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• Fuchsian ODEs and flat holomorphic connections; 

• Riemann-Hilbert map and monodromy parameters; 

• Application to quasi-normal modes; 

• Application to uniformizing maps of polycircular domains;

Outline

Various works with J. Barragán-Amado, J. P. Cavalcante, T. Anselmo, F. Novaes 
S. Nejad, E. Pallante, R. Nelson, D. Crowdy



Preamble

d
dz

Φ(z) = A(z)Φ(z), A(z) = (a11(z) a12(z)
a21(z) a22(z)), Φ(z) = (y1(z) y2(z)

w1(z) w2(z))

∂2
z y − (Tr A + ∂z log a12)∂zy + (det A − ∂za11 + a11∂z log a12)y = 0.

A(z) rational with at most single poles, ODE is Fuchsian. Extra singularity at roots of a12(z) .

(Reverse) Riemann-Hilbert problem: how parameters in A(z) affect analytical behavior of solutions?



Φ(zk + (z − zk)e2iπ) = Φ(z)Mk Mk ∼ (eiπθk 0
0 e−iπθk)

M∞M1Mt0M0 = 1 define Fenchel-Nielsen coordinates

2 cos πσ = Tr Mt0M0

eiη



isomonodromic deformations

“Residual gauge symmetry”: change  parameters of A(z) while keeping monodromy data. Schlesinger equations

y′ ′ + p(z, t)y′ + q(z, t)y = 0,

p(z, t) = 1 − ̂θ0
z

+ 1 − ̂θ1
z − 1 + 1 − ̂θt

z − t
− 1

z − λ
, q(z, t) = κ1(κ2 + 1)

z(z − 1) − t(t − 1)K
z(z − 1)(z − t) + λ(λ − 1)μ

z(z − 1)(z − λ) ,

∂A0
∂t

= 1
t

[A0, At],
∂A1
∂t

= 1
t − 1 [A1, At],

∂At

∂t
= − 1

t
[A0, At] − 1

t − 1 [A1, At],

can be translated to the ODE

dynamics of apparent singularities maintain monodromy data



The system is Hamiltonian

∂λ
∂t

= ∂K
∂μ

, ∂μ
∂t

= − ∂K
∂λ

,

with generating function (Jimbo-Miwa-Ueno tau function)

d
dt

log τJMU(t) = 1
t

Tr(A0At) + 1
t − 1 Tr(A1At),

isomonodromic flow

strategy: place initial conditions such that ODE  
from Schlesinger flow match desired (Heun) ODE

λ(t0) = t0, μ(t0) = K0
̂θt0



Kyiv formula

Full expansion for (isomonodromic, Painlevé VI) tau function is given in terms of monodromy data (GIL2013)

τ(t) = C∑
m

eimη̃ℬ({θk}, σ + 2m; t)

ℬ({θk}, σ; t) = )θ1
θ∞,σ)θt

σ,θ0
t 1

4 (σ2−θ2
0−θ2

t )(1 − t) 1
2 θtθ1 ∑

ρ,ν∈Y
ℬ({θk}, σ)t|ρ|+|ν|,

ℬ({θk}, σ) = ∏
(i, j)∈ρ

((θt + σ + 2(i − j))2 − θ2
0)((θ1 + σ + 2(i − j))2 − θ2

∞)
4h2ρ(i, j)(ρ′ j − i + νi − j + 1 + σ)2 ∏

(i, j)∈ν

((θt − σ + 2(i − j))2 − θ2
0)((θ1 − σ + 2(i − j))2 − θ2

∞)
4h2ν(i, j)(ν′ j − i + ρi − j + 1 − σ)2

c=1 conformal blocks, following AGT. Initial conditions are transcendental equations for ODE parameters

K0 = ∂
∂t

log τ({θk}−; σ − 1,η; t0) − θt − 1
2t0

− θt − 1
2(t0 − 1)τ({θk}; σ, η; t0) = 0,



Problem generalizes: any Fuchsian ODE Riemann-Hilbert problem can be solved this way

A(z; zk) = ∑
k

Ak

z − zk
,

∂Ak

∂zl
= [Ak, Al]

zk − zl
, ∂Ak

∂zk
= − ∑

l≠k

[Ak, Al]
zk − zl

(multi-)Hamiltonian flow:

∂
∂zk

log τ({θk}; {σk}, {ηk}; {zk}) = ∑
l≠k

Tr Ak Al

zk − zl

τJMU( ̂ρ+
k ; {wk}) = 0, βk = − ∂

∂tk
log τJMU( ̂ρ; {wk}) +

̂θk

2wk
+

̂θk

2(wk − 1) .

allows transcendental equations that determine accessory parameters from monodromy data



Why monodromy data?

monodromy data determines (partially) connection data

Φk(z) = (z − zk)
1
2 θkσ3(1 + ,(z − zk)) Φk(z) = Φl(z)Ckl

Mk = eiπθkσ3, Ml = Ckleiπθlσ3C−1
kl , Tr MkMl = 2 cos πσkl

Example: triangular connection

σkl = θk + θl + 2n, n integer

eiπη =
sin π

2 (θl + σ∞ + σ) sin π
2 (θl − σ∞ + σ)

sin π
2 (θl + σ∞ − σ) sin π

2 (θl − σ∞ − σ)
sin π

2 (θk + σ0 + σ) sin π
2 (θk − σ0 + σ)

sin π
2 (θk + σ0 − σ) sin π

2 (θk − σ0 − σ)



• Zamolodchikov recursion formula (any b); 

• Nekrasov expansions (appearance of -(ℂ) as moduli of 
instantons in )=2 SYM) (any b); 

• Riemann-Hilbert problem (b → 0).

Conformal blocks realize the Riemann-Hilbert map

{σi, ηj} = 1
2π

δij {ti, Kj} = δij

methods of calculation

Semi-classical level 2 null vector condition of Liouville 



Application: black hole QNMs

Schematically, wave equation is separable in many black hole backgrounds, for different values of spin

∇2Φ = μ2Φ, Φ = ∑ e−iωt+imϕRω,ℓ,m(r)Sω,ℓ,m(θ)

angular equation determines / by requiring solution to be regular 
at North and South poles

radial QNM determined by requiring solution  
with  no flux at outer horizon and infinity

branch cuts



why one should care?

Analytical & numerical methods exist for a number of black holes (ODE falls into Heun class); BUT…

tau permits a formal solution in terms of monodromy data, confluent limit is well-controlled,  
Miwa’s theorem guarantees analycity and isolated zeros; 

Relation to conformal blocks is explicit and (perhaps) hints at underlying integrable or physical structure, 
resurgence is clear (for PVI) and allows for choice of expansion point;

Numerically stable methods (Fredholm determinant formulation) exist for tau.  
Works for higher number of singular points.



Scalar QNMs in 5d Kerr-AdS black hole
with J. Barragán-Amado and E. Pallante

angular part: Heun equation

θ0 = m1, θ1 = 2 − Δ, θu0
= m2, θ∞ = ω + a1m1 + a2m2 u = 0, u = 1, u = u0 = a2

2 − a2
1

a2
2 − 1 , u = ∞,

4u0(u0 − 1)Q0 = − ω2 + a2
1 μ2 − λ

a2
2 − 1 − u0 [(m2 − Δ + 1)2 − m 2

2 − 1] − (u0 − 1)[(1 − m1 − m2)2 − β2 − 1]

λℓ ≃ ℓ(ℓ + 2) − 2ω (a1m1 + a2m2) − (a1m1 + a2m2)2 + a2
1 + a2

2
2 (β2 + μ2 − ℓ(ℓ + 2))

+ (a2
2 − a2

1) (m 2
2 − m2

1)
2ℓ(ℓ + 2) (β2 − μ2 − (ℓ2 + 2ℓ + 4)) + ,((a2

2 − a2
1 )2)

monodromy condition allows the computation of eigenvalue using Nekrasov expansion

radial equation: also Heun equation

θk = i
2π (

ω − m1Ωk,a − m2Ωk,b
Tk ), θ∞ = 2 − Δ, z0 = (r2

+ − r2
−)/(r2

+ − r2
0 )

4z0(z0 − 1)K0 = − λ + μ2r2
− − ω2

r2+ − r2
0

− (z0 − 1)[(θ− + θ+ − 1)2 − θ2
0 − 1] − z0 [(θ+ − Δ + 1)2 − θ2

+ − 1]



r2
+

r2
−

r2
0

∞

δS−
2π

δS+
2π

2 − Δ

ω
Liouville representation (entropy intake)

ω1,0,0,0 = Δ − (1 + α2
+)Δ(Δ − 1)r2

+ − 2i(1 + α2
+)Δ(Δ − 1)r3

+ + Δ(Δ − 1)ϵr2
+ + i(3 + α2

+)Δ(Δ − 1)ϵr3
+ + ,(r4

+, r4
+ log r2

+, ϵr4
+, ϵ2r2

+)

Analytical results for QNMs:

ϵ = r2
+ − r2

−
2r2+

, α2
+ = a2

1 + a2
2

2r2+

structure of a transseries



numerical results: instabilities

Figure 4. The ` = 1 modes for a12 = a2
1

� a2
2

= 0.001 as a function of r+ and fixed, very
small temperature T+ ⇠ 10�8. The modes m1 = 1,m2 = 0 (dark red) and m1 = 0,m2 = 1
(light red) display a small positive imaginary part for values where =✓+ < 0 (inset).

The low temperature version of the calculation for QNMs in [18] follows an analo-

gous strategy, based on (3.42) and (3.44). Since the final analytical expression for the

imaginary part of the ` � 1 QNM frequencies is not particularly illuminating, we will

limit ourselves to present some numerical results and discuss the qualitative features of

the analyzed modes. The numerical analysis was conducted using an arbitrary-precision

implementation of the Painlevé VI and V tau functions with a Fourier truncation of the

operators A, D and D0 at N = 32 levels, using the Arb library at 96-digit precision2.

The library is designed to control numerical uncertainties by performing calculations

with intervals of complex numbers. In all of the analysis the intervals were too small

to be of significance, of order 10�12, and they will be omitted from the analysis.

In Fig. 4 we display a typical plot of QNMs frequencies as a function of r+ for

` = 1. One sees that modes with either m1 or m2 positive are unstable for small values

of r+ and moderate values of a1 and a2, of which the example shown is characteristic.

2The implementation of the Painlevé VI and V tau functions in Julia programming language can
be obtained in https://github.com/strings-ufpe/painleve. The authors thank O. Lisovyy for
clarification on the details of the truncation in a private communication.
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Figure 7. The most unstable mode m1 = ` as a function of r+ for ` = 1, 2, 3, 4. Note
that the smaller decay rate for larger values of ` is accompanied by a larger width of the
superradiant window. The black hole is expected to decay through di↵erent values of `, m1

and m2 depending on the values of its charges.

R ⇥ S3. The energy density profile can be read from (2.23)

4⇡GN,5⇢̄ =
3M

2�̄2

✓

=
3M

2

�
1 + 2(a2

1
sin2 ✓̄ + a2

2
cos2 ✓̄) + . . .

�
. (4.1)

We interpret the expansion in the right-hand side to be the contribution of the higher

S3 spherical harmonics. From (4.1) we conclude that the generation of the `-th mode

will be dampened by a factor of a`i . Since a1 and a2 are parametrically small, of order

r+, the corresponding five-dimensional spheroidal harmonics can be approximated by

their zero rotation counterparts, i.e, the three-dimensional spherical harmonics [60]

Y m1,m2
` (✓̄, �̄1, �̄2) =

r
`+ 1

2⇡2

s
((`+m1 +m2)/2)!((` � m1 � m2)/2)!

((`+m1 � m2)/2)!((` � m1 +m2)/2)!
⇥

(sin ✓̄)m1(cos ✓̄)m2P (m1,m2)
1
2 (`�m1�m2)

(cos 2✓̄)eim1�̄1+im2�̄2 , (4.2)

where P (a,b)
n (z) are the Jacobi polynomials. At given `, the most unstable mode has the

energy dependence proportional to the tt-component of the scalar stress-energy tensor,
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Figure 6. The frequencies of the unstable modes for ` = 1 as a function of r+ for various
values of a12 = a2

1
� a2

2
. Note that the superradiant window induced by the condition =✓+ <

0 becomes smaller with increasing a12 due to the larger reduction of the real part of the
eigenfrequency.

rotating – five-dimensional black holes as argued in [59].

4 Holographic decay

Given the results of the preceeding sections for the QNMs and their instability, we may

reflect on the fate of the corresponding state in the putative dual CFT. The instabilities

signal that the state associated to the black hole will decay. The particular features

of the decay, such as its rate and final products, will of course depend on the coupling

between the black hole and the perturbation fields, which in holography can be read

from the stress-energy tensor. For the scalar type of perturbations considered here

we can deduce an interaction Hamiltonian of the sort Hint = �habTab. As we learned

from the discussion above, the imaginary part of the QNMs frequencies remains fairly

constant with ` > 0, with the most unstable mode at given ` being the one with the

largest m1⌦1,+ +m2⌦2,+.

Let us first consider the case where the field theory lives in the global boundary
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vector perturbations of 5d Kerr-AdS

3-separability (Lunin, Frolov-Krtouš): resulting ODEs are Heun plus apparent singularity

single monodromy parameters for radial, angular variables now depend on separation constant

initial value problem now sets value for 3, related to polarization of QNM modes 

only numerical study, also evidence for superradiance



4d Kerr and Reissner-Nordström black hole
with J. P. Cavalcante

θRad,0 = θ− = s − i
ω − mΩ−

2πT−
, θRad,t = θ+ = s + i

ω − mΩ+
2πT+

, θRad,⋆ = θ* = − 2s + 4iMω, 2πT± = r+ − r−
4Mr±

, Ω± = a
2Mr±

tRad = z0 = 2i(r+ − r−)ω, tRadcRad,t = z0c0 = sλℓ,m + 2s + 2i(1 − 2s)Mω − is(r+ − r−)ω + (M2a2 − 4Mr+)ω2

angular equation:

sλℓ,m(aω) = (ℓ − s)(ℓ + s + 1) − 2ms2

ℓ(ℓ + 1) aω + ( 2((ℓ + 1)2 − m2)((ℓ + 1)2 − s2)2

(2ℓ + 1)(ℓ + 1)3(2ℓ + 3) − 2(ℓ2 − m2)(ℓ2 − s2)2

(2ℓ − 1)ℓ3(2ℓ + 1) − 1) a2ω2 + ,(a3ω3)

radial equation:

ODE is now confluent Heun, complicated analytical structure near infinity…

eiπη0 = e−iπσ
sin π

2 (θ⋆ + σ)
sin π

2 (θ⋆ − σ)
sin π

2 (θt + θ0 + σ)sin π
2 (θt − θ0 + σ)

sin π
2 (θt + θ0 − σ)sin π

2 (θt − θ0 − σ)
quantization condition for radial equation 

involves Painlevé V tau function



s = − 2, ℓ = 2, m = 0,1,2

BCS 0905.2975 
CdC-C 2105.08790

Numerics match



relative error

Zamolodchikov recursion 
(continuous fraction method) 

fails at extremal point



Mω → m /2

Mω ↛ m /2

co-rotating

confluent limit

two types of behavior: 

Extremal limit

Co-rotating limit:

m = ℓ cases(most)

Mω = m
2 + β1ν + β2ν2 + …, σ = 1 + α0 + α1ν + α2ν2 + …



s = 0, ℓ = 1, m = 1

real α0



s = − 2, ℓ = 2, m = 2

imaginary α0



s = − 1, ℓ = 2, m = 1

Limit given by Painlevé III tau function

τIII( ⃗θ ext; σ, η; zext) = 0, zext
d
dt

log τIII( ⃗θ ext,−; σ − 1,η; zext) −
(θext,∘ − 1)2

2 = zextcext,z

Confluent limit



The Reissner-Nordström black hole

θ− = s + i
2πT− (ω − qQ

r− ), θ+ = s + i
2πT+ (ω − qQ

r+ ), θ⋆ = − 2s + 2i(2Mω − qQ),

2πT± =
r± − r∓

2r2±
, r± = M ± M2 − Q2,

z0cz0
= sλl,m + 2s − i(1 − 2s)qQ + (2qQ + i(1 − 3s))ωr+ + i(1 − s)ωr− − 2ω2r2

+, z0 = 2iω(r+ − r−) .

Q /M = cos ν

sλℓ,m = (s − ℓ)(s + ℓ + 1)

s = 0, 1
2

Δ−s d
dr (Δ1+s dRs(r)

dr ) + (K(r)2 − 2is(r − M)K(r)
Δ + 4isωr − 2isqQ − sλℓ)Rs(r) = 0

K(r) = ωr2 − qQr







qQc(s = 0) ≃ 0.216228, and  qQc(s = − 1/2) ≃ 0.642745



Decoupling at the extremal limit

Still don’t know why, but at least know how.



constructive conformal mapping
with T. Anselmo, S. Nejad, R. Nelson and D. Crowdy

{f (w); w} ≡ ∂3
w f

∂w f
− 3

2 ( ∂2
w f

∂w f ) = 2T(w), T(w) =
n−1

∑
k=0

αk

(w − wk)2 + βk

w − wk

can be transformed to Fuchsian equation by writing f (w) = Y1(w)
Y2(w)

solution analytic outside w = wk . can read single monodromy from deficit angle 

3

Ŷ2(w) two linearly independent solutions of

∂ 2
w
Ŷ +T (w)Ŷ = 0, (3)

then one can show by direct calculation that

f (w) =
aŶ1(w)+bŶ2(w)

cŶ1(w)+dŶ2(w)
(4)

solves (1) for any complex constants a,b,c,d such that ad � bc 6= 0. The freedom in choosing the relevant solutions of (3)
based on initial conditions is directly tied to determination of the complex constants in the Möbius map (4). Being Fuchsian, the
solutions Ŷ1,2(w) of (3) have known behavior near the poles, wk, of T (w). We can choose the solutions such that Ŷk(w) has the
behavior near wk given by

Ŷk,±(w) = (w�wk)
(1±qk)/2

X̂k,±(w), (5)

where X̂k,±(w) are analytic functions near wk and qk =
p

1�4ak, which are real-valued for real w. We will call Ŷk,±(w) the
Frobenius solutions of (3) near w = wk.

Coming back to the function f (w) = Ŷ1(w)/Ŷ2(w), it is straightforward to see that pqk is the angle between the image of the
real line to the left of wk, and the right of wk. Parametrizing w(t) = wk + t, t 2 (�e,e) ⇢ R, we see by the asymptotic form of
the solution (5) that, up to multiplication by a constant,

Ŷk,±(wk + t) =

(
|t|(1±qk)/2

e
ip(1±qk)/2(1+ . . .), for t < 0,

|t|(1±qk)/2(1+ . . .), for t > 0.
(6)

Away from the points {wk}, T (w) is an analytic function, and then the image of the real line will be either an arc of a circle or
a straight line– see Fig. 1. The image of the real line under f (w) will then be a composition of such circular arcs, bounding a
polycircular arc domain D, the image of the upper-half plane under the map. The singular points wk will in the t ! 0 limit map
to the vertices of D, and will be called prevertices. Given the relation between the internal angles pqk and ak in (2), we see that
the residues of the double poles of T (w) have then a direct geometric interpretation.

FIG. 1. Conformal mapping from the UHP to the interior of a polycircular arc domain, with zk = f (wk).

The geometric interpretation of the parameters bk is, however, more complicated. If we assume, without loss of generality,
that w = • is a regular point of the equation (3), the set of bk satisfy

n�1

Â
k=0

bk =
n�1

Â
k=0

(2wkbk +1�q 2
k
) =

n�1

Â
k=0

(bkw
2
k
+wk(1�q 2

k
)) = 0, (7)

which is a set of algebraic equations that determine 3 of the bk. By using the invariance of the Fuchsian equation with respect to
linear rational transformations that preserve the real line

w ! aw+b
gw+d

, a,b ,g,d 2 R ad �bg = 1, (8)

we can fix 3 of the prevertices at pre-determined points.
The set of n�3 prevertices wk and the corresponding n�3 undetermined bk are usually called the accessory parameters for

the equation determining the conformal map (1). The problem of finding the set of accessory parameters given the geometric
data, like a graphical representation of the polycircular arc region, is one aspect of the so-called Riemann-Hilbert problem of
reconstructing an analytic function from its monodromy data.

8

FIG. 4. Illustration of the geometric interpretation of the imaginary s defined in (34). On the left side we show the w plane, and the annulus
where the Floquet solutions (35) converge. On the right side, the u plane showing the images of the negative and positive real values of w as
arcs of circles with different radii.

The interpretation of the relative scale between the circles allow us to chose the sign of sk based on monodromy data. If the
radius rn�1 is greater than rk, then we pick ¡sk > 0. If it is smaller, we pick the negative sign.

The set of composite monodromy parameters {sk} thus defined comprise half of the Fenchel-Nielsen monodromy coordinates
which will be used to solve for the accessory parameter problem. The other half can be defined by considering the effective 4-
matrix problem for each vertex k between 1 and n�2

bM0,k�1 = bMk�1 . . . bM0, bMk, bMk+1, bMn�1,k+1 = bMn�1 . . . bMk+1. (37)

Due to the structure of the monodromy matrices in terms of the Schwarz matrices (31), this does correspond to a 4-point problem,
corresponding to zn�1, zk�1, zk and zk+1, with the respective centers and radii,

bM0,k�1 = Sk�1S�1
n�1,

bMk = SkS�1
k�1,

bMk+1 = Sk+1S�1
k
, bMn�1,k+1 = Sn�1S�1

k+1. (38)

Now, we can show that

SkS�1
l

= �
✓

z
0
k,l 1

zk,l 1

◆�1✓
e

ipqk,l 0
0 e

�ipqk,l

◆✓
z
0
k,l 1

zk,l 1

◆
, (39)

where zk,l and z
0
k,l are the “intersection points” between the arcs Al and Ak, defined by

zk,l = xl +
r

2
l
� rkrle

ipqk,l

x
⇤
k
� x

⇤
l

, z
0
k,l = xl +

r
2
l
� rkrle

�ipqk,l

x
⇤
k
� x

⇤
l

, (40)

with the name borrowed from the case where Al and Ak actually intersect. In the case where the two arc segments are contiguous,
the intersection points are zk,k�1 = zk and z

0
k,k�1 = z

0
k

are depicted on the right side of Fig. 2. The eigenvalue parameter qk,l can
be computed from 2cospqk,l = �TrSkS�1

l
, and is related to the monodromy parameters qk and sk in the subcases l = k �1 and

l = n�1, respectively.
Now, it can be checked that the 3 point problem M2M1 = �diag(epia3 ,e�pia3), where 2cospa1 = �TrM1 and 2cospa2 =

�TrM2 are known can be solved algebraically [21, 22]. The matrices are

M1 = �E�1
1

✓
e

pia1 0
0 e

�pia1

◆
E1, M2 = �E�1

2

✓
e

pia1 0
0 e

�pia1

◆
E2, (41)

where the connection matrices are of the form

E1 =

✓
sin p

2 (a1 +a2 +a3) sin p
2 (a1 �a2 �a3)

sin p
2 (a1 +a2 �a3) sin p

2 (a1 �a2 +a3)

◆✓
s

1/2 0
0 s

�1/2

◆
, E2 =

✓
z 0 1
z 1

◆✓
s

1/2 0
0 s

�1/2

◆
, (42)

where s is an arbitrary parameter and

z 0 =
1
2

cosp(a1 +a2)�
1
2

cospa3, z =
1
2

cosp(a1 �a2)�
1
2

cospa3. (43)

generally complex composite monodromy parameter.

σk = 1 + iλk



Explicit monodromy matrices can be constructed from geometrical representation of polycircular arc domain

Sk = 1
rk (

x*k 1
r2

k − |xk |2 −xk) ̂M k = SkS−1
k−1

accessory parameters of T(w) can be obtained by the transcendental equations

τJMU( ̂ρ+
k ; {wk}) = 0, βk = − ∂

∂tk
log τJMU( ̂ρ; {wk}) +

̂θk

2wk
+

̂θk

2(wk − 1) .



• not only a formal solution to the connection problem, but useful 
and effective way of computing (numerically or analytically); 

• advantage to think about monodromy even in usual schemes of 
calculation (Hill’s determinant, continuous fraction); 

• any “separable” black hole? 

•  “factorization” of space-time conformal blocks into 2d chiral ones; 
CFT interpretation (is it just a trick?); 

• pays to consider all monodromy parameters; (extremal) limits 
better behaved; Relevant physical quantities already translated to 
monodromy data;

what we learned



Thank you!


