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➙ Overall Motivation
• What happens when we dive across an event horizon into the interior of a BH?

  There are classical and quantum challenges (many not yet fully understood):


–Hawking-Penrose Singularity thms ’70: @ interior of BH, spacetime ends at a singularity

–Belinskii-Khalatnikov-Lifshitz (BKL) ’70: How? General solution near spacelike (cosmological)    

 singularity is intricate & described by a Kasner cosmology (possibly w/ chaotic BKL oscillations)

–On other hand, Weak Cosmic Censorship Conjecture [Geroch-Horowitz ’79]: 

  “generically, the maximal development of (asymp flat, geod complete) initial data is an   

  asymp flat spacetime (in particular I+ is complete) that is strongly asymptotically   

  predictable.”  —> “naked singularities don’t form (from collapse)”


• Geroch ’70: For BHs with a Cauchy horizon (at which classical predictability breaks down  

                even without large curvatures) what happens?

• Penrose ’79: Cauchy horizons are artifacts of symmetry & do not arise from generic 

         initial data: blueshift instability (a.k.a. mass inflation) should produce singularity. 

• Strong Cosmic Censorship Conjecture [Penrose ’79, Christodoulou ’99]: Generically (generic     
asympt flat, complete, initial data Σ) the resulting solution cannot be extended across a 
Cauchy horizon (the maximal Cauchy development of a two-ended Σ is inextendible)



• Weak CC is not implied by Strong CC and the two are independent:

The classical interior of charged black holes with AdS asymptotics
Motivation

The Strong & the Weak - 2/2
In spite of the name, the WCCC is not implied by SCCC.
The two conjectures are logically independent!

The first Penrose diagram violates SCCC, but not WCCC. The
second Penrose diagram violates WCCC, but not the SCCC.

Copy & Paste

The formulations above pertain asymptotically flat initial data sets.
One can formulate these for AdS asymptotics if well-posed bound-
ary conditions are enforced the conformal boundary of AdS.
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violates SCCC, but not WCCC violates WCCC, but not the SCCC

 “naked singularity, not clothed by horizon”
 “Cannot predict the future 


   from initial data”



➙ Motivation: BH interiors in AdS (in short)

The classical interior of charged black holes with AdS asymptotics
The neutral model

An infamous Penrose diagram

Infamously, in addition to the horizon at
z = zH, there is an inner horizon z = zI with
f(zI) = 0, so that

1
zI

zH

22
+ zI

zH

+ 1 = fl2z4
H

4

1
zI

zH

23
.

Because of this inner horizon, many of us used

to draw an ad nauseam Penrose diagram.
However, this inner horizon is a Cauchy

horizon H
+(�), leading to the breakdown of

predictability in the black hole interior.

At high temperatures fl
2
z

4
H

æ 0 and in this limit the inner horizon
is at zI ¥ 4zH/(fl2

z
4
H

) æ Œ (Schwarzschild-AdS black hole). At
low temperatures zI æ zH, and the black hole becomes extremal.
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Reissner-Nordström-AdS

Add a charged scalar field => Hairy BH forms

(Holographic Superconductor)

RN-AdS becomes unstable 

to formation of scalar 

condensate

The classical interior of charged black holes
with AdS asymptotics

Jorge E. Santos @ DAMTP
in collaboration with S. A. Hartnoll, G. T. Horowitz and J. Krutho�

Dive into the interior of hairy BH:

System goes through 3 epochs

( r is now timelike coord )

& deep in the interior one 

approaches not a Cauchy Horizon 

           but a Kasner (spacelike) singularity

Frenkel-Hartnoll-Kruthoff-Shi: [2004.01192]
Santos-Horowitz-Hartnoll-Kruthoff: 
           [2008.12786], [2006.10056]   



* 

* 

This talk in a nutshell:

Mutatis mutandis,
     is there some universality in this physics? 

That is to say, do we have similar physics for asymptotically flat BHs?

Mutatis mutandis is a Medieval Latin phrase meaning "with things changed that should be changed" 
                                                                                    or "once the necessary changes have been made”.
It remains unnaturalized in English and is therefore usually italicized in writing.



➙ This talk: Diving into BH interior of an asymp. flat charged hairy BH
1. Start with Reissner-Nordström

2. Add an (appropriate) charged scalar field => RN unstable to scalar condensation

3. Associated hairy BHs have novel properties: Maximal Warm Holes  [ Part 1 ]  

4. Dive into the interior of the associated hairy BH [ Part 2 ]: 

   Find that the system goes through 3 epochs: 

      - Einstein-Rosen bridge collapse epoch

      - Josephson oscillations epoch

      - Kasner cosmology epoch 

  before a Kasner singularity forms deep in the interior (no Cauchy horizon) 
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Part 1:  

Black Holes of the theory & their properties

Maximal Warm Holes



➙ The theory and its phase diagram of solutions

positive potential. In particular, it applies to the rotating black holes with scalar

hair constructed in [20–23]. To our knowledge this is the first argument that applies

to solutions that are not static and either spherically symmetric or planar, i.e., with

cohomogeneity greater than one.

2 Equations of motion

We are interested in asymptotically flat charged black hole solutions that can develop

scalar hair due to a particular coupling of a massive charged scalar field to the Maxwell

field. So we consider the action

S “
ª
d4x

?´g
“
R ´ F 2 ´ 4pDa qpDa q: ´ 4m2| |2 ´ 4↵F 2| |2

‰
, (2.1)

where m and q are the mass and charge of the scalar field and D “ r ´ i q A and

F “ dA . This theory satisfies all the usual energy conditions if the Maxwell-scalar

coupling constant ↵ is positive, which we will assume is the case.

The equations of motion for this action read

Rab ´ R

2
gab “ 2

`
1 ` 4↵| |2

˘ ´
FacF

c
b ´ gab

4
F cdFcd

¯

` 2
“
pDa qpDb q: ` pDa q:pDb q ´ gabpDc qpDc q: ´ gabm

2| |2
‰
, (2.2a)

ra

“`
1 ` 4↵| |2

˘
F ab

‰
“ i q

“
pDb q : ´ pDb q: 

‰
, (2.2b)

DaDa ´ ↵F cdFcd ´ m2 “ 0 . (2.2c)

Besides the Reissner-Nordström solution with vanishing scalar field, this theory

also has hairy black hole solutions with nonzero  . In fact, as we increase the charge

on a RN black hole, it becomes unstable at a critical charge Qc. This instability and

the resulting hairy black holes were studied (outside the horizon) in [7]. Here, we are

interested in diving into the event horizon of these hairy black holes and studying the

properties of their interior.

To study the interior of the asymptotically flat charged black holes of (2.1) it is
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• Einstein-Maxwell with charged scalar field & a scalar-Maxwell coupling:
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black holes as the black hole radius goes to zero.

2 Equations of motion

We start with the action

S “
ª
d4
x

?´g
“
R ´ F

2 ´ 4pDa qpDa
 q: ´ 4m2| |2 ´ 4↵F 2| |2

‰
, (2.1)

where D “ r´ i q A and F “ dA . This theory satisfies all the usual energy conditions

if the coupling constant ↵ is positive, which we will assume is the case.

The equations of motion for this general action read

Rab ´ R

2
gab “ 2

`
1 ` 4↵| |2

˘ ´
FacF

c
b ´ gab

4
F

cd
Fcd

¯

` 2
“
pDa qpDb q: ` pDa q:pDb q ´ gabpDc qpDc

 q: ´ gabm
2| |2

‰
, (2.2a)

ra

“`
1 ` 4↵| |2

˘
F

ab
‰

“ i q
“
pDb

 q : ´ pDb
 q:

 
‰
, (2.2b)

and

DaD
a
 ´ ↵F

cd
Fcd ´ m

2
 “ 0 . (2.2c)

In order to understand the static, spherical solutions to the above equations of

motion, we use the following standard ansatz

ds2 “ ´pprq gprq2 dt2 ` dr2

pprq ` r
2pd✓2 ` sin2

✓ d�2q (2.3a)

For the scalar and Maxwell potential we take

A “ �prq dt ,  “  
: “  prq . (2.3b)

The equations of motion restricted to our ansatz become

g

r2

„
r
2

g
p1 ` 4↵ 2q�1

⇢1
´ 2 q2  2

p
� “ 0 , (2.4a)

1

r2g

`
r
2
g p 

1˘1 ` 2↵�12

g2
 `

ˆ
q
2 �2

p g2
´ m

2

˙
 “ 0 , (2.4b)

g
1

g
´ 2 r

ˆ
q
2�2

 
2

p2g2
`  

12
˙

“ 0 , (2.4c)

1

r2g
pr g p q1 ´ 1

r2
` 2m2

 
2 ` 1 ` 4↵ 2

g2
�12 “ 0 , (2.4d)
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We solve these via a standard relaxation method on a Gauss-Lobatto collocation grid

(see [11] for a review of such numerical methods).

At several points in the main text, we will refer to the entropy and temperature of

the black holes. These are given by

m
2
S “ ⇡ y

2
` and

T

m
“ q1p1q

a
q4p1q

4⇡y`
. (2.10)

It is a simple exercise to show that the massM , charge Q, chemical potential µ, entropy

S and Hawking temperature T obey the first law of black hole mechanics

dM “ T dS ` µ dQ , (2.11)

which we check numerically throughout. All solutions in this manuscript satisfy this

relation to at least the 10´4% level of confidence.

Finally, we note that when the scalar field vanishes, i.e.  “ 0, the only black hole

is given by the familiar Reissner-Nordström (RN) solution for which

pprq “ pRNprq ” pr ´ r`qpr ´ r´q
r2

, gprq “ 1 , and �prq “ �RNprq ”
´
1 ´ r`

r

¯
µ

(2.12)

with Q “ µ r` and r˘ ” M ˘
a
M2 ´ Q2. The RN temperature is TRN “ r`´r´

4⇡r2`
and,

at extremality, one thus has r´ “ r` “ M “ Q and µ “ 1. Note that r´{r` “ µ
2.

2.1 Asymptotic condition

There is another condition that must be satisfied in order to obtain hairy black holes.

The scalar field will be bound to the black hole only if it falls o↵ appropriately at

infinity. In our gauge with Atpr`q “ 0, and Atpr “ 8q “ µ, this is only possible if

q
2
µ
2 § m

2
. (2.13)

The necessity of this condition can be seen by considering the asymptotic behavior of

the scalar field. If q2µ2 † m
2, the scalar field behaves at large radius like

 “ e
´r

?
m2´q2µ2

r1`⌘

“
b ` Opr´1q

‰
, (2.14)

for a constant b, where

⌘ ”
a
m2 ´ q2µ2 M ´ µ q

2 pµM ´ Qqa
m2 ´ q2µ2

. (2.15)

The exponential decay at large distance is characteristic of a bound state.
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• Ansatz for solutions (static, spherically symmetric)

• Reissner-Nordström (RN) solution (no scalar field)

 μ: chemical potential

Scalar-Maxwell coupling: 

 required to have scalar condensation when Λ=0 & hairy BHs branching from RN

       (Theories with self-interacting V also have hairy BHs but they do not branch from RN)



• Perturb RN with scalar field:
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Exponential decay: characteristic of 

                             bound states

• If                    the scalar field decays exponentially at infinity:
<latexit sha1_base64="Ny3vQ/K2gIJAkIIdjraQSDN0iDc=">AAAB+XicbVBNTwIxEO3iF+LXqkcvjcTEE9klRD0SvXjERMAEFtItAzS03aXtkpAN/8SLB43x6j/x5r+xwB4UfMlMXt6bSacvjDnTxvO+ndzG5tb2Tn63sLd/cHjkHp80dJQoCnUa8Ug9hUQDZxLqhhkOT7ECIkIOzXB0N/ebE1CaRfLRTGMIBBlI1meUGCt1XXfcKbdFYhuHMRadctcteiVvAbxO/IwUUYZa1/1q9yKaCJCGcqJ1y/diE6REGUY5zArtRENM6IgMoGWpJAJ0kC4un+ELq/RwP1K2pMEL9fdGSoTWUxHaSUHMUK96c/E/r5WY/k2QMhknBiRdPtRPODYRnseAe0wBNXxqCaGK2VsxHRJFqLFhFWwI/uqX10mjXPKvSpWHSrF6m8WRR2foHF0iH12jKrpHNVRHFE3QM3pFb07qvDjvzsdyNOdkO6foD5zPH2Yzkt4=</latexit>

q2µ2  m2

• Otherwise (                   ), scalar field oscillates asymptotically =>  it’s not bound to BH.  
       Such solutions would have infinite energy   => discard

If m2 “ q
2
µ
2, the scalar field still decays exponentially like

 “ e
´2

?
2 q

?
µ

?
Q´µM

?
r

r3{4
“
b ` Opr´1{2q

‰
. (2.16)

However, if q2µ2 ° m
2, the scalar field oscillates asymptotically indicating that the

scalar field is not bound to the black hole. More importantly, such solutions would

have infinite energy.

3 Linear instability

The familiar RN metric with  “ 0 is clearly always a solution to our equations of

motion (2.2). However, this solution can become unstable to forming scalar hair. This

is because F
2 † 0 for an electrically charged black hole, so the last term in the action

acts like a negative contribution to the scalar mass. This can become large enough near

the horizon to dominate the m
2 term in the action.

In this section we determine when this instability sets in using a linearized analysis.

In particular, we will take Eq. (2.2c) and set the metric and gauge field to be those of

the RN black hole (2.12). Furthermore, we will take the scalar field  to be radially

symmetric and Fourier expand in time as

 pt, rq “ r prq e´i! t
, (3.1)

which introduces the frequency ! of the perturbation and brings the scalar equation

(2.2c) to the following form

1

r2

”
r
2
pRNprq r 1prq

ı1
`

#
r! ` q�RNprqs2

pRNprq ´ m
2 ` 2↵�1

RNprq2
+

r prq “ 0 . (3.2)

We would like to understand whether finite energy excitations, regular on the future

event horizon of the RN black hole, exist for which Im! ° 0, in which case we have a

mode whose amplitude grows in time and the system develops an instability. Searching

for such excitations amounts to studying a generalised eigenvalue problem in !, which

we present in Appendix A. Here we present a simple criterion for when RN is unstable,

and compute the onset of the instability by looking for ! “ 0 modes.

3.1 The near horizon analysis

Since the RN black hole has a maximum electric field at extremality, we expect that

the minimum charge ratio q{m and minimum ↵ needed to herald an instability can be

determined by analysing the extremal solution.
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=> Solution  reduces to the direct product  form  AdS2 x S2 :

The near horizon geometry of the extremal RN black hole takes the direct product

form AdS2 ˆ S
2 where AdS2 stands for 2-dimensional anti-de Sitter spacetime. This is

best seen by first setting r´ “ r`, introducing new coordinates p⌧, ⇢q as

t “ r` ⌧
�

, and r “ r`p1 ` � ⇢q (3.3)

and taking the limit � Ñ 0. Once we do this, one obtains

ds2AdS2ˆS2 “ L
2
AdS2

ˆ
´⇢2d⌧ 2 ` d⇢2

⇢2

˙
` r

2
`

`
d✓2 ` sin2

✓ d�2
˘

(3.4a)

and

AAdS2ˆS2 “ µAdS2 ⇢ d⌧ , (3.4b)

where the first factor in the line element corresponds to the two-dimensional AdS2 with

LAdS2 “ r` and µAdS2 “ r`. The near-horizon solution (3.4) solves (2.4) with  “ 0.

It is a well know fact that neutral massive scalar waves propagating on asymptoti-

cally AdS spacetimes possess a value for the mass squared below which AdS is unstable

and negative energy solutions to the wave equation can be constructed. This is the

so-called Breitenlöhner-Freedman (BF) bound [12, 13]. In particular, for a neutral

massive scalar field in AdS2 this bound reads

m
2
AdS2L

2
AdS2 • ´1

4
. (3.5)

However, a charged scalar field not only gets contributions from bare mass terms in its

equation of motion, but also from the gauge fields, since these can act as e↵ective two-

dimensional masses. It was first conjectured in [14], and proved in certain cases in [15],

that the the full extreme black hole is unstable with respect to charged perturbations

if

m
2
e↵L

2
AdS2 ” m

2
AdS2L

2
AdS2 ´ q

2
µ
2
AdS2 † ´1

4
. (3.6)

This is a su�cient, but not necessary condition in general. In the Appendix A we

argue that for our case, this condition is also necessary (see, in particular, Sec. A.3 and

the discussion associated to Fig. 13). Note that an instability will only be physically

acceptable if it is possible to keep m
2 positive from the perspective of the asymptotic

flat ends, and yet have m
2
e↵L

2
AdS2 † ´1{4 in the near horizon AdS2 ˆ S

2 region.

It remains to compute m2
e↵L

2
AdS2 in our particular theory. This is a rather standard

procedure and we refer the reader to [15] for details2. In our case we find that the AdS2

2 In short, we apply the coordinate transformation (3.3) to the linearized scalar equation (3.2), set
! “ �r! and keep only the leading terms in the � Ñ 0 expansion while keeping r! fixed. Then, one
compares the resulting equation to that of a charged, massive scalar living on a rigid AdS2 with mass
m2

AdS2
, charge q and frequency r!. From this, we can reconstruct m2

e↵L
2
AdS2

.
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• Full extreme BH is unstable if effective scalar mass in AdS2 x S2 violates AdS2 BF bound:   

BF bound is violated when

m
2
e↵L

2
AdS2 ` 1

4
“ 1

4
` pm2 ´ q

2qL2
AdS2 ´ 2↵ † 0

ñ ↵ ° 1

2

„
1

4
` pm2 ´ q

2qL2
AdS2

⇢
. (3.7)

When the background RN black hole is extremal, i.e. when µ “ 1, the bound state

condition given in Eq. (2.13) simplifies to m ° |q|, so that the term on the right hand

side of the above inequality is always positive. This is essentially the reason why we

need the new coupling ↵ if we want to make the RN black hole unstable.

3.2 The onset of hairy black holes

When (3.7) is satisfied, the extremal RN black hole is unstable, so the onset of the

instability starts at some Q † M . This onset can be found by searching for static,

finite energy perturbations, so we set ! “ 0 in (3.2).

Typically, the onset occurs when q
2
µ
2 † m

2. In this case we require that  fall o↵

as in (2.14) and (2.15). It is convenient not to work directly with  , but instead define

a new function  ̂ through the relation

 ” e
´

?
m2´q2µ2 r

´
r`
r

¯1`⌘

 ̂ . (3.8)

Numerically, it is hard to work with infinite domains so we introduce a compact coor-

dinate y given by

r “ r`
1 ´ y

, (3.9)

with the horizon located at y “ 0 and asymptotic infinity at y “ 1. The boundary

conditions for  ̂ are then found by demanding  ̂ to have a regular Taylor expansion at

y “ 0 and y “ 1. This procedure yields rather cumbersome Robin boundary conditions

at y “ 0 and y “ 1 which we do not present here.

If we now fix ↵, q{m, and mr`, the equation for  ̂ is a generalized eigenvalue

equation in µ. By computing these eigenvalues, we determine a curve in the space of

RN black holes that marks the onset of the scalar hair. This is how the blue curve was

generated in Fig. 1.

For q2 ° m
2, modes with q

2
µ
2 “ m

2 can also branch o↵ from RN. These are the

beginning of the solutions that we discuss in the next section. To find them, we require

that  satisfy (2.16) asymptotically, and set

 “ e
´2

?
2 q

?
µ

?
Q´µM

?
r

´
r`
r

¯3{4
 ̂ . (3.10)
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m2
e↵L

2
AdS2

⌘ m2L2
AdS2

� q2µ2
AdS2

< �1

4
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• Conclusion:  
       Extremal RN has µ=1 so we can have bound states (           )  

                    that violate the BF bound if 

q2  m2
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BF bound is violated when

m
2
e↵L

2
AdS2 ` 1

4
“ 1

4
` pm2 ´ q

2qL2
AdS2 ´ 2↵ † 0

ñ ↵ ° 1

2

„
1

4
` pm2 ´ q

2qL2
AdS2

⇢
. (3.7)

When the background RN black hole is extremal, i.e. when µ “ 1, the bound state

condition given in Eq. (2.13) simplifies to m ° |q|, so that the term on the right hand

side of the above inequality is always positive. This is essentially the reason why we

need the new coupling ↵ if we want to make the RN black hole unstable.

3.2 The onset of hairy black holes

When (3.7) is satisfied, the extremal RN black hole is unstable, so the onset of the

instability starts at some Q † M . This onset can be found by searching for static,

finite energy perturbations, so we set ! “ 0 in (3.2).

Typically, the onset occurs when q
2
µ
2 † m

2. In this case we require that  fall o↵

as in (2.14) and (2.15). It is convenient not to work directly with  , but instead define

a new function  ̂ through the relation

 ” e
´

?
m2´q2µ2 r

´
r`
r

¯1`⌘

 ̂ . (3.8)

Numerically, it is hard to work with infinite domains so we introduce a compact coor-

dinate y given by

r “ r`
1 ´ y

, (3.9)

with the horizon located at y “ 0 and asymptotic infinity at y “ 1. The boundary

conditions for  ̂ are then found by demanding  ̂ to have a regular Taylor expansion at

y “ 0 and y “ 1. This procedure yields rather cumbersome Robin boundary conditions

at y “ 0 and y “ 1 which we do not present here.

If we now fix ↵, q{m, and mr`, the equation for  ̂ is a generalized eigenvalue

equation in µ. By computing these eigenvalues, we determine a curve in the space of

RN black holes that marks the onset of the scalar hair. This is how the blue curve was

generated in Fig. 1.

For q2 ° m
2, modes with q

2
µ
2 “ m

2 can also branch o↵ from RN. These are the

beginning of the solutions that we discuss in the next section. To find them, we require

that  satisfy (2.16) asymptotically, and set

 “ e
´2

?
2 q

?
µ

?
Q´µM

?
r

´
r`
r

¯3{4
 ̂ . (3.10)
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• Instability confirmed by a full numerical analysis:

bound is violated and thus we expect an instability before we reach extremality (see

analysis of Sec. 3.1).

In Fig. 11 we plot Imp!{mq (left panel) and Rep!{mq (right panel) as a function

of mM and pQ ´ Mqm for fixed ↵ “ 1 and q{m “ 0.5. For clarity, we only show the

region in moduli space where the RN black hole is unstable. The growth rate appears

to grow as we approach extremality, at fixed mM , as expected. We also plot in Fig. 11

the merger line (where Im! “ 0). Finally, we add to this plot a blue line computed

directly at extremality (see A.3). The agreement between our non-extremal data and

the data computed at extremality is reassuring. We have repeated this plot for several

values of ↵ and q{m, and the overall qualitative picture appears the same.

Using our numerical results, we can also test whether (A.7) provides a good ap-

proximation when the AdS2 BF bound is preserved, i.e. when m
2
e↵L

2
AdS2 ` 1{4 • 0. In

Fig. 12 we have µ “ 0.99 on the top two plots, and µ “ 0.999 on the bottom two plots.

In both cases we have mr` “ 1. On the left column we plot the imaginary part, while

on the right column we plot the real part. In all cases, the horizontal axis is given by

the Maxwell-scalar coupling ↵. The blue disks in each figure label the exact numerical

data, while the red solid lines give the prediction (A.7). As anticipated, (A.7) only

Figure 11: Imaginary part (left panel) and real part (right panel) of ! as a function of

mM and pQ ´ Mqm for fixed ↵ “ 1, q{m “ 0.5. The onset line, depicted in red, was

computed directly with ! “ 0 (see Sec. 3.2), whereas the blue line at extremality, where

M “ Q, was computed using the method outlined in section A.3.

– 28 –

• Plot for  α =1,  q/m=1/2 
• Red: Onset of instability (ω=0).   Blue: extremality (Q-M=0)

If m2 “ q
2
µ
2, the scalar field still decays exponentially like

 “ e
´2

?
2 q

?
µ

?
Q´µM

?
r

r3{4
“
b ` Opr´1{2q

‰
. (2.16)

However, if q2µ2 ° m
2, the scalar field oscillates asymptotically indicating that the

scalar field is not bound to the black hole. More importantly, such solutions would

have infinite energy.

3 Linear instability

The familiar RN metric with  “ 0 is clearly always a solution to our equations of

motion (2.2). However, this solution can become unstable to forming scalar hair. This

is because F
2 † 0 for an electrically charged black hole, so the last term in the action

acts like a negative contribution to the scalar mass. This can become large enough near

the horizon to dominate the m
2 term in the action.

In this section we determine when this instability sets in using a linearized analysis.

In particular, we will take Eq. (2.2c) and set the metric and gauge field to be those of

the RN black hole (2.12). Furthermore, we will take the scalar field  to be radially

symmetric and Fourier expand in time as

 pt, rq “ r prq e´i! t
, (3.1)

which introduces the frequency ! of the perturbation and brings the scalar equation

(2.2c) to the following form

1

r2

”
r
2
pRNprq r 1prq

ı1
`

#
r! ` q�RNprqs2

pRNprq ´ m
2 ` 2↵�1

RNprq2
+

r prq “ 0 . (3.2)

We would like to understand whether finite energy excitations, regular on the future

event horizon of the RN black hole, exist for which Im! ° 0, in which case we have a

mode whose amplitude grows in time and the system develops an instability. Searching

for such excitations amounts to studying a generalised eigenvalue problem in !, which

we present in Appendix A. Here we present a simple criterion for when RN is unstable,

and compute the onset of the instability by looking for ! “ 0 modes.

3.1 The near horizon analysis

Since the RN black hole has a maximum electric field at extremality, we expect that

the minimum charge ratio q{m and minimum ↵ needed to herald an instability can be

determined by analysing the extremal solution.
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     => in a phase diagram of static solutions, there should exist hairy BHs  
         bifurcating from the RN onset of instability 

• Indeed, that’s the case. Phase diagram  for  α =1,  q/m=1:

• RN are unstable to condensation of bound states if            q2µ2  m2
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• Blue: RN onset = Bifurcation/Merger of RN with hairy BH 
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Figure 1. The phase diagram of solutions with q/m = 1 and α = 1. RN black holes exist in the
green area with Q − M ≤ 0, with the dashed horizontal line at Q − M = 0 being the extremal
RN family. Hairy black holes exist in the brown shaded region. They begin at the blue line which
denotes the onset of the scalar instability. They are bounded on top by either the red curve which
represents nonsingular maximal warm holes with µ = 1, or the black curve which denotes singular
extremal hairy black holes (with T = 0 and S = 0). Note that hairy black holes can slightly exceed
the usual extremal bound Q = M .

In figure 1 and 2 it is hard to extend the hairy solutions to Mm → ∞. However, it
is reasonable to expect that as Mm → ∞, maximal warm holes approach Q − M = 0 and
T = 0. If so, they would approach extremal RN (black dashed horizontal line in figure 1)
and also the instability onset curve (blue line in figure 1). Since maximal wormholes also
have T → 0 as they approach the singular extremal solutions at small mass, this would
explain why T is not a monotonic function of M . From figure 2 we see that (for q/m = 1,
α = 1) T has a maximum at Mm ≈ 0.9. This nonmonotonic behavior of T is similar to its
behavior in RN if we start with the extremal solution and then increase the mass keeping
the charge fixed: T first increases and then decreases back to zero. It is surprising that we
are now seeing this behavior in a class of black holes with maximal charge.

In the bottom plots of figure 2 we display the value of the Maxwell field strength
evaluated at the horizon F 2

H (left panel) and the electric charge on the black hole QH
as defined in (4.1) (right panel). In the inset plot of the bottom-right panel we also
display the ratio QH/Q between the charge on the horizon and the charge measured at
infinity. It is interesting to note that as we decrease the mass, QH decreases almost linearly.
Since the black hole area is also decreasing almost linearly, F 2

H remains approximately
constant. However, when the area becomes very small, F 2

H diverges. This drives up the
scalar instability and causes the charge on the black hole to vanish rapidly.
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Why do maximal warm holes exist in this theory but not others? 

• As one increases  Q  (for fixed M),  

     the region near the horizon behaves as a typical BH with scalar hair  

     and wants to become singular.  

• However, if the M is large enough (M>0.8), before one reaches a singular horizon,  

                 the asymptotic (bound state) condition                          is saturated. 

  

• Since one cannot support scalar hair if this bound is violated  

        (& there are no other BHs without hair having Q > M),  

        the would be “extremal” BH has T > 0. 

This is a new kind of extremal BH that we are calling a maximal warm hole  

We solve these via a standard relaxation method on a Gauss-Lobatto collocation grid

(see [11] for a review of such numerical methods).

At several points in the main text, we will refer to the entropy and temperature of

the black holes. These are given by

m
2
S “ ⇡ y

2
` and

T

m
“ q1p1q

a
q4p1q

4⇡y`
. (2.10)

It is a simple exercise to show that the massM , charge Q, chemical potential µ, entropy

S and Hawking temperature T obey the first law of black hole mechanics

dM “ T dS ` µ dQ , (2.11)

which we check numerically throughout. All solutions in this manuscript satisfy this

relation to at least the 10´4% level of confidence.

Finally, we note that when the scalar field vanishes, i.e.  “ 0, the only black hole

is given by the familiar Reissner-Nordström (RN) solution for which

pprq “ pRNprq ” pr ´ r`qpr ´ r´q
r2

, gprq “ 1 , and �prq “ �RNprq ”
´
1 ´ r`

r

¯
µ

(2.12)

with Q “ µ r` and r˘ ” M ˘
a
M2 ´ Q2. The RN temperature is TRN “ r`´r´

4⇡r2`
and,

at extremality, one thus has r´ “ r` “ M “ Q and µ “ 1. Note that r´{r` “ µ
2.

2.1 Asymptotic condition

There is another condition that must be satisfied in order to obtain hairy black holes.

The scalar field will be bound to the black hole only if it falls o↵ appropriately at

infinity. In our gauge with Atpr`q “ 0, and Atpr “ 8q “ µ, this is only possible if

q
2
µ
2 § m

2
. (2.13)

The necessity of this condition can be seen by considering the asymptotic behavior of

the scalar field. If q2µ2 † m
2, the scalar field behaves at large radius like

 “ e
´r

?
m2´q2µ2

r1`⌘

“
b ` Opr´1q

‰
, (2.14)

for a constant b, where

⌘ ”
a
m2 ´ q2µ2 M ´ µ q

2 pµM ´ Qqa
m2 ´ q2µ2

. (2.15)

The exponential decay at large distance is characteristic of a bound state.
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Figure 1. The phase diagram of solutions with q/m = 1 and α = 1. RN black holes exist in the
green area with Q − M ≤ 0, with the dashed horizontal line at Q − M = 0 being the extremal
RN family. Hairy black holes exist in the brown shaded region. They begin at the blue line which
denotes the onset of the scalar instability. They are bounded on top by either the red curve which
represents nonsingular maximal warm holes with µ = 1, or the black curve which denotes singular
extremal hairy black holes (with T = 0 and S = 0). Note that hairy black holes can slightly exceed
the usual extremal bound Q = M .

In figure 1 and 2 it is hard to extend the hairy solutions to Mm → ∞. However, it
is reasonable to expect that as Mm → ∞, maximal warm holes approach Q − M = 0 and
T = 0. If so, they would approach extremal RN (black dashed horizontal line in figure 1)
and also the instability onset curve (blue line in figure 1). Since maximal wormholes also
have T → 0 as they approach the singular extremal solutions at small mass, this would
explain why T is not a monotonic function of M . From figure 2 we see that (for q/m = 1,
α = 1) T has a maximum at Mm ≈ 0.9. This nonmonotonic behavior of T is similar to its
behavior in RN if we start with the extremal solution and then increase the mass keeping
the charge fixed: T first increases and then decreases back to zero. It is surprising that we
are now seeing this behavior in a class of black holes with maximal charge.

In the bottom plots of figure 2 we display the value of the Maxwell field strength
evaluated at the horizon F 2

H (left panel) and the electric charge on the black hole QH
as defined in (4.1) (right panel). In the inset plot of the bottom-right panel we also
display the ratio QH/Q between the charge on the horizon and the charge measured at
infinity. It is interesting to note that as we decrease the mass, QH decreases almost linearly.
Since the black hole area is also decreasing almost linearly, F 2

H remains approximately
constant. However, when the area becomes very small, F 2

H diverges. This drives up the
scalar instability and causes the charge on the black hole to vanish rapidly.
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Part 2:  

  Diving into the interior of a Hairy BH

The classical interior of charged black holes
with AdS asymptotics

Jorge E. Santos @ DAMTP
in collaboration with S. A. Hartnoll, G. T. Horowitz and J. Krutho�



➙ Theorem: no Inner Horizon in the presence of a scalar field

• From the EOM, there is a quantity that is conserved  (             ): 

• Assume that besides the event horizon there is also an inner horizon:  
         f=0 at horizons   &   f(z) < 0  for  zH<z<zI  => f’(zI) > 0 
  
• EOM  =>  Φ=0 at horizons 

• At event horizon: 

• At inner horizon: 

Since the constant must be same this leads to a contradiction  
     => NO  Inner horizon can be present (unlike it was incorrectly assumed)

convenient to use the ansatz2

ds2 “ r2`
z2

„
´fpzqe´�pzqdt

2

r2`
` dz2

fpzq ` dx2

1 ´  x2
` p1 ´  x2qd�2

⇢
(2.3a)

A “ �pzq dt , (2.3b)

 “  : “  pzq , (2.3c)

where  “ 1,3 and fpzq, �pzq, �pzq and  pzq are function of z only. The parameter r`
controls the temperature of the event horizon and the area of this bifurcating Killing

horizon, as displayed below in (2.6).

We will require that fp1q “ 0, so non-extremal charged black hole solutions de-

scribed by (2.3) have an event horizon at z “ zH ” 1. We will show in the next section

that there is no Cauchy horizon when  is nonzero. The asymptotic region is at z “ 0

and thus the exterior of the black hole is the region z P p0, 1q while the interior region

between the event horizon and singularity is z P p1,8q. The coordinate z is a spacelike

radial coordinate in the exterior region but it becomes timelike in the interior region.

Inserting (2.3) into (2.2), the equations of motion boil down to

z2e´�
2

”`
1 ` 4↵ 2

˘
e

�
2�1

ı1
´ 2rq2y2` 2�

f
“ 0 , (2.4a)

z2e
�
2

ˆ
e´�

2 f 1

z2

˙1
´

ˆ
y2`
z2

´ rq2y2`e��2

f
´ 2e�z2↵�12

˙
 “ 0 , (2.4b)

�1 ´ 4 z

ˆ
rq2y2`e�

f 2
 2�2 `  12

˙
“ 0 , (2.4c)

e
�
2 z4

ˆ
e´�

2 f

z3

˙1
` z2 ´ 2y2` 

2 ´
`
1 ` 4↵ 2

˘
e�z4�12 “ 0 , (2.4d)

where rq ” q{m, y` ” r`m, and 1 denotes a derivative with respect to z. The term

proportional to  “ 1 in the last equation comes from the curvature of the two-spheres.

To solve numerically the equations of motion, we will find convenient to do a field

redefinition that explicitly indicates that the solution has an event horizon at z “ 1

2 To make contact with the line element that we used in the companion paper [7], (2.3) reduces to it
when we redefine the radial coordinate z “ r`{r and set f “ z2p and � “ ´2 ln g. Moreover, setting
 “ 1, the change of variable x “ cos ✓ rewrites the 2-sphere line element in the familiar spherical
coordinates.
3 Introducing  will help us to later identify terms coming from the curvature of the two-spheres in
the equations of motion. Unlike in AdS space where solutions exist with  “ ˘1, 0, only spherical
spatial cross sections yield solutions when ⇤ “ 0.
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We will require that fp1q “ 0, so non-extremal charged black hole solutions de-

scribed by (2.3) have an event horizon at z “ zH ” 1. We will show in the next section

that there is no Cauchy horizon when  is nonzero. The asymptotic region is at z “ 0

and thus the exterior of the black hole is the region z P p0, 1q while the interior region

between the event horizon and singularity is z P p1,8q. The coordinate z is a spacelike

radial coordinate in the exterior region but it becomes timelike in the interior region.

Inserting (2.3) into (2.2), the equations of motion boil down to

z2e´�
2

”`
1 ` 4↵ 2

˘
e

�
2�1

ı1
´ 2rq2y2` 2�

f
“ 0 , (2.4a)

z2e
�
2

ˆ
e´�

2 f 1

z2

˙1
´

ˆ
y2`
z2

´ rq2y2`e��2

f
´ 2e�z2↵�12

˙
 “ 0 , (2.4b)

�1 ´ 4 z

ˆ
rq2y2`e�

f 2
 2�2 `  12

˙
“ 0 , (2.4c)

e
�
2 z4

ˆ
e´�

2 f

z3

˙1
` z2 ´ 2y2` 

2 ´
`
1 ` 4↵ 2

˘
e�z4�12 “ 0 , (2.4d)

where rq ” q{m, y` ” r`m, and 1 denotes a derivative with respect to z. The term

proportional to  “ 1 in the last equation comes from the curvature of the two-spheres.

To solve numerically the equations of motion, we will find convenient to do a field

redefinition that explicitly indicates that the solution has an event horizon at z “ 1

2 To make contact with the line element that we used in the companion paper [7], (2.3) reduces to it
when we redefine the radial coordinate z “ r`{r and set f “ z2p and � “ ´2 ln g. Moreover, setting
 “ 1, the change of variable x “ cos ✓ rewrites the 2-sphere line element in the familiar spherical
coordinates.
3 Introducing  will help us to later identify terms coming from the curvature of the two-spheres in
the equations of motion. Unlike in AdS space where solutions exist with  “ ˘1, 0, only spherical
spatial cross sections yield solutions when ⇤ “ 0.
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• Ansatz to study BH interior:

@zC1 = 0

<latexit sha1_base64="/DxYTTYbv0MvphmdL3YnCgixvYo=">AAACJnicbVDLTgIxFO34RHyhLt00EowrMmMwuiEhsnGJkVfCkEmnXKCh05m0HROc8DVu/BU3LjDGuPNTLDALBU/S5OSce2/vPX7EmdK2/WWtrW9sbm1ndrK7e/sHh7mj46YKY0mhQUMeyrZPFHAmoKGZ5tCOJJDA59DyR9WZ33oEqVgo6nocQTcgA8H6jBJtJC9XdiMiNSPce8JVzynb2YLrw4CJhJqpaoIxrpdtfI5dF+OHBQPRS10vl7eL9hx4lTgpyaMUNS83dXshjQMQmnKiVMexI91NZitQDpOsGyuICB2RAXQMFSQA1U3mZ05wwSg93A+leULjufq7IyGBUuPAN5UB0UO17M3E/7xOrPs33YSJKNYg6OKjfsyxDvEsM9xjEqjmY0MIlczsiumQSEK1STZrQnCWT14lzcuiUype3Zfylds0jgw6RWfoAjnoGlXQHaqhBqLoGb2iKXq3Xqw368P6XJSuWWnPCfoD6/sHBhmibQ==</latexit>

and we are working in a gauge where At vanishes on the horizon (i.e. q1 and q2 are

finite at z “ 1):

fpzq “ z2 p1 ´ zq q1pzq , �pzq “ p1 ´ zq q2pzq ,  pzq “ q3pzq , �pzq “ ´ ln q4pzq .
(2.5)

Let µ ” Atp0q “ q2p0q denote the electrostatic potential at infinity. The dimen-

sionless mass M , charge Q, entropy SH and temperature TH of the black holes are then

given by:

Mm “ y`
2

r1 ´ q1
1p0qs , Qm “ y` rµ ´ q1

2p0qs ,

SH m2 “ ⇡ y2` and
TH

m
“ q1p1q

a
q4p1q

4⇡y`
. (2.6)

We work with dimensionless quantities since there is a scaling symmetry which

relates di↵erent solutions. Inequivalent soutions can be labeled by the four dimension-

less quantities rq,↵,Mm,Qm. However, to find the solutions numerically, it is more

convenient to use a slightly di↵erent set of dimensionless quantities: prq,↵, y`, µq.
When the scalar field vanishes, i.e.  “ 0, the only charged black hole of the

theory is given by the familiar Reissner-Nordström (RN) solution with event horizon

at z “ zH ” 1 and Cauchy horizon at z “ zI “ 1{µ2. In our coordinates, this solution

is:

fpzq “ 1

zI
z2pz ´ 1qpz ´ zIq , �pzq “ 0 , and �pzq “ µ p1 ´ zq . (2.7)

3 No smooth inner horizon for charged fields

Before discussing the interior dynamics, we first show that these black holes cannot

have a smooth inner horizon. This follows from the existence of a conserved quantity

in our theory. By virtue of the equations of motion (2.4) the following quantity is a

constant

C1 “ e
�
2

z2
`
e´� f

˘1 ´ 4e
�
2�1 �p1 ` 4↵ 2q ` 2

ª z

zH

e´�pxq
2

x2
dx . (3.1)

Let us assume an inner horizon exists at z “ zI ° zH. Then, since fpzq † 0 when

z P pzH, zIq and must vanish at a horizon, we need to have f 1pzIq ° 0 at z “ zI . From

the form of the equations of motion, it is clear that a smooth horizon must have either

� “ 0 or  “ 0. But if  “ 0 on the horizon, it must vanish everywhere near the

horizon (here we implicitly assume that  is analytic in a neighborhood of the horizon).

So we must have �pzIq “ 0.
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Evaluating C1 at the event horizon gives

C1 “ e
�pzHq

2

z2
H

f 1pzHq † 0 (3.2)

where we used that f 1pzHq † 0 since z “ zH is a smooth black hole horizon. At the

inner horizon, we find

C1 “ e
�pzIq

2

z2
I

f 1pzIq ` 2

ª zI

zH

e´�pxq
2

x2
dx ° 0 , (3.3)

but since C1 is conserved, this is a contradiction.

4 Dynamical epochs inside the horizon

4.1 Simplified interior equations of motion

Just like in recent AdS studies [14, 15, 19], we find that the dynamics inside the horizon

of our asymptotically flat hairy black holes separates into distinct epochs near the

critical charge, Qc where the scalar field first turns on. These epochs are: the collapse

of the Einstein-Rosen bridge, the Josephson oscillations and the Kasner epochs. We

describe these in the next subsections. Since we cannot solve the full equations exactly,

we adopt the following strategy. We use the numerical solutions of the full equations

to identify terms in the equations of motion which are negligible during the epoch

of interest. We then drop those terms and find analytic solutions to the resulting

equations. Finally, we compare the analytic solutions to the full numerical one.

During the ER collapse and Josephson epochs (and in some circumstances during

the Kasner period), the strategy outlined in the previous paragraph indicates that we

can neglect all the scalar field mass terms4 in (2.4) and the scalar charge term in (2.4a).

In these conditions, the equations of motion in the interior of the black hole are well

4 Working with dimensionless quantities measured in scalar mass units, as we do, these are the two
terms proportional to y2` “ r2`m

2 in (2.4) that do not depend on any other parameters.
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See also: Santos-Horowitz-Hartnoll-Kruthoff [2008.12786]
                Cai-Li-Yang, [2009.05520]  

(Infinity is at z =0)

zIzH
Z

f



➙ So what happens when we dive into the interior of a hairy BH?

• Would-be Inner horizon zI is replaced by a Kasner (spacelike) singularity as z—> 00 

• As z increases, In-falling observer experiences 3 epochs :  
      1)  the collapse of the Einstein-Rosen bridge;  
      2) Josephson oscillations of the condensate; 
      3) a Kasner cosmology, sometimes with transitions that change the Kasner exponents 

Figure 5: Typical example of the full dynamical evolution of a system with a Kasner

transition like the ones observed in Fig. 4. The system evolves from the event horizon at

z “ 1 towards the final singularity at z Ñ 8. In 1 † z † 10 (yellow shaded area) the

system goes quickly through the ER bridge collapse and Josephson oscillations epoch, then

it stays relatively steady for a long time z (but short proper time) in the intermediate Kasner

regime with � „ .1721212, and finally (blue shaded area) there is a Kasner transition to

�new „ 1.848235. This is for ↵ “ 1, q “ m,mM “ 0.5, Q{Qc ´ 1 “ 5.861297 ˆ 10´5
.

large. This is because some of the terms we dropped in deriving (4.23) are no longer

negligible. This can be seen very easily in the AdS case with ↵ “ 0, since the inversion

formula �new “ 1{p2�q predicts �new Ñ 8 when � Ñ 0. But an infinite �new would

correspond to a solution with a smooth Cauchy horizon, which is forbidden. In that

case the terms in the interior equations of motion (4.1) involving the charge rq of the

scalar field can no longer be neglected [14]. They modify the � Ñ �new transition

formula so that �new remains finite. We find a similar breakdown to (4.23) when ↵ ° 0.

The main di↵erence is that since the Kasner transition is no longer given by a simple

inversion �new “ 1{p2�q, the values of � initially that lead to large �new must be found

numerically.

Examples of these more general Kasner transitions are presented in Fig. 6 for

↵ “ 1, q “ 0.5m,mM “ 0.5 and slightly di↵erent values of Q{Qc. Rather than having

z  1 grow monotonically as in Fig. 4, we see that it now reaches a maximum before

settling into �new. Remarkably, the new value of � changes by multiples of ten when

Q{Qc ´ 1 changes by 10´10! This highlights the extreme sensitivity of the interior

dynamics on the black hole charge.

When the Kasner transition becomes sharp enough, it can trigger a new round of

Josephson oscillations, as shown in Fig. 7. Note that this figure has the same parameters

– 19 –
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• The 3 epochs & their approx analytical solns are cleanly identified for  ψ <<1 (eg T~Tc). 
   The scalar field ψ  starts small, but nevertheless destroys the inner horizon ! 

For example, during the ER collapse and Josephson epochs (and often during the Kasner period) 
one can numerically verify (and a posterior justify) that the mass terms of ψ and the charge 
term of ψ in the Maxwell eqn can be dropped by the time the interesting dynamics kicks.

convenient to use the ansatz2

ds2 “ r2`
z2

„
´fpzqe´�pzqdt

2

r2`
` dz2

fpzq ` dx2

1 ´  x2
` p1 ´  x2qd�2

⇢
(2.3a)

A “ �pzq dt , (2.3b)

 “  : “  pzq , (2.3c)

where  “ 1,3 and fpzq, �pzq, �pzq and  pzq are function of z only. The parameter r`
controls the temperature of the event horizon and the area of this bifurcating Killing

horizon, as displayed below in (2.6).

We will require that fp1q “ 0, so non-extremal charged black hole solutions de-

scribed by (2.3) have an event horizon at z “ zH ” 1. We will show in the next section

that there is no Cauchy horizon when  is nonzero. The asymptotic region is at z “ 0

and thus the exterior of the black hole is the region z P p0, 1q while the interior region

between the event horizon and singularity is z P p1,8q. The coordinate z is a spacelike

radial coordinate in the exterior region but it becomes timelike in the interior region.

Inserting (2.3) into (2.2), the equations of motion boil down to

z2e´�
2

”`
1 ` 4↵ 2

˘
e

�
2�1

ı1
´ 2rq2y2` 2�

f
“ 0 , (2.4a)

z2e
�
2

ˆ
e´�

2 f 1

z2

˙1
´

ˆ
y2`
z2

´ rq2y2`e��2

f
´ 2e�z2↵�12

˙
 “ 0 , (2.4b)

�1 ´ 4 z

ˆ
rq2y2`e�

f 2
 2�2 `  12

˙
“ 0 , (2.4c)

e
�
2 z4

ˆ
e´�

2 f

z3

˙1
` z2 ´ 2y2` 

2 ´
`
1 ` 4↵ 2

˘
e�z4�12 “ 0 , (2.4d)

where rq ” q{m, y` ” r`m, and 1 denotes a derivative with respect to z. The term

proportional to  “ 1 in the last equation comes from the curvature of the two-spheres.

To solve numerically the equations of motion, we will find convenient to do a field

redefinition that explicitly indicates that the solution has an event horizon at z “ 1

2 To make contact with the line element that we used in the companion paper [7], (2.3) reduces to it
when we redefine the radial coordinate z “ r`{r and set f “ z2p and � “ ´2 ln g. Moreover, setting
 “ 1, the change of variable x “ cos ✓ rewrites the 2-sphere line element in the familiar spherical
coordinates.
3 Introducing  will help us to later identify terms coming from the curvature of the two-spheres in
the equations of motion. Unlike in AdS space where solutions exist with  “ ˘1, 0, only spherical
spatial cross sections yield solutions when ⇤ “ 0.
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• All three stages can be understood not only numerically but also analytically,  
  despite the highly nonlinear nature of the EOM (~ like in the BKL original analysis) 

• Procedure to understand analytically the problem: 

       — We use the numerics to find which terms in EOM are relevant for the 3 stages 

      — The remaining terms can be dropped  =>  mutilated EOM can be solved analytically 

       — Finally, we check for self-consistency of the procedure. 

convenient to use the ansatz2

ds2 “ r2`
z2

„
´fpzqe´�pzqdt

2

r2`
` dz2

fpzq ` dx2

1 ´  x2
` p1 ´  x2qd�2

⇢
(2.3a)

A “ �pzq dt , (2.3b)

 “  : “  pzq , (2.3c)

where  “ 1,3 and fpzq, �pzq, �pzq and  pzq are function of z only. The parameter r`
controls the temperature of the event horizon and the area of this bifurcating Killing

horizon, as displayed below in (2.6).

We will require that fp1q “ 0, so non-extremal charged black hole solutions de-

scribed by (2.3) have an event horizon at z “ zH ” 1. We will show in the next section

that there is no Cauchy horizon when  is nonzero. The asymptotic region is at z “ 0

and thus the exterior of the black hole is the region z P p0, 1q while the interior region

between the event horizon and singularity is z P p1,8q. The coordinate z is a spacelike

radial coordinate in the exterior region but it becomes timelike in the interior region.

Inserting (2.3) into (2.2), the equations of motion boil down to

z2e´�
2

”`
1 ` 4↵ 2

˘
e

�
2�1

ı1
´ 2rq2y2` 2�

f
“ 0 , (2.4a)

z2e
�
2

ˆ
e´�

2 f 1

z2

˙1
´

ˆ
y2`
z2

´ rq2y2`e��2

f
´ 2e�z2↵�12

˙
 “ 0 , (2.4b)

�1 ´ 4 z

ˆ
rq2y2`e�

f 2
 2�2 `  12

˙
“ 0 , (2.4c)

e
�
2 z4

ˆ
e´�

2 f

z3

˙1
` z2 ´ 2y2` 

2 ´
`
1 ` 4↵ 2

˘
e�z4�12 “ 0 , (2.4d)

where rq ” q{m, y` ” r`m, and 1 denotes a derivative with respect to z. The term

proportional to  “ 1 in the last equation comes from the curvature of the two-spheres.

To solve numerically the equations of motion, we will find convenient to do a field

redefinition that explicitly indicates that the solution has an event horizon at z “ 1

2 To make contact with the line element that we used in the companion paper [7], (2.3) reduces to it
when we redefine the radial coordinate z “ r`{r and set f “ z2p and � “ ´2 ln g. Moreover, setting
 “ 1, the change of variable x “ cos ✓ rewrites the 2-sphere line element in the familiar spherical
coordinates.
3 Introducing  will help us to later identify terms coming from the curvature of the two-spheres in
the equations of motion. Unlike in AdS space where solutions exist with  “ ˘1, 0, only spherical
spatial cross sections yield solutions when ⇤ “ 0.
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convenient to use the ansatz2
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(2.3a)

A “ �pzq dt , (2.3b)

 “  : “  pzq , (2.3c)

where  “ 1,3 and fpzq, �pzq, �pzq and  pzq are function of z only. The parameter r`
controls the temperature of the event horizon and the area of this bifurcating Killing

horizon, as displayed below in (2.6).

We will require that fp1q “ 0, so non-extremal charged black hole solutions de-

scribed by (2.3) have an event horizon at z “ zH ” 1. We will show in the next section

that there is no Cauchy horizon when  is nonzero. The asymptotic region is at z “ 0

and thus the exterior of the black hole is the region z P p0, 1q while the interior region

between the event horizon and singularity is z P p1,8q. The coordinate z is a spacelike

radial coordinate in the exterior region but it becomes timelike in the interior region.

Inserting (2.3) into (2.2), the equations of motion boil down to

z2e´�
2

”`
1 ` 4↵ 2

˘
e

�
2�1

ı1
´ 2rq2y2` 2�

f
“ 0 , (2.4a)

z2e
�
2

ˆ
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2 f 1
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ˆ
y2`
z2

´ rq2y2`e��2

f
´ 2e�z2↵�12
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�1 ´ 4 z
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rq2y2`e�

f 2
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˙
“ 0 , (2.4c)

e
�
2 z4

ˆ
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2 f

z3

˙1
` z2 ´ 2y2` 

2 ´
`
1 ` 4↵ 2

˘
e�z4�12 “ 0 , (2.4d)

where rq ” q{m, y` ” r`m, and 1 denotes a derivative with respect to z. The term

proportional to  “ 1 in the last equation comes from the curvature of the two-spheres.

To solve numerically the equations of motion, we will find convenient to do a field

redefinition that explicitly indicates that the solution has an event horizon at z “ 1

2 To make contact with the line element that we used in the companion paper [7], (2.3) reduces to it
when we redefine the radial coordinate z “ r`{r and set f “ z2p and � “ ´2 ln g. Moreover, setting
 “ 1, the change of variable x “ cos ✓ rewrites the 2-sphere line element in the familiar spherical
coordinates.
3 Introducing  will help us to later identify terms coming from the curvature of the two-spheres in
the equations of motion. Unlike in AdS space where solutions exist with  “ ˘1, 0, only spherical
spatial cross sections yield solutions when ⇤ “ 0.

– 4 –

The EOM: Josephson current
In Maxwell EOM



• The 3 epochs & their approx analytical solns are cleanly identified for  ψ <<1 (eg T~Tc). 
   The scalar field ψ  starts small, but nevertheless destroys the inner horizon ! 

For example, during the ER collapse and Josephson epochs (and often during the Kasner period) 
one can numerically verify (and a posterior justify) that the mass terms of ψ and the charge 
term of ψ in the Maxwell eqn can be dropped by the time the interesting dynamics kicks.

convenient to use the ansatz2
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´fpzqe´�pzqdt

2

r2`
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fpzq ` dx2

1 ´  x2
` p1 ´  x2qd�2
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(2.3a)

A “ �pzq dt , (2.3b)

 “  : “  pzq , (2.3c)

where  “ 1,3 and fpzq, �pzq, �pzq and  pzq are function of z only. The parameter r`
controls the temperature of the event horizon and the area of this bifurcating Killing

horizon, as displayed below in (2.6).

We will require that fp1q “ 0, so non-extremal charged black hole solutions de-

scribed by (2.3) have an event horizon at z “ zH ” 1. We will show in the next section

that there is no Cauchy horizon when  is nonzero. The asymptotic region is at z “ 0

and thus the exterior of the black hole is the region z P p0, 1q while the interior region

between the event horizon and singularity is z P p1,8q. The coordinate z is a spacelike

radial coordinate in the exterior region but it becomes timelike in the interior region.

Inserting (2.3) into (2.2), the equations of motion boil down to

z2e´�
2
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˘
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f
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where rq ” q{m, y` ” r`m, and 1 denotes a derivative with respect to z. The term

proportional to  “ 1 in the last equation comes from the curvature of the two-spheres.

To solve numerically the equations of motion, we will find convenient to do a field

redefinition that explicitly indicates that the solution has an event horizon at z “ 1

2 To make contact with the line element that we used in the companion paper [7], (2.3) reduces to it
when we redefine the radial coordinate z “ r`{r and set f “ z2p and � “ ´2 ln g. Moreover, setting
 “ 1, the change of variable x “ cos ✓ rewrites the 2-sphere line element in the familiar spherical
coordinates.
3 Introducing  will help us to later identify terms coming from the curvature of the two-spheres in
the equations of motion. Unlike in AdS space where solutions exist with  “ ˘1, 0, only spherical
spatial cross sections yield solutions when ⇤ “ 0.
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• All three stages can be understood not only numerically but also analytically,  
                            despite the highly nonlinear nature of the EOM 

• Procedure to understand analytically the problem: 

       — We use the numerics to find which terms in EOM are relevant for the 3 stages 

      — The remaining terms can be dropped  =>  mutilated EOM can be solved analytically 

       — Finally, we check for self-consistency of the procedure. 
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horizon, as displayed below in (2.6).
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between the event horizon and singularity is z P p1,8q. The coordinate z is a spacelike

radial coordinate in the exterior region but it becomes timelike in the interior region.

Inserting (2.3) into (2.2), the equations of motion boil down to

z2e´�
2

”`
1 ` 4↵ 2

˘
e

�
2�1

ı1
´ 2rq2y2` 2�

f
“ 0 , (2.4a)

z2e
�
2

ˆ
e´�

2 f 1

z2

˙1
´

ˆ
y2`
z2

´ rq2y2`e��2

f
´ 2e�z2↵�12

˙
 “ 0 , (2.4b)

�1 ´ 4 z

ˆ
rq2y2`e�

f 2
 2�2 `  12

˙
“ 0 , (2.4c)

e
�
2 z4

ˆ
e´�

2 f

z3

˙1
` z2 ´ 2y2` 

2 ´
`
1 ` 4↵ 2

˘
e�z4�12 “ 0 , (2.4d)

where rq ” q{m, y` ” r`m, and 1 denotes a derivative with respect to z. The term

proportional to  “ 1 in the last equation comes from the curvature of the two-spheres.

To solve numerically the equations of motion, we will find convenient to do a field

redefinition that explicitly indicates that the solution has an event horizon at z “ 1

2 To make contact with the line element that we used in the companion paper [7], (2.3) reduces to it
when we redefine the radial coordinate z “ r`{r and set f “ z2p and � “ ´2 ln g. Moreover, setting
 “ 1, the change of variable x “ cos ✓ rewrites the 2-sphere line element in the familiar spherical
coordinates.
3 Introducing  will help us to later identify terms coming from the curvature of the two-spheres in
the equations of motion. Unlike in AdS space where solutions exist with  “ ˘1, 0, only spherical
spatial cross sections yield solutions when ⇤ “ 0.
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The EOM: Josephson current
In Maxwell EOM



➙ Epoch 1: collapse of the Einstein-Rosen (ER) bridge

numerical full solution indicates that it is fundamental to keep the term proportional

to �19E0 in (4.1d), although we can do the approximation 1 ` 4↵ 2 » 1 in this term

since the scalar field  is very small. Altogether, the equations of motion read,

� » �o , (4.2a)
´
e´�

2 f 1
¯1

` rq2y2`e
�
2�2

o

f
 » 0 , (4.2b)

�1 » 4 z‹

ˆ
rq2y2`e��2

o

f 2
 2 `  12

˙
, (4.2c)

´
e´�

2 f
¯1

» z‹
`
E2

0z
2
‹ ´ 

˘
e´�

2 . (4.2d)

With these approximations (validated à posteriori) the solution in the collapse of the ER

bridge is very similar to the one found in the AdS system of [14] with the cosmological

constant term replaced by the S2 curvature contribution proportional to  “ 1 in

(4.2d). In particular, note that Maxwell-scalar coupling terms proportional to ↵ do not

appear in (4.2).

Equation (4.2b) can be solved explicitly yielding

 »  o cos

ˆ
y`rq�o

ª z

z‹

e�{2dz
f

` 'o

˙
, (4.3)

where  o and 'o are two integration constants. To get the gravitational field, one first

observes that, interestingly, the scalar field oscillations (4.3) drop out of the equation

(4.2c) for �. This is because inserting (4.3) on the right hand side of (4.2c) one finds

that it reduces to a constant, f´2rq2y2`e��2
o 

2
o . Now, it is useful to recall that, from

(2.3), one has gtt “ 1
z2‹
fe´�. Taking the derivative of (4.2d), and after some algebra

that uses the definition of gtt, its derivative and (4.2d) itself, we find that gtt must obey

the second order nonlinear ODE

g2
tt

g1
tt

´ c21g
1
tt

gttpc21 ` gttq
» 0 , with c21 “ 2y2`rq2�2

o 
2
o

z2‹pE2
oz

2‹ ´ q . (4.4)

Apart from the particular value of the constant c1, this is the same ODE found in the

collapse of the ER bridge of the AdS studies [14, 15] and thus it has a similar solution:

c21 lnpgttq ` gtt “ ´c22pz ´ zoq ô gtt “ c21 W
´
c´2
1 e´pc2{c1q2 pz´zoq

¯
, (4.5)

where c2 ° 0 and zo are integration constants and W pxq ” ProducLogpxq gives the

principal solution for w in x “ wew. For z † zo, gtt9pzo ´ zq is linearly vanishing, as

in the approach to an inner horizon, but for z ° zo, gtt9e´pc2{c1q2pz´zoq is nonzero but
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• The linear vanishing of gtt towards the would-be inner horizon is replaced by  
      a rapid collapse to an exponentially small value! 

• In the BH interior, gtt sets the measure for the spatial t  coord that runs along the 
wormhole connecting the two exteriors of the BH: this is the Einstein-Rosen bridge.  

• The rapid decrease in gtt can be thought of as a collapse of the ER bridge for a fixed 
coord separation Δt.

exponentially small, instead of vanishing or changing sign. This collapse occurs over

a coordinate range �z “ pc1{c2q2. Since c1 is proportional to  0 which vanishes as

Q Ñ Qc, this justifies our assumption that the collapse happens very quickly after the

scalar field turns on. In particular, the radius of the transverse spheres barely changes.

These solutions agree well with the full numerical evolution as shown in Fig. 1. Having

gtt we can now get the solution for � and f :

e´� “ c22g
2
tt

pc21 ` gttq2
z‹

E2
0z

2‹ ´ 
, f “ ´z2‹e

�gtt , (4.6)

where we used the fact that g1
tt “ ´ c22gtt

c21`gtt
which follows from (4.5).
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Figure 1: A comparison of the numerical solutions (solid grey lines) and fits to the analytic

expressions (4.3) and (4.5) (black dotted curves) describing the collapse of the Einstein-

Rosen bridge. This is for mM “ 0.941632, Q{Qc “ 1.001833, q “ m and ↵ “ 1.

4.3 Josephson oscillations

Although we have neglected the Josephson current term (i.e. the last term in (2.4a))

in the interior equation (4.1a), the scalar field solution (4.3) encodes information about

Josephson oscillations. Indeed, inside the horizon z is a timelike coordinate while t is

spacelike. Moreover, the argument of the cosine in (4.3) can be written as y`rq
≥
At̂ d⌧ ,

where d⌧ “ ?
gzzdz is the proper time and At̂ “ At{?

gtt is the vector potential in locally
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Solid line: numerics of full EOM

Dashed: analytics of mutilated EOM

ψgtt 



➙ Epoch 2: Josephson oscillations of the condensate

• After the collapse of the ΕΡ bridge, the derivative of Max field is small,                          ,  
  which can be used to solve the scalar field ψ in terms of Bessel functions:  

The classical interior of charged black holes with AdS asymptotics
A less simple no inner horizon theorem

Approaching the singularity - 5/9
This equation describes a highly dynamical regime rather
accurately!

After the collapse of the Einstein-Rosen bridge, �Õ
Ã e

≠‰/2
π 1,

which can be used to solve for „ in terms of Bessel functions

„ = c4J0

3
|q�o|c3

2z2

4
+ c5Y0

3
|q�o|c3

2z2

4
.

23 / 28

So the oscillations of the scalar field start in the collapse of the ER bridge regime ´ see

(4.3) ´ and they propagate continuously onto the Josephson oscillation epoch where

they are described by the Bessel oscillation (4.9). As c3 is large these oscillations are

very fast. These oscillations will propagate further into the interior so it is important

to study the large z behavior of the scalar field (4.9):

 |large z » 2c5
⇡

ln

ˆ
c3
y`rqe�E�o

4z2

˙
` c4 ` ¨ ¨ ¨ , (4.11)

with �E being the Euler-Mascheroni constant. The logarithmic behavior indicates the

onset of a Kasner regime, that we will describe in the following section.

To complete our discussion of the scalar field during the Josephson epoch, in the

left panel of Fig. 2 we compare the analytical approximation (4.9) (black dotted line)

with the numerical data for the scalar field (continuous line) for ↵ “ 1, q “ m,mM “
0.941632 and Q{Qc “ 1.001833. Again, we confirm that the assumptions made to find

the analytical description of the system during the intermediate Josephson epoch is in

excellent agreement (as Q Ñ Qc where  is small) to the numerical solution of the full

equations of motion (2.4).
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0.00
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0
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Figure 2: A comparison of the numerical solutions (solid grey lines) and fits to the analytic

expressions (4.9) and (4.12) (black dotted curves) describing Josephson oscillations. This

is for mM “ 0.941632, Q{Qc “ 1.001833, q “ m and ↵ “ 1.

Finally, we can also find the metric solution. One first notes that inserting (4.7)

into (4.1c) yields the equation �1 “ 4
`
z 12 ` z´5c23y

2
`rq2�2

o 
2
˘
that we can solve for �.
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flat coordinates. A nonzero At̂ indicates a phase winding in the t direction. The scalar

condensate  determines the superfluid sti↵ness. Thus, (4.3) describes oscillations in

time of the superfluid sti↵ness sourced by a background phase winding, a phenomenon

that is known as the Josephson e↵ect. In the aftermath of the collapse of the ER bridge,

these Josephson oscillations become (for Q « Qc) the dominant feature in the solution

over a regime that is naturally denoted as the Josephson oscillations epoch and that

we now describe.

By the end of the collapse of the ER bridge epoch, the derivative of the Maxwell

field �1 is still very small. This is essentially because �19e´�{2 ´ see (4.1a) ´ and e´�{2

is very small. It follows that in the Josephson oscillation epoch we can still neglect

the E0e´�
2 contribution in (4.1a) but we can also take

´
E2

0
1`4↵ 2 ´ 

z2

¯
e´�

2 » 0 in the

interior equation (4.1d). Thus, the Maxwell field � and gravitational field f are given

by

� » �o ,
fe´�{2

z3
» ´ 1

c3
, (4.7)

with c3 constant. To determine the latter, we match the Josephson oscillation solution

(4.7) with the z ° zo solution (4.6) of the collapse of the ER bridge in the region where

they overlap. This yields

c3 » c2
c21

d
z3‹

E2
0z

2‹ ´ 
, (4.8)

where we have approximated c21 ` g2ttpz‹q » c21 since gtt is very small near the inner

horizon. It follows that c3 becomes large as Q Ñ Qc.

Inserting (4.7) into (4.1b) the scalar field must obey the Bessel equation pz 1q1 ´
c23y

2
`rq2�2

oz
´5 » 0 whose solution is

 » c4J0

ˆ
y`|rq�o|c3

2z2

˙
` c5Y0

ˆ
y`|rq�o|c3

2z2

˙
, (4.9)

where c4 and c5 are integration constants. To find these constants we need to match the

small z behaviour of the Josephson solution (4.9) and its derivative  1 with the large z

behaviour of the ER bridge collapse solution (4.3) and its derivative in the overlapping

region around z‹. This yields

c4 »
ˆ
z‹⇡2c22
32

 2
o

c21

˙1{4
sin

ˆ
c2

?
z‹?
2

1

 oc1
´ 'o ` ⇡

4

˙
, (4.10a)

c5 »
ˆ
z‹⇡2c22
32

 2
o

c21

˙1{4
sin

ˆ
c2

?
z‹?
2

1

 oc1
´ 'o ´ ⇡

4

˙
, (4.10b)
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c4,5 '
✓
z?⇡2c22
32

 2
o

c21

◆1/4

sin

✓
c2
p
z?p
2

1

 oc1
� 'o ±

⇡

4

◆

<latexit sha1_base64="pEir0bSor/6YIb1c4EpN6SSSy6I="></latexit>

=> Josephson oscillations

Solid line: numerics of full EOM

Dashed: analytics of mutilated EOM

ψ gtt ~ f 



➙ Epoch 3: Kasner cosmology and transitions
• At large z, ψ behaves logarithmically => signals entrance into a Kasner cosmology regime:

We can insert this back into (4.7) to get the solution for f . Altogether we find that

� » 2 lnpfoc3q ` 4

ª z

z‹

„
rz 1 2 ` y2`rq2�2

oc
2
3 

2

rz5

⇢
drz , (4.12a)

f » ´foz
3 exp

"
2

ª z

z‹

„
rz 1 2 ` y2`rq2�2

oc
2
3 

2

rz5

⇢
drz

*
, (4.12b)

where fo is a constant of integration, and gtt “ z´2fe´�. The Bessel solution (4.9)

should be inserted into these integrals. The integrals can be done analytically in terms

of Bessel functions. These describe the small oscillations seen in zf 1{f in the right panel

of Fig. 2. Altogether, the two plots of Fig. 2 verify that, at small Q´Qc, the functional

forms (4.9) and (4.12) fit the numerical solutions to the full di↵erential equations (2.4)

all the way from the end of the ER collapse, through the Josephson oscillation epoch,

and till the beginning of the subsequent Kasner regime.

Note that, like the collapse of the ER bridge epoch, the solution in the Josephson

oscillations region is similar to the one found in the AdS system of [14] (with the cos-

mological constant term now replaced by the S2 curvature contribution). In particular,

the Maxwell-scalar coupling terms proportional to ↵ are again not relevant. This will

no longer be the case for the Kasner transitions that we discuss next.

4.4 Kasner epochs and transitions
#
 |z°°1 » � ln z

� “ ´ 4
⇡ c5

ñ
#
f |z°°1 » ´foz3`2�2

�|z°°1 » 4�2 ln z
As shown in (4.11), at the end of the Josephson oscillations,  grows logarithmically.

This marks the entrance to a new era described by a Kasner cosmology as we now

explain. If we write  “ � ln z with

� “ ´ 4

⇡
c5 , (4.13)

and plug it into (4.12) we find that the large z behavior of � and f is

f » ´foz
3`2�2

, � » 4�2 ln z . (4.14)

This corresponds to a metric in which all components are powers of z. Furthermore,

from (4.1a), the Maxwell potential is

� » �K ` EK z1´2�2

1 ` 4↵�2 ln2 z
. (4.15)

So, as long as �2 ° 1{2, the Maxwell field will remain unimportant at large z. (We

will consider the consequences of �2 † 1{2 later.) Introducing a proper time ⌧ “
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=> metric in which all components  
     are powers of z & ψ~ln z  

curvature of the sphere is negligible in this regime), the solution takes the standard

Kasner form [24, 25]

ds2 “ ´d⌧ 2 ` ⌧ 2ptdt2 ` ⌧ 2pxpdx2 ` d�2q,  “ p ln ⌧ (4.16)

with

pt “ 2�2 ´ 1

2�2 ` 3
, px “ 2

2�2 ` 3
, p “ 2�

2�2 ` 3
. (4.17)

These exponents satisfy the usual Kasner relations6

pt ` 2px “ 1, p2t ` 2p2x ` 4p2 “ 1 . (4.18)

The metric (4.16) has a spacelike curvature singularity at ⌧ “ 0 (z “ 8) in all cases

except pt “ 1, which corresponds to � “ 8.

From (4.13), the parameter � controlling the Kasner exponents is proportional to

c5, which from (4.10) is an oscillating function of the parameters. Numerically, we find

that near Qc, � is very well fit by

� “ A sin

„
B

Q{Qc ´ 1
` C

⇢
(4.19)

over many oscillations. This is demonstrated in Fig. 3 where we see that the black

dotted line describing (4.19) with A » 1.32104p2q, B » 7.90056p3q ˆ 10´4 and C »
´0.73961p2q (for ↵ “ 1, q “ m,mM “ 0.5) is in excellent agreement with the numerical

data (black continuous line) over many oscillations for small Q´Qc. This clearly shows

the extreme sensitivity of the Kasner exponents on the charge near the critical charge

Qc.

We can also find a good analytical approximation for the amplitude of the � os-

cillations near the critical charge Qc. Indeed, as Q Ñ Qc the following approxima-

tions should be excellent: 1) z0 „ z‹ „ zI “ 1{µ2, 2) c1, being proportional to the

scalar condensate as described by (4.4), approaches c19 0 Ñ 0 which allows us to find

c2 » y`
a
1 ´ µ2 via (4.5) evaluated at z “ zI (i.e. c2 attains its RN value), and 3)

�0 “ �pzIq » ´1{µ and E0 “ �1pzIq » ´µ are e↵ectively also given by their RN values

as read from (2.7). We can now insert these quantities in (4.10) and (4.13) to obtain

that as Q Ñ Qc, the amplitude in (4.19) should be well approximated by

A4 » 4

⇡2y2`rq2µ6
. (4.20)

6 The factor of 4 in front of p2 comes from our normalization of  in the action.
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as read from (2.7). We can now insert these quantities in (4.10) and (4.13) to obtain
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6 The factor of 4 in front of p2 comes from our normalization of  in the action.
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• Introducing the proper time

We can insert this back into (4.7) to get the solution for f . Altogether we find that

� » 2 lnpfoc3q ` 4

ª z

z‹

„
rz 1 2 ` y2`rq2�2

oc
2
3 

2

rz5

⇢
drz , (4.12a)

f » ´foz
3 exp

"
2

ª z

z‹

„
rz 1 2 ` y2`rq2�2

oc
2
3 

2

rz5

⇢
drz

*
, (4.12b)

where fo is a constant of integration, and gtt “ z´2fe´�. The Bessel solution (4.9)

should be inserted into these integrals. The integrals can be done analytically in terms

of Bessel functions. These describe the small oscillations seen in zf 1{f in the right panel

of Fig. 2. Altogether, the two plots of Fig. 2 verify that, at small Q´Qc, the functional

forms (4.9) and (4.12) fit the numerical solutions to the full di↵erential equations (2.4)

all the way from the end of the ER collapse, through the Josephson oscillation epoch,

and till the beginning of the subsequent Kasner regime.

Note that, like the collapse of the ER bridge epoch, the solution in the Josephson

oscillations region is similar to the one found in the AdS system of [14] (with the cos-

mological constant term now replaced by the S2 curvature contribution). In particular,

the Maxwell-scalar coupling terms proportional to ↵ are again not relevant. This will

no longer be the case for the Kasner transitions that we discuss next.

4.4 Kasner epochs and transitions

Introduce proper time ⌧ “
ª ?

gzzdz 9 z´p3{2`�2q pz “ 8 Ø ⌧ “ 0q (4.13)

As shown in (4.11), at the end of the Josephson oscillations,  grows logarithmically.

This marks the entrance to a new era described by a Kasner cosmology as we now

explain. If we write  “ � ln z with

� “ ´ 4

⇡
c5 , (4.14)

and plug it into (4.12) we find that the large z behavior of � and f is

f » ´foz
3`2�2

, � » 4�2 ln z . (4.15)

This corresponds to a metric in which all components are powers of z. Furthermore,

from (4.1a), the Maxwell potential is

� » �K ` EK z1´2�2

1 ` 4↵�2 ln2 z
. (4.16)
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the solution takes the standard (generalised) Kasner form:
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� » 2 lnpfoc3q ` 4

ª z

z‹

„
rz 1 2 ` y2`rq2�2

oc
2
3 

2

rz5

⇢
drz , (4.12a)

f » ´foz
3 exp

"
2

ª z

z‹

„
rz 1 2 ` y2`rq2�2

oc
2
3 

2

rz5

⇢
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*
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where fo is a constant of integration, and gtt “ z´2fe´�. The Bessel solution (4.9)

should be inserted into these integrals. The integrals can be done analytically in terms

of Bessel functions. These describe the small oscillations seen in zf 1{f in the right panel

of Fig. 2. Altogether, the two plots of Fig. 2 verify that, at small Q´Qc, the functional

forms (4.9) and (4.12) fit the numerical solutions to the full di↵erential equations (2.4)

all the way from the end of the ER collapse, through the Josephson oscillation epoch,

and till the beginning of the subsequent Kasner regime.

Note that, like the collapse of the ER bridge epoch, the solution in the Josephson

oscillations region is similar to the one found in the AdS system of [14] (with the cos-

mological constant term now replaced by the S2 curvature contribution). In particular,

the Maxwell-scalar coupling terms proportional to ↵ are again not relevant. This will

no longer be the case for the Kasner transitions that we discuss next.

4.4 Kasner epochs and transitions

$
’’&

’’%

pt “ 2�2´1
2�2`3 ,

px “ 2
2�2`3 ,

p “ 2�
2�2`3 .

(4.13)

As shown in (4.11), at the end of the Josephson oscillations,  grows logarithmically.

This marks the entrance to a new era described by a Kasner cosmology as we now

explain. If we write  “ � ln z with

� “ ´ 4

⇡
c5 , (4.14)

and plug it into (4.12) we find that the large z behavior of � and f is

f » ´foz
3`2�2

, � » 4�2 ln z . (4.15)

This corresponds to a metric in which all components are powers of z. Furthermore,

from (4.1a), the Maxwell potential is

� » �K ` EK z1´2�2

1 ` 4↵�2 ln2 z
. (4.16)
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 => Spacelike curvature singularity at τ =0 (z=00)       [except when  pt =1 <—> β=00 ].  

 => The would-be inner horizon  is  replaced  by a (spacelike) Kasner singularity 
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where fo is a constant of integration, and gtt “ z´2fe´�. The Bessel solution (4.9)

should be inserted into these integrals. The integrals can be done analytically in terms

of Bessel functions. These describe the small oscillations seen in zf 1{f in the right panel

of Fig. 2. Altogether, the two plots of Fig. 2 verify that, at small Q´Qc, the functional

forms (4.9) and (4.12) fit the numerical solutions to the full di↵erential equations (2.4)

all the way from the end of the ER collapse, through the Josephson oscillation epoch,

and till the beginning of the subsequent Kasner regime.

Note that, like the collapse of the ER bridge epoch, the solution in the Josephson

oscillations region is similar to the one found in the AdS system of [14] (with the cos-

mological constant term now replaced by the S2 curvature contribution). In particular,

the Maxwell-scalar coupling terms proportional to ↵ are again not relevant. This will

no longer be the case for the Kasner transitions that we discuss next.

4.4 Kasner epochs and transitions

As shown in (4.11), at the end of the Josephson oscillations,  grows logarithmically.

This marks the entrance to a new era described by a Kasner cosmology as we now

explain. If we write  “ � ln z with

� “ ´ 4

⇡
c5 , (4.13)

and plug it into (4.12) we find that the large z behavior of � and f is

f » ´foz
3`2�2

, � » 4�2 ln z . (4.14)

This corresponds to a metric in which all components are powers of z. Furthermore,

from (4.1a), the Maxwell potential is

� » �K ` EK z1´2�2

1 ` 4↵�2 ln2 z
. (4.15)

So, as long as �2 ° 1{2, the Maxwell field will remain unimportant at large z. (We

will consider the consequences of �2 † 1{2 later.) Introducing a proper time ⌧ “≥ ?
gzzdz 9 z´p3{2`�2q (so z “ 8 corresponds to ⌧ “ 0) and setting  “ 0 (since the
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• Maxwell potential is remains unimportant (negligible) while β2 >1/2: 

• While β2 >1/2 (Max Φ <<1): system remains described by Kasner Cosmology  
                                                with decreasing  gtt  till the Kasner singularity is reached

<<1



• Parameter β controls the Kasner exponents & is an oscillating function, well fitted by:

curvature of the sphere is negligible in this regime), the solution takes the standard

Kasner form [24, 25]

ds2 “ ´d⌧ 2 ` ⌧ 2ptdt2 ` ⌧ 2pxpdx2 ` d�2q,  “ p ln ⌧ (4.16)

with

pt “ 2�2 ´ 1

2�2 ` 3
, px “ 2

2�2 ` 3
, p “ 2�

2�2 ` 3
. (4.17)

These exponents satisfy the usual Kasner relations6

pt ` 2px “ 1, p2t ` 2p2x ` 4p2 “ 1 . (4.18)

The metric (4.16) has a spacelike curvature singularity at ⌧ “ 0 (z “ 8) in all cases

except pt “ 1, which corresponds to � “ 8.

From (4.13), the parameter � controlling the Kasner exponents is proportional to

c5, which from (4.10) is an oscillating function of the parameters. Numerically, we find

that near Qc, � is very well fit by

� “ A sin

„
B

Q{Qc ´ 1
` C

⇢
(4.19)

over many oscillations. This is demonstrated in Fig. 3 where we see that the black

dotted line describing (4.19) with A » 1.32104p2q, B » 7.90056p3q ˆ 10´4 and C »
´0.73961p2q (for ↵ “ 1, q “ m,mM “ 0.5) is in excellent agreement with the numerical

data (black continuous line) over many oscillations for small Q´Qc. This clearly shows

the extreme sensitivity of the Kasner exponents on the charge near the critical charge

Qc.

We can also find a good analytical approximation for the amplitude of the � os-

cillations near the critical charge Qc. Indeed, as Q Ñ Qc the following approxima-

tions should be excellent: 1) z0 „ z‹ „ zI “ 1{µ2, 2) c1, being proportional to the

scalar condensate as described by (4.4), approaches c19 0 Ñ 0 which allows us to find

c2 » y`
a
1 ´ µ2 via (4.5) evaluated at z “ zI (i.e. c2 attains its RN value), and 3)

�0 “ �pzIq » ´1{µ and E0 “ �1pzIq » ´µ are e↵ectively also given by their RN values

as read from (2.7). We can now insert these quantities in (4.10) and (4.13) to obtain

that as Q Ñ Qc, the amplitude in (4.19) should be well approximated by

A4 » 4

⇡2y2`rq2µ6
. (4.20)

6 The factor of 4 in front of p2 comes from our normalization of  in the action.
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This clearly shows the extreme sensitivity  
of the Kasner exponents on Q  
near the critical charge Qc.  

• So we can have β2 <1/2 at the beginning of the Kasner epoch. If so there are new effects.  
   β2 <1/2 =>  gtt  increases during initial and intermediate stages of Kasner epoch. 

1× 109 1× 1011 1× 1013 1× 1015 1× 1017 1× 1019
0.0

0.5

1.0

1.5

Figure 4: Kasner transitions between S|z!ztr “ � and S|z"ztr “ �new where

ztr is the location of the transition. This is for ↵ “ 1, q “ m,mM “ 0.5

and the di↵erent curves have di↵erent �, namely (from bottom to top on the left

side): � “ t0.82056 , 1.0004 , 1.1804 , 1.3606 , 1.5409 , 1.7212u ˆ 10´1
and Q{Qc ´ 1 “

t5.8918, 5.8857, 5.8796, 5.8735, 5.8674, 5.8613u ˆ 10´5
. For each curve, the gray solid line

is the numerical solution of (2.4) and the dashed black line is the solution of the approxi-

mated ODE (4.23): they are are superposed.

the z Ñ 8 singularity.

An example of the complete dynamics including a Kasner transition is shown in

Fig. 5. The yellow shaded region shows the Josephson oscillations of the scalar field

(solid black line) and its e↵ect on gtt (blue dot-dashed curve). The series of short steps

in z g1
tt{gtt, similar to the right plot of Fig. 2, is also visible (red dashed curve). The

grey shaded region shows the intermediate Kasner regime with �2 † 1{2. Since gtt is a
power law, z g1

tt{gtt is constant, and since �2 † 1{2, gtt grows during this period. But

eventually there is a transition to a new Kasner epoch with �2 ° 1{2 (blue shaded

region) which continues until the singularity at z “ 8. Despite the fact that the

intermediate Kasner region lasts for an exponentially large range of z, it corresponds

to a short proper time.

The above discussion of Kasner transitions breaks down when z 1 becomes very
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Figure 3: The parameter � determining the Kasner exponents as a function of the black

hole charge Q for ↵ “ 1, q “ m,mM “ 0.5. The solid grey line is the numerical solution

and the dotted black curve is a fit to (4.19). The scalar starts to condense at the critical

charge mQc “ .4942545.

For ↵ “ 1, q “ m,mM “ 0.5, this gives A » 1.32166p3q which is in very good agreement

with the numerical value of A » 1.32104p2q.
So far we have described the system at the end of the Josephson regime when it

moves to the Kasner epoch. Next, we would like to understand what happens when

the system evolves further inside the Kasner epoch. From (4.15), one sees that when

�2 ° 1{2 at the beginning of the Kasner epoch, the Maxwell field remains bounded for

large z. We then expect (and confirm it to be so) that in such cases, as we enter deeper

into the Kasner regime all the way to the singularity at z Ñ 8, the system remains

described by the Kasner cosmology (4.16)-(4.17) with the same exponents.

On the other hand, when �2 † 1{2 at the beginning of the Kasner epoch, there are

new e↵ects. Indeed, the growing Maxwell field (4.15) causes a transition to a di↵erent

Kasner solution with new exponents.7 This transition can be described as follows.

7 Similar transitions were found inside Einstein-Yang-Mills black holes [26, 27].
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β

βnew

But Maxwell Φ is no longer small  
and its growth causes a transition  
to a different Kasner solution with  
new exponents  β —> βnew . 

If   β2 new >1/2  the system now  
goes through a new Kasner period  
with decreasing  gtt  till the Kasner  
singularity is reached 



Figure 5: Typical example of the full dynamical evolution of a system with a Kasner

transition like the ones observed in Fig. 4. The system evolves from the event horizon at

z “ 1 towards the final singularity at z Ñ 8. In 1 † z † 10 (yellow shaded area) the

system goes quickly through the ER bridge collapse and Josephson oscillations epoch, then

it stays relatively steady for a long time z (but short proper time) in the intermediate Kasner

regime with � „ .1721212, and finally (blue shaded area) there is a Kasner transition to

�new „ 1.848235. This is for ↵ “ 1, q “ m,mM “ 0.5, Q{Qc ´ 1 “ 5.861297 ˆ 10´5
.

large. This is because some of the terms we dropped in deriving (4.23) are no longer

negligible. This can be seen very easily in the AdS case with ↵ “ 0, since the inversion

formula �new “ 1{p2�q predicts �new Ñ 8 when � Ñ 0. But an infinite �new would

correspond to a solution with a smooth Cauchy horizon, which is forbidden. In that

case the terms in the interior equations of motion (4.1) involving the charge rq of the

scalar field can no longer be neglected [14]. They modify the � Ñ �new transition

formula so that �new remains finite. We find a similar breakdown to (4.23) when ↵ ° 0.

The main di↵erence is that since the Kasner transition is no longer given by a simple

inversion �new “ 1{p2�q, the values of � initially that lead to large �new must be found

numerically.

Examples of these more general Kasner transitions are presented in Fig. 6 for

↵ “ 1, q “ 0.5m,mM “ 0.5 and slightly di↵erent values of Q{Qc. Rather than having

z  1 grow monotonically as in Fig. 4, we see that it now reaches a maximum before

settling into �new. Remarkably, the new value of � changes by multiples of ten when

Q{Qc ´ 1 changes by 10´10! This highlights the extreme sensitivity of the interior

dynamics on the black hole charge.

When the Kasner transition becomes sharp enough, it can trigger a new round of

Josephson oscillations, as shown in Fig. 7. Note that this figure has the same parameters
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• If   β2 new >1/2  after the transition, the system now  goes through a Kasner period with 
decreasing  gtt  till the Kasner singularity is reached.

β2 new >1/2β2 < 1/2

• However if, after the transition, one still has  β2 new <1/2   
  the system will go through new Kasner transitions (generically, a finite # of them)  
  till an ultimate β2 final >1/2  that finally makes gtt ->0  as the Kasner sing. is reached. 
  For fine-tuned initial data, there can be an infinite # of transitions:  
                        chaotic BKL oscillatory behaviour  (Belinskii-Khalatnikov-Lifshitz’70) 

• All these findings are in agreement with the theorem (no Inner Horizon when ψ present):  

    the presence of a scalar field destroys the possibility of having a Inner Horizon
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Figure 10: The Kasner exponents inside a family of maximal warm holes (the red curve

family of Fig. 1 in [7]). These are maximally charged black holes with ↵ “ 1, q “ m. The

wiggles on the right are a result of the solution having a charge that approaches Qc. At

the lower limit of the mass, the solution becomes singular.

Planck regimes, we find it remarkable that adding a small amount of scalar hair can

change a black hole interior in such profound and sensitive ways.

We have focused on static charged black holes, but Kerr black holes can also sup-

port massive scalar hair [20–23]. In fact, these are solutions which are not stationary

and axisymmetric, and have only a single Killing field [20–23, 29, 30]. A complete

investigation of their properties inside the horizon is beyond the scope of this paper,

but in the Appendix we show that they cannot have a smooth Cauchy horizon. The

proof is quite general and applies to black holes in more than four dimensions also.
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Reinforce a key property: 

• Extreme sensitivity of the Kasner  
  exponents on Q  
  near the critical charge Qc.
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Figure 9: The Kasner exponent pt as a function of Q{Qc from the onset of the scalar

instability to the maximum charge this black hole can carry. This is for ↵ “ 1, q “ .5m

and mM “ 1. The solution with maximum Q{Qc is singular.

maximum charge, i.e. maximal warm hole charge, and critical charge for the instability

of a RN black hole of that mass decreases to zero. So the wiggles seen on the right side

of this figure can be understood as a result of the maximal warm hole approaching the

onset of the RN instability. In both this figure and the previous one, pt Ñ 1 as the

solution approaches a singular extremal solution. This is because the Kasner singularity

approaches the event horizon. In other words, the proper time from the bifurcation

surface to the singularity goes to zero as one approaches the singular extremal solution.

Although we have not studied fully nonlinear dynamical solutions in our theory, it

is very plausible that if we start with generic initial data for RN in its unstable regime,

it will evolve to one of our static hairy black holes. The fact that these black holes do

not have a Cauchy horizon is some evidence that strong cosmic censorship holds in this

theory.

Our discussion has been entirely classical, and we expect quantum e↵ects to become

important near the singularity. They will also modify the Josephson oscillations when

Q Ñ Qc, and the frequency of oscillations diverge. However, staying away from the
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Figure 1: The phase diagram of solutions with q{m “ 1 and ↵ “ 1. Hairy black holes

exist in the brown shaded region. The blue line denotes the onset of the scalar instability,

and the red line denotes the curve with µ “ 1. Note that these black holes can slightly

exceed the usual extremal bound Q “ M .

the left boundary of the phase diagram. However despite having the largest charge for

given mass, the black holes along the red line with µ “ 1 are nonsingular (S ‰ 0), and

remarkably have nonzero Hawking temperature. This is shown in Fig. 2 which shows

various physical properties of the µ “ 1 black holes including their entropy S “ A{4,
temperature T , F 2 on the horizon, and charge on the black hole QH.

The reason these black holes exist can be understood as follows. As one increases

their charge (for fixed mass), the region near the horizon behaves as a typical black hole

with scalar hair and wants to become singular. However, if the mass is large enough,

before one reaches a singular horizon, the asymptotic condition (2.13) is saturated.

Since one cannot support scalar hair if this bound is violated, and there are no black

holes without hair having Q ° M , the extremal black hole has T ° 0. This is a new

kind of extremal black hole that we are calling a maximal warm hole.
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• Spacelike curvature singularity  
  at τ =0 (z=00)  

  [except when pt =1 <—> β=00  

       But this never happens ! ].



➙ Conclusions / main messages  
• Hairy BHs can terminate on non-singular BHs with maximal Q but non-zero Temperature:  

        maximal warm holes 

• We have shown that the Hairy BH interior is a complicated place to live: 

  — An in-falling observer goes through 3 epochs before approaching a spacelike Kasner singularity 

  — Scalar field destroys the would-be Cauchy horizon:  
                                                          it “gets replaced” by a spacelike Kasner singularity 

• Henneaux  2202.04155:  
   BKL dynamics when approaching spacelike singularity has a cosmological billiard descrip>on:  

         billiard table in hyperbolic space where Kasner <-> geodesic moJon of a ball  
                                 & bounces on walls => transiJons to new Kasner cosmologies.  

   For our ac>on, for generic iniJal condiJons the volume of the table is infinite  

    => Typically,  system seEles  into a single final Kasner cosmology.  

         But exists set of measure zero of ini>al condi>ons—> endless chaoJc BKL oscillatory behaviour

The classical interior of charged black holes with AdS asymptotics
The neutral model

An infamous Penrose diagram

Infamously, in addition to the horizon at
z = zH, there is an inner horizon z = zI with
f(zI) = 0, so that

1
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+ zI
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.

Because of this inner horizon, many of us used

to draw an ad nauseam Penrose diagram.
However, this inner horizon is a Cauchy

horizon H
+(�), leading to the breakdown of

predictability in the black hole interior.

At high temperatures fl
2
z

4
H

æ 0 and in this limit the inner horizon
is at zI ¥ 4zH/(fl2

z
4
H

) æ Œ (Schwarzschild-AdS black hole). At
low temperatures zI æ zH, and the black hole becomes extremal.

9 / 28

I+

I-
i0

Thank you!

The classical interior of charged black holes
with AdS asymptotics
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Event at Galileo Galilei Institute 

New horizons for  (no-)horizon  physics: from gauge to gravity and back

Today we got rid of one horizon (Cauchy) 
  

… 1/2 work done … 

… tomorrow Iosif and Rodolfo just need 
   to be as efficient with the event horizon

Grazie mille!





➙ Maximal warm holes and the endpoint of Hawking evaporation
• Typically, in a theory without q > m par>cles, a near-extremal BH will Hawking radiate   

   neutral massless par>cles such as gravitons, photons and become extremal.  

• Since an extremal BH has T=0, it is a stable endpoint for this process. 

• But maximal warm holes are smooth BHs with maximal Q and nonzero T  
        => need another scenario for the endpoint of their Hawking evaporaJon  

• Fix α=1 and q=m. Hairy BHs have T/m<<1:   

         — charged parJcles created by the Schwinger mechanism with rate ~ e π́m2/qE  

         — neutral  photons/gravitons are produced thermally.  

• Since charged parJcle emission is exp suppressed, BH should loose M but not Q => ~ verJcal line.  

• So for large Mm, Hawking evaporaJon would appear to end on the red line.  

    But these BHs have nonzero T => they would appear to keep radiaJng.    This is a puzzle!  

Figure 1: The phase diagram of solutions with q{m “ 1 and ↵ “ 1. Hairy black holes

exist in the brown shaded region. The blue line denotes the onset of the scalar instability,

and the red line denotes the curve with µ “ 1. Note that these black holes can slightly

exceed the usual extremal bound Q “ M .

the left boundary of the phase diagram. However despite having the largest charge for

given mass, the black holes along the red line with µ “ 1 are nonsingular (S ‰ 0), and

remarkably have nonzero Hawking temperature. This is shown in Fig. 2 which shows

various physical properties of the µ “ 1 black holes including their entropy S “ A{4,
temperature T , F 2 on the horizon, and charge on the black hole QH.

The reason these black holes exist can be understood as follows. As one increases

their charge (for fixed mass), the region near the horizon behaves as a typical black hole

with scalar hair and wants to become singular. However, if the mass is large enough,

before one reaches a singular horizon, the asymptotic condition (2.13) is saturated.

Since one cannot support scalar hair if this bound is violated, and there are no black

holes without hair having Q ° M , the extremal black hole has T ° 0. This is a new

kind of extremal black hole that we are calling a maximal warm hole.
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➙ Maximal warm holes & the endpoint of Hawking evaporation

• ResoluJon:  
• Schwinger rate of charged par>cle produc>on is not actually exp suppressed but O(1):  

                        q=m, and we checked E/m ~ O(1).  

• In contrast, for warm holes, T ~ 10-3 => rate of thermal radia>on, T4 ~ 10-12  , is highly suppressed.  

• Thus, late stages of Hawking radiaJon are dominated by the producJon of q=m parJcles  

    =>  Q-M approximately constant  

    => Hawking radiaJon causes the BH to evolve along a horizontal line (rather than a ver>cal line)  

    => ends in a singular (S=0) extremal (T=0) soluJon as expected. 

Figure 1: The phase diagram of solutions with q{m “ 1 and ↵ “ 1. Hairy black holes

exist in the brown shaded region. The blue line denotes the onset of the scalar instability,

and the red line denotes the curve with µ “ 1. Note that these black holes can slightly

exceed the usual extremal bound Q “ M .

the left boundary of the phase diagram. However despite having the largest charge for

given mass, the black holes along the red line with µ “ 1 are nonsingular (S ‰ 0), and

remarkably have nonzero Hawking temperature. This is shown in Fig. 2 which shows

various physical properties of the µ “ 1 black holes including their entropy S “ A{4,
temperature T , F 2 on the horizon, and charge on the black hole QH.

The reason these black holes exist can be understood as follows. As one increases

their charge (for fixed mass), the region near the horizon behaves as a typical black hole

with scalar hair and wants to become singular. However, if the mass is large enough,

before one reaches a singular horizon, the asymptotic condition (2.13) is saturated.

Since one cannot support scalar hair if this bound is violated, and there are no black

holes without hair having Q ° M , the extremal black hole has T ° 0. This is a new

kind of extremal black hole that we are calling a maximal warm hole.
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Figure 5: Black holes with qµ “ m as a function of q{m, with ↵ “ 1. When Q ° M ,

these are maximal warm holes. The green shaded region denotes RN black holes, and the

bottom blue curve denotes the onset of their instability when qµ “ m. For masses outside

the range of the maximal warm holes, the extremal black hole is singular.

field. Since the electric field increases as one decreases the size of the black hole, only

small black holes can have this kind of hair. Second, the mass where maximal warm

holes become singular rapidly decreases to zero as q{m increases, and for q{m Á 1.1,

maximal warm holes can have arbitrarily small mass. This is also easy to understand:

increasing q{m decreases the maximum allowed µ, so this maximum is reached sooner,

before the horizon becomes singular. Third, the maximum charge the hairy black hole

can carry also decreases as q{m increases, and for q{m Á 1.3, it falls below Q “ M . At

this point, the maximum charge black hole is the usual RN solution with no scalar hair.

However, when they exist, the hairy black holes always have larger entropy than a RN

solution with the same M and Q. As one increases Q for fixed M , the RN solution

becomes unstable as before, but if one continues to increase Q, one reaches a point

where the hair no longer exists and the solution returns to RN.

Next we consider decreasing q{m † 1. This increases the maximum allowed µ,

making it easier for the horizon to become singular before reaching this limit. So the

minimum mass required for a maximal warm hole increases, as shown in Fig. 5 for the
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be nonsingular. Both of these e↵ects are shown in Fig. 3 which shows the maximal

warm holes in theories with q “ m and di↵erent couplings ↵. These curves all have

µ “ 1 and generalize the red curve in Fig. 1 to larger ↵. The physical properties of these

black holes are qualitatively similar to Fig. 2. In particular, they are all nonsingular

with nonzero Hawking temperature. For example, the properties of the black holes

when ↵ “ 100 are shown in Fig. 4. Notice that increasing ↵ increases the extremal

temperature only slightly (top-right panel), but greatly decreases the fraction of the

charge QH that is carried by the black hole (bottom-right panel). Most of the charge

is now in the scalar hair, which is not surprising since we have increased the scalar

instability.
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Figure 3: Maximal warm holes in theories with q “ m and di↵erent couplings ↵. These

are all nonsingular (S ° 0) black holes with maximum charge and nonzero T . As they

approach the solution with minimum mass, S Ñ 0 and T Ñ 0.

Next we return to ↵ “ 1, and consider the e↵ects of changing q{m. The existence

of maximal warm holes turns out to be very sensitive to this parameter. The smooth

black holes with maximum charge for given mass again have the maximum possible

potential di↵erence µ allowed by (2.13). They are shown in Fig. 5, and all have T ° 0

(except the leftmost point that approaches S Ñ 0 and T Ñ 0).

– 12 –

Maximal  warm holes exist   
for all scalar-Maxwell couplings α 
(above the bound where 2d BF bound 
is violated)  


