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GW GENERATION

As we have seen, the solution of linearized Einstein’s equations with
source is

h̄µν(t, ~x) =
4G

c4

∫
V

Tµν

(
t− |~x−~x

′|
c , ~x′

)
|~x− ~x′|

d3x′ . (1)

If, besides the assumption of weak field (gµν = ηµν + hµν with |hµν| � 1),
we assume that the source is far away from the observer,

|~x| = r � ε

(ε linear dimension of the source), and we assume the slow motion ap-
proximation

ε� λ which is equivalent to v � c . (2)

where λ is the GW wavelength and v is the typical velocity on the source,
Eq. (1) reduces to the quadrupole formula:

h̄µ0 = 0

h̄ij =
4G

c4r
q̈ij
(
t− r

c

)
. (3)

where the overdot denotes derivative with respect of time, and we have
defined the quadrupole tensor

qij(t) =
1

c2

∫
V

T 00(t, ~x)xixjd3x =

∫
V

ρ(t, ~x)xixjd3x , (4)

and we remind that on the source, due to the weak field and slow motion
approximation, Newtonian mechanics holds, and thus the matter density
is ρ = T 00/c2.
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Eq. (3) is not in the TT-gauge. If the observer detect a wave in the
direction n̂ = ~x

r , which in spherical coordinates has components ni =
(sin θ cosφ, sin θ sinφ, cos θ), we have that in the TT-gauge nih

TT ij = 0
and hTT µµ = 0. These conditions can be imposed by applying to the metric
perturbation the TT-projector

Pijkl ≡ PikPjl −
1

2
PijPkl where Pij = δij − ninj .

Since δijPijkl = niPijkl = · · · = 0 and PP = P , it projects rank two tensor
in the TT subspace of the tensor space. Therefore,

hTTij (t, r, θ, φ) = Pijkl(θ, φ)hij(t, r) =
2G

c4r
Pijkl(θ, φ)

d2

dt2
Qkl

(
t− r

c

)
.

Note that we have defined the reduced quadrupole moment Qij = qij −
1
3δijq

k
k, which is traceless, for later use (in the equation above the trace of

q is irrelevant since it is set to zero by the projector).
This equation tells us that the GWs far away from a weak field, slow mo-

tion source depend on the time derivatives of its quadrupole moment. This
implies that, for instance, a stationary source like an axially symmetric,
rotating star, does not emit GWs, since ρ = const. Spherically symmetric
source do not emit GWs even if they are dynamical (thanks to the Birkhoff
theorem). In general, in order to emit GWs, we need asymmetry; and, due
to the time derivatives, we need rapidly evolving sources to have strong
GWs.
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THE ENERGY CARRIED BY GWS

In GR, it is not possible to define a tensor quantity describing the local
density of energy and momentum because at any event P it is possible to
choose a LIF, in which the metric is locally Minkwoskian and the gravi-
tational field in P vanishes. However, it is possible to define a quantity
which leads to a definition of the energy carried by GWs and, under certain
conditions, does not depend on the coordinate sytem.

We remind that the stress-energy tensor satisfies a conservation law in
flat spacetime T µν,ν = 0:

1

c

∂

∂t

∫
V

T µ0d3x = −
∫
V

∂T µi

∂xi
d3x = −

∫
∂V

T µinidS

so
∫
V T

µ0d3x, the energy and momentum in V , are conserved quantities,
their change being equal to the flux of the corresponding currents outside
the voundary ∂V . In curved spacetime, instead, the stress-energy tensor
satisfies T µν;ν = 0, which is not a conservation law. This is related to the
fact that T µν describes the energy and momentum of non-gravitational
fields, which are not conserved, since they do not take into account those
associated to the gravitational field.

We define the Landau-Lifshitz stress-energy pseudo-tensor

tµν =
c4

8πG

(
ΓδαβΓσδσg

µαgνβ + · · · 15 terms with the same structure
)
. (5)

In Minkowski space, or in a LIF, the Christoffel symbols vanish, and thus
tµν = 0. Remarkably, this quantity satisfies, together with the stress-energy
tensor, a conservation law:

∂

∂xν
[(−g)(tµν + T µν)] = 0 . (6)

Eq. (6) is just a reformulation of Einstein’s equations: it can be found
by replacing the definition of tµν in terms of Christoffel’s symbols, and
replacing T µν with Einstein’s equations.

Therefore, in an asymptotically flat spacetime, if we consider a large vol-
ume V such that ∂V is in the region where gµν = ηµν +hµν with |hµν| � 1,
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if we define

P µ =

∫
V

(−g)(tµ0 + T µ0)d3x (7)

Eq. (6) gives

∂

∂x0
P µ = −

∫
∂V

(−g)(T µi + tµi)nidS

and if T µi and tµi are negligible on ∂V , P µ are constant quantities.
These quantities can be interpreted as the global four-momentum in V;

in them, T µ0 gives the contribution of non-gravitational fields, while tµ0

gives the contribution of the gravitational field. As V → ∞, they are the
energy and momentum of the entire spacetime.

Remarkably, while tµν is not a tensor (it transforms as a tensor only for
a subset of the general coordinate transformations, the linear transforma-
tions), and thus can not give the local energy and momentum densities of
the gravitational field, in can be shown that any coordinate transforma-
tion reduces to a Lorentz transformation on ∂V , and that the integrated
quantity P µ transform as a Lorentz 4-vector for such transformation (plus
higher-order terms in h). Therefore, the global energy and momentum of
spacetime, P µ, which include the contribution of the gravitational field,
are well defined.

In addition, tµν allows to define quantities which are “local” on an ap-
propriate scale. Let us consider a perturbed spacetime

gµν = g(0)µν + hµν

and let us call λ the characteristic length of the perturbation (in the case
of the GW, λ can be the GW wavelength); let us call L the characteristic
length og the background spacetime. Let assume that

λ� L .

We define the Brill-Hartle average < · · · > as the average over several
λ. Then, it can be shown that the Brill-Hartle average of the LL pseudo-
tensor, < tµν >, transforms as a tensor for coordinate transformations
O(h). In this case, < tµν > describes the energy and momentum density
(in a scale much larger than λ) of the perturbation.
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Let us now consider a GW generated by a source and observed in P far
away from the source. I P , it appears like a plane wave. If we choose
a frame (Oxyz) centered on the source such that the x − axis is aligned
with the propagation of that wave, given the cooresponding spacetime
coordinate {xα} = (ct, x, y, z), then the wave in P , in the TT gauge, has
the form

gµν = ηµν + hTTµν =


−1 0 0 0
0 1 0 0
0 0 1 + h+(t− x/c) h×(t− x/c)
0 0 h×(t− x/c) 1− h+(t− x/c)

 .

The energy flux carried by the wave (which moves in direction x), i.e. the
energy crossing per unit time a surface orthogonal to x, per unit surface,
is

dEGW

dtdS
= c < t0x > .

If we replace Eq. (5) we have an expression bilinear in the Christoffel
symbols, which are linear in the first derivatives of h+ and h×. Note also
that being the metric perturbation function of t− x/c,

∂

∂x0
h+ =

1

c
ḣ+ ,

∂

∂x1
h+ = −1

c
ḣ+

and the same applies to h×. Therefore, tµν i bilinear in ḣ+ and ḣ×. The
explicit computation gives

t0x =
c2

16πG
[(ḣ+)2 + (ḣ×)2]

and therefore

dEGW

dtdS
=

c3

16ΠG
< [(ḣ+)2 + (ḣ×)2] > .

For a generic choice of the frame, this expression can be written as:

dEGW

dtdS
=

c3

32πG
<
∑
jk

(ḣTTij )2) >
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and by replacing the quadrupole formula,

dEGW

dtdS
=

G

8πc5r2
<
∑
jk

(
...
Q
TT
ij )2) > .

Finally, let us compute the GW luminosity, i.e. the energy emitted per
time unit by the source in GWs (in all directions):

LGW =
dEGW

dt
=

∫
dEGW

dtdS
r2dΩ =

G

2c5
1

4π

∫
dΩ <

∑
ij

(Pijkl(θ, φ)Qkl(t−r/c))2 > .

By replacing Pijkl = PikPjl − 1
2PijPkl and Pij = δij − ninj with ni =

(sin θ cosφ, sin θ sinφ, cos θ and performing the integrals, one finds that

LGW (t, r) =
G

5c2
<

...
Qij(t− r/c)

...
Qij(t− r/c) > . (8)
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COMPACT BINARIES

Let us consider a binary system composed of two compact objects,
with orbital separation l0.

A compact object is a body whose compactness C = GM
c2R (M,R are its

mass and radius, and C is a dimensionless quantity) is not negligible. In the
case of a BH, as “radius” we take the horizon radius. For a Schwarzschild
BH, rh = 2GM/c2, therefore C = 0.5; for a rotating BK C is even larger.
To our knowledge, the only compact objects in the Universe are BHs and
NS (the latter having typically C ∼ 0.2. In any case, C is always smaller
than 1.

Note that in weak field approximation, near a body of mass M g00 ='
−1 + 2GM

c2r , thus h00 = 2GM
c2r . So near the surface of a compact object,

r ∼ R and h00 is not negligible: the weak field approximation breaks
down. However if we assume

l0 � R

then each body feels a gravitational field with h00 ∼ 2GM
c2l0
� 2GM

c2R < 1: the
weak field approximation is satisfied as long as l0 � R.

As we shall see, the orbital velocity is of the order v ∼
√
GMl0, therefore

v

c
∼
√
R

l0

√
GM

c2R
<

√
R

l0
� 1 ⇔ l0 � R .

Thus, is l0 � R both weak field and slow motion conditions are satisfied.
In this case, the system is well described by Newtonian mechanics (at least,
in the timescale of the orbital motion - say, the orbital period P ), and the
quadrupole formula is accurate.

In a timescale � P , the effect of GW emission piles up, leading to a
decrease of the orbital energy. As we shall see, this determines a decrease of
both the orbital separation l0 and of the orbital period P . This phenomenom
is called inspiral.

At a certain point, l0 becomes comparable to R. In this stage of late in-
spiral, the quadrupole formula only gives a first approximation of the emit-
ted GWs. More advaned, semi-analytical techniques such as the so-called
post-Newtonian (PN) expansion, are needed to accurately model the
waveform.
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Then, the two body coalesce into a single object; in this stage, called
merger, the quadrupole formula does not even give an approximate de-
scription of the phenomenom, and even PN approaches do not work: in
order to model this stage and the resulting waveform we need to solve
numerically Einstein’s equations without any approximation. This is done
with numerical relativity, in which fully non-linear Einstein’s equations
are solve with parallel computing.

Finally, there is the ringdown, in which the final object - typically a BH
- oscillates in its proper oscillation frequency, emitting GWs and rapidly
becomeing a stationary BH, described by the Kerr metric. This stage is
decribed using perturbative approaches.
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