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THE POST-NEWTONIAN EXPANSION

Besides the slow-motion approximation, in late inspiral we have to relax
the weak-field approximation. This can be done with a (very complex)
perturbative approach called post-Newtonian (PN) expansion.

The first step towards PN expansions is to reformulate Einstein’s equa-
tions as follows: let’s define

Hµν ≡ ηµν − (−g)1/2gµν ,

and choose a gauge (harmonic gauge) such that Hµν
,ν = 0. Then, Einstein’s

equations (with no approximation!) ca be rewritten as

�FH
µν = −16πG

c4
τµν

where

τµν = (−g)T µν + terms quadratic in Hαβ
,γ . (1)

Thus,

Hµν =
4G

c4

∫ τµν
(
t− |~x−~x

′|
c , ~x′

)
|~x− ~x′|

d3x′ (2)

which is an exact expression, but it is not a close expression, since τµν

depends on Hµν. This equation can be solved iteratively, as follows:

Hµν = H(0)µν +H(1)µν +H(2)µν + . . .

τµν = τ (0)µν + τ (1)µν + τ (2)µν + . . .

and τ (0)µν = (−g)T µν, τ (1)µν is given by the quadratic terms in (1) with
Hµν replaced with H(0)µν and so on. Then, solving (2) order by order.

H(0)µν =
4G

c4

∫ (−g)T µν
(
t− |~x−~x

′|
c , ~x′

)
|~x− ~x′|

(3)

H(1)µν =
4G

c4

∫ τ (1)µν
(
t− |~x−~x

′|
c , ~x′

)
|~x− ~x′|

(4)

and so on. It turns out that each term in this expansion has an higher
power of G; thus, it is called post-Minkowskian expansion.
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IF we want to describe a system of selfgravitating compact bodies, de-
pending only on their masses mi and their positions ri, dimensional consid-
erations tell us that the order Gn in this expansion should be proportional
to the combination (

Gm

c2r

)n
.

Assuming that the dynamics if the system is dominated by the gravita-
tional interactions among the bodies, the virial theorem guarantees that
the velocities of the bodies are of the order

v ∼
√
Gm

r
.

Therefore, an expansion in orders of GM
c2r is an expansion in orders of v2

c2 .
Let’s now consider the first term in this expansion, eq. (3). It has the same

structure of the metric perturbation in the weak-field regime, and we have
seen that it can be written as a multipole expansion, which is an expansion
in orders of v

c . We can then rearrange the terms of these two expansions,
by treating it as an unique expansion: we define a dimensionless parameter

ε ∼ Gm

c2r
∼ v2

c2
,

and expand in ε all quantities and equations describing the system (the
metric, the equations of motion of the bodies, etc.). We call n-PN order
the order O(εn). Note that since ε ∼ v2/c2, there will be terms with integer
and half-integer order.

Note also that ε does not need to have a specific value: it is a “book-
keeping parameter”, which can be used to recognize the PN order of any
term. Ofter, conventionally, instead of O(εn) one writes O

(
1
c2n

)
.

This is called PN expansion because the limit of small velocities, which is
also of weak field, is the Newtonian limit: the expressions of the equations
of motion of the bodies, at 0-PN order, coincide with the Newtonian equa-
tions of motion, in terms of the accelerations of the bodies; higher-order
terms are the corrections to the Newtonian expressions.
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Strictly speaking, the PN expansion of the metric is only allowed in the
“near region” where r � λGW . In this region, the metric can be written as

g00 = −1− 2
Φ

c2
+O

(
1

c4

)
g0i = −O

(
1

c3

)
gij =

(
1− 2

Φ

c2

)
δij +O

(
1

c4

)
where

Φ(t, ~x) = −G
c2

∫ T 00
(
t− |~x−~x

′|
c , ~x′

)
|~x− ~x′|

,

i.e. it the Newtonian potential, and give the 1-PN correction to the
Minkowski metric.

This is just the first step of a very involved procedure, which requires -
order by order - finding the motion of the bodies, inclfinding the metric in
the far zone and then the GW emission, include the effect of energy loss in
the acceleration of the bodies, and so on. At the end, we find the emitted
gravitational waveform at the required PN order.
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In order to compare the model of the waveform with the observation of
the signal from an inspiralling compact binary, and extract the values of
parameters of the binary - the masses, the spins, etc. - it is convenient to
consider the Fourier transform of the waveform:

h̃(ν) = h̃0(ν)eiφ̃(ν) .

In particular, it is convenient to compare the phase of the Fourier transform
with the data, since it changes more rapidly.

Note that φ̃(ν) is slightly different from the expressions of the phase we
have derived. We have found (in the weak-field, slow motion limit) that

φ(t) = −2

[
c3(tC − t)

5GM

]5/8
+ φin

and νGW = const./(tc − t)3/8. Using the latter expression to remove the
dependence on tc − t we find

φ(νGW ) = − 1

16

(
c3

πGMνGW

)5/3

+ φin .

By performing the Fourier transform (which also involves h0), one gets an
expression with a different numerical coefficient:

φ̃(ν) =
3

128

(
c3

πGMνGW

)5/3

+ const.

This comes from the quadrupole formula; since it is the leading contribution
to the phase, we call it the 0-PN term; the PN expansion gives corrections
to this formula.
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It is useful to express the perturbation parameter ε = v2/c2 in terms of
the frequency:

l0 =
(GM)1/3

ω
2/3
K

=
(GM)1/3

(πνGW )2/3
⇒ v = ωKl0 = πνGW l0 = (GMπνGW )1/3 .

Therefore, we define the dimensionless frequency

x ≡
(
GMπν

c3

)2/3

=
v2

c2
.

A term ∼ xn is the of n-PN order. We have(
c3

πGMνGW

)5/3

= x5/2
M5/3

M 5/3
= x5/2

µM 2/3

M 5/3
= x5/2

µ

M
.

Thus if η = µ/M is the symmetric mass ratio,

φ̃(x) =
3

128η
x5/2 + PN corrections .

The result of the PN computation is

φ̃(x) =
3x−5/2

128η

[
1 +

20

9

(
743

336
+

11

4
η

)
x− 4(4π − β)x3/2 + . . .

]
, (5)

where β is a linear combination of χ1, χ2 weigthed by the masses. The
expression of φ̃(x) is known up to 3.5-PN order, and describes with great
accuracy the waveform up to the late inspiral, where v ∼ c and the PN
expansion becomes poorly convergent.
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What can we learn from the PN inspiral waveform (5)?

• from the 0-PN term we can measure the chirp mass M;

• from the 1-PN term we can measure separately m1, m2;

• from the 1.5-PN term we can measure β, and thus a combination of
the two spins χ1, χ2;

• from the 2-PN term we can measure separately χ1, χ2.

Order by order, we can mesure all features of the system, including spin
precession.

Note that the frequency increases with time, and thus while in early in-
spiral only low PN-order terms (i.e., lower powers of x ∼ ν2/3) are relevant,
as the inspiral proceeds, higher and higher orders become relevant.

In the later part of the inspiral the PN expansion becomes poorly con-
vergent and ill defined; this approach can not give anymore a reliable de-
scription of the waveform. One has to introduce corrections to the PN
phase, which depend on unknown coefficient; then, these coefficient are
obtained from fits with the numerical relativity (NR) waveform describ-
ing the merger. This is called phenomenological approach; an alternative
method is the effective-one-body approach, which is more well founded the-
oretically and which includes a rearrangement of the PN expansion, and
free coefficients to be determined by fits of NR waveforms.

Both phenomenological and effective-one-body waveform give very good
descriptions of the GW signal up to the late inspiral. These are fundamen-
tal tool for the data analysis of interferometric detectors, and have been
used, e.g., in the analysis of GW150914.
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FINITE SIZE EFFECTS

The late inspiral waveform of NS-NS binaries differs from that of BH-BH
binaries due to finite-size effects: the tidal field of each body deforms
the companion, and this affects the waveform.

In order to understand finite size effects in compact binary systems, let’s
consider for the moment the multipole moment expansion of the gravita-
tional potential in Newtonian gravity. The gravitational potentual is the
solution of Poisson’s equation ∇2Φ = πGρ (I will use units G = c = 1 in
this part), i.e.

Φ(t, ~x) = −
∫

ρ(t, ~x′)

|~x− ~x′|
d3x′ . (6)

he Taylor expansion of 1/|~x− ~x′| around x
′i = 0 gives

1

|~x− ~x′|
=

1

r
+
nix

′i

r2
+

3

2

ninj − δij/3
r3

x
′ix

′j + . . . , .

By replacing in Eq. (6), since ninj − δij/3 = n<inj>,

Φ(t, ~x) = −1

r

∫
ρd3x′ − ni

r2

∫
ρx

′id3x′ − 3

2

n<inj>

r3

∫
ρx

′<ix
′j>d3x′ .

Since
∫
ρd3x′ = M ,

∫
ρx

′id3x′ is proportional to the position of the center
of mass, which vanishes by choosing there the origin, and

∫
ρx

′<ix
′j>d3x′ =

Qij,

Φ(t, ~x) = −M
r
− 3

2

1

r3
Qijn<inj> + . . .

Let us now consider a static, body with mass M , placed in a static
quadrupolar external field. The externail tidal field, expanded around
the origin, is

Φext = const.+
∂Φext

∂xi |O
xi +

1

2
Eijx

i + xj +O(r2) ,

where

Eij =
∂2Φext

∂xi∂xj |O
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is the tidal field. We can set to zero the constant, and a tidal field does
not exert force on the origin. Moreover, since the external field has no
source at the origin, ∇2Φext = δijEij = 0. We can conclude that

Φext =
1

2
Eijx

<ixj> =
1

2
Eijr

2n<inj> .

The total gravitational potential is then

Φ = −M
r
− 3

2

1

r3
Qijn

<inj> +O

(
1

r4

)
+

1

2
Eijr

2n<inj> +O(r3) .

Note that in this expansion there are terms divergent at infinity: it holds
in a buffer region, not too close to the body, but not too far away, where
there are the sources of the tidal field.

If the body is spherically symmetric by itself, once it is placed in the tidal
field it is deformed: the quadrupole moment Qij is a consequence of the
tidal field Eij. Indeed, solving Newton’s equations one finds that

Qij = −λEij

where λ is called tidal deformability of the body. It goes like ∼ R5, thus
it is also defined the dimensionless Love number k2 = 3

2
λ
R5 .

This derivation can be extended to GR, finding that placing a static,
spherically symmetric star in an external tidal field

g00 = −1 +
2M

r
+

3

r3
Qijn

<inj> +O

(
1

r3

)
− Eijr

2n<inj> +O(r3)

where now the tidal tensor is defined in terms of the Riemann tensor:

Eij = uµuνRµiνj .

By solving the perturbed Einstein’s equations one finds that, as in the
Newtonian case,

Qij = −λEij .
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The tidal deformability appears in the tidal waveform (5):

φ̃(x) =
3x−5/2

128η

[
1 +

20

9

(
743

336
+

11

4
η

)
x− 4(4π − β)x3/2 + · · · − 39

2
Λ̃x5

]
,

(7)

where Λ̃ is a linear combination of the tidal deformabilities of the two
bodies, λ1, λ2, weighted by a combination of the masses.

Note that this is a term of 5-PN order. Normally, such term would be
negligible; however, NSs have another scale beside the mass: the radius R.
Since λ ∼ R5, the contribution to the PN waveform is enhanced of a factor

∼
(
Ri

mi

)5

which, being R ∼ 5m, gives a factor ∼ 3000, which makes the 5-PN
correction comparable to lower-order corrections in the expansion.

Indeed, this term has been measured in GR170817, finding

Λ̃ . 800 .

This is not a precise measurement, still it gives valuable information on
the NS structure, allowing to exclude some possible equations of state of
the NS matter.
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THE MERGER

As mentioned before, to study the merger of the binary we need nu-
merical relativity (NR) simulations, i.e. solving numerically Einstein’s
equations

Rµν −
1

2
gµνR = 0 (no matter source for BH binaries)

without any approximation.
To this aim, it is necessary to perform a 3+1 decomposition of Einstein’s

equation: we foliate the spacetime in a sequence of 3-dimensional hyper-
surfaces Σt, each corresponding to a value t of a time coordinate. Then, it
is possible to write the metric as

ds2 = (−α2 + βiβi)dt
2 + 2βidtdx

i + γijdx
idxj

where:

• γij is the metric of the three-dimensional surface Σt;

• αdt is the lapse, i.e. the proper time of an observer moving along the
normal of the hypersurfaces;

• βi is the shift vetor, i.e. the relative velocity between the observer
along the normal of the hypersurfaces, and the observer at constant
coordinates {xi}.

The choice of the lapse and of the shift is just a gauge choise; the three-
metric γij, instead, is a dynamical variable.

Another dynamical variable is the extrinsic curvature,

Kij = −(δαi + nαni)nj;α ,

which describes how the hypersurfaces Σt are embedded in the spacetime.
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Einstein’s equations can be reformulated as equations for γij and for Kij.
In particular:

• Some components of Einstein’s equations give elliptic equations, whose
solution provides a consistent value of γij, Kij on a single hypersurface.
These are the so-called constraints.

• The other components of Einstein’s equations give hyperbolic equa-
tions, the evolution equations.

Then, once one finds initial data, i.e. γij, Kij on a single hypersurface, by
solving the constraints, the evolution equations give the evolution of these
quantities to the other hypersurfaces.

In this way it is possible to describe, starting from the late inspiral, the
merger of the binary into a single BH. It took decades to develop this ap-
proach, but finally in 2006 the problem was solved, and it was possible to
perform NR simulation lf the BH-BH merger, finding the corresponding
waveform. Once the GW were detected, with GW150914, it was confirmed
that the NR waveform perfectly matched the observed signal emitted dur-
ing the merger.

The NR simulations also give the values of the mass and spin of the final
BH, Mfin, χfin. Then, NR simulations allowed to find analytical fits of
Mfin and χfin in terms of the masses and spins of the binary.



13

THE RINGDOWN SIGNAL

The last part of the signal is the ringdown, in which the final BH oscil-
lates at is proper frequencies, called quasi-normal modes (QNMs). The
frequencies of the oscillation are also the frequencies of the emitted GW
signal, which can be directly measured.

The “quasi” is due to the fact that, at variance with normal modes, the
QNMs are necessarily damped due to energy loss by GW emission: each
mode (j = 0, 1, . . . ) has complex frequency

ω(j) = ω
(j)
R + iω

(j)
I

with ω
(j)
I > 0. Then, when a BH oscillates with its j-th mode, its time

dependence is

eiω
(j)t = eiω

(j)
R te−ω

(j)
I t = eiω

(j)
R te−t/τ

(j)

where τ (j) ≡ 1/ω
(j)
I is the damping time of the j-th mode.

Soon the QNMs are damped and the BH becomes stationary. I recall
that, due to the so-called “no-hair theorems”, stationary, asymptotically
flat BHs without electric charge are described by the Kerr metric. Thus,
during the ringdown the final body is a perturbed Kerr BH; soon the
perturbations disappear, and a Kerr BH remains.

In the ringdown stage, the waveform has the form

h(t) ∼
∑
j

A(j) sin[ω
(j)
R t+ φ(j)]e−t/τ

(j)

:

it is a combination of oscillations of the QNMs of the final, Kerr BH.

The QNMS are found using perturbation theory around a curved back-
ground:

gµν = g(0)µν + hµν |hµν| � |g(0)µν |, .

The background metric is not Minskowski (the weak field approximation is
not satisfied), it is the metric of the final, stationary Kerr BH, which is only
characterized by two parameters: the mass M and the angular momentum
J . Solving Einstein’s equations linearized around the Kerr background, it
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is possible to find the frequencies and damping times of the Kerr QNMs
as functions of M and J :

ω
(j)
R (M,J) , τ (j)(M,J) .

In principle, by measuring these quantities from the ringwdown waveform,
it is possible to find mass and angular momentum of the final BH. In
practice, there is one mode with a larger excitation amplitude, and it is
easier to extract M,J from this mode: this is the fundamental mode
j = 0.

Let us consider, for simplicity, a non-rotating BH. In this case, the fun-
damental QNM has

G

c3
Mω(0) ' 0.3736 + i 0.0890 .

In more common units:

ν(0) =
ω(0)

2π
' 12

M/M�
KHz , τ (0) '

(
M

M�

)
5.5 · 10−5 s .

Thus if, for instance, M = 60M� (as for GW150914) then ν(0) ' 200 Hz
(well within LIGO-Virgo bandwidth) and τ (0) ' 3.3 · 10−3 s. If, instead,
M ∼ 106M�, as for the BH at the center of our Galaxy, then ν(0) ∼ 1.2·10−2

Hz and τ ∼ 60 s.
In the case of GW150914, only the fundamental mode has been observed;

this observation had a limited accuracy, but it was consistent with the
theoretical value corresponding to the values of Mfin, Jfin obtained from
NR.
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