.
We define the Landau-Lifshitz stress-energy pseudo-tensor
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In Minkowski space, or in a LIF, the Christoffel symbols vanish, and thus
t* = 0. Remarkably, this quantity satisfies, together with the stress-energy
tensor, a conservation law:
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Eq. (6) is just a reformulation of Einstein’s equations: it can be found
by replacing the definition of ¥ in terms of Christoffel’s symbols, and
replacing 7" with Einstein’s equations.
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Therefore, in an asymptotically flat spacetime, if we consider a large vol-
ume V such that 0V is in the region where g, = 1,, + h,, with |h,,| < 1,



if we define

pr = /V (—g) (t"0 + TP (7)

Eq. (6)) gives
9 pi_ —/ (—g)(T" + t")n'dS
OxV oV J
and if 7" and t* are negligible on OV, P* are constant quantities.

These quantities can be interpreted as the global four-momentum in V;
in them, T gives the contribution of non-gravitational fields, while ¢
gives the contribution of the gravitational field. As V' — oo, they are the
energy and momentum of the entire spacetime.

Remarkably, while t*” is not a tensor (it transforms as a tensor only for
a subset of the general coordinate transformations, the linear transforma-
tions), and thus can not give the local energy and momentum densities of
the gravitational field, in can be shown that any coordinate transforma-
tion reduces to a Lorentz transformation on 0V, and that the integrated
quantity P* transform as a Lorentz 4-vector for such transformation (plus
higher-order terms in h). Therefore, the global energy and momentum of
spacetime, P*, which include the contribution of the gravitational field,
are well defined.

In addition, t** allows to define quantities which are “local” on an ap-
propriate scale. Let us consider a perturbed spacetime

uv — gfg) + hw/
and let us call A\ the characteristic length of the perturbation (in the case
of the GW, A can be the GW wavelength); let us call L the characteristic

length og the background spacetime. Let assume that
AL L.

We define the Brill-Hartle average < --- > as the average over several
A. Then, it can be shown that the Brill-Hartle average of the LL pseudo-
tensor, < t" >, transforms as a tensor for coordinate transformations
O(h). In this case, < t*” > describes the energy and momentum density
(in a scale much larger than \) of the perturbation.
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Let us now consider a GW generated by a source and observed in P far
away from the source. I P, it appears like a plane wave. If we choose
a frame (Oxyz) centered on the source such that the x — axis is aligned
with the propagation of that wave, given the cooresponding spacetime
coordinate {z“} = (ct,x,y, z), then the wave in P, in the TT gauge, has
the form
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The energy flux carried by the wave (which moves in direction x), i.e. the
energy crossing per unit time a surface orthogonal to z, per unit surface,
1s
dEaw
dtdS

If we replace Eq. we have an expression bilinear in the Christoffel
symbols, which are linear in the first derivatives of h, and hy. Note also
that being the metric perturbation function of ¢t — z/c,
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and the same applies to hy. Therefore, t*¥ i bilinear in h+ and hy. The
explicit computation gives
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For a generic choice of the frame, this expression can be written as:

dEGW C TT
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and by replacing the quadrupole formula,

S~ s < 2.(Q5 ) >
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Finally, let us compute the GW luminosity, i.e. the energy emitted per
time unit by the source in GWs (in all directions):

L = == Q Q 2
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By replacing Piju = PPy P Py and Py = 45 — nind with n' =
(sin € cos ¢, sin 0 sin ¢, cos 6 and performmg the integrals, one finds that

Low(tr) = o5 < ylt = /A0t — /) > ®)



COMPACT BINARIES

Let us consider a binary system composed of two compact objects,
with orbital separation /.

A compact object is a body whose compactness C' = fQ—A}g (M, R are its
mass and radius, and C'is a dimensionless quantity) is not negligible. In the
case of a BH, as “radius” we take the horizon radius. For a Schwarzschild
BH, r, = 2GM/c?, therefore C' = 0.5; for a rotating BK C' is even larger.
To our knowledge, the only compact objects in the Universe are BHs and
NS (the latter having typically C' ~ 0.2. In any case, C' is always smaller
than 1.

Note that in weak field approximation, near a body of mass M gy ==~
—1 4+ 28M thus hgy = 25, So near the surface of a compact object,
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r ~ R and hgy is not negligible: the weak field approximation breaks

down. However if we assume
lo >R

then each body feels a gravitational field with hgg ~ 2062;;;/[ < 2062;% < 1: the
weak field approrimation s satisfied as long as ly > R.
As we shall see, the orbital velocity is of the order v ~ v GMI, therefore
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Thus, is [y > R both weak field and slow motion conditions are satisfied.
In this case, the system is well described by Newtonian mechanics (at least,
in the timescale of the orbital motion - say, the orbital period P), and the

quadrupole formula is accurate.

In a timescale > P, the effect of GW emission piles up, leading to a
decrease of the orbital energy. As we shall see, this determines a decrease of
both the orbital separation ly and of the orbital period P. This phenomenom
is called inspiral.

At a certain point, [y becomes comparable to R. In this stage of late in-
spiral, the quadrupole formula only gives a first approximation of the emit-
ted GWs. More advaned, semi-analytical techniques such as the so-called
post-Newtonian (PN) expansion, are needed to accurately model the
waveform.
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Then, the two body coalesce into a single object; in this stage, called
merger, the quadrupole formula does not even give an approximate de-
scription of the phenomenom, and even PN approaches do not work: in
order to model this stage and the resulting waveform we need to solve
numerically Einstein’s equations without any approzimation. This is done
with numerical relativity, in which fully non-linear Einstein’s equations
are solve with parallel computing.

Finally, there is the ringdown, in which the final object - typically a BH
- oscillates in its proper oscillation frequency, emitting GWs and rapidly
becomeing a stationary BH, described by the Kerr metric. This stage is
decribed using perturbative approaches.
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