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= Qveraill moTtivation
®* What happens when we dive across an event horizon into the interior of a BH?

There are classical and quantum challenges (many not yet fully understood):

—Hawking-Penrose Singularity thms 70: @ interior of BH, spacetime ends at a singularity

—Belinskii-Khalatnikov-Lifshitz (BKL) "70: How? General solution near spacelike (cosmological)
singularity is intricate & described by a Kasner cosmology (possibly w/ chaotic BKL oscillations)

—On other hand, Weak Cosmic Censorship Conjecture [Geroch-Horowitz ‘79]:
“generically, the maximal development of (asymp flat, geod complete) initial data is an
asymp flat spacetime (in particular I" is complete) that is strongly asymptotically
predictable’ —> “naked singularities dont form (from collapse)”

* Geroch ‘70: For BHs with a Cauchy horizon (at which classical predictability breaks down
even without large curvatures) what happens?

* Penrose ‘79: Cauchy horizons are artifacts of symmetry & do not arise from generic
initial data: blueshift instability (a.k.a. mass inflation) should produce singularity.

* Strong Cosmic Censorship Conjecture [Penrose ‘79, Christodoulou ‘99]: Generically (generic
asympt flat, complete, initial data X) the resulting solution cannot be extended across a

Cauchy horizon (the maximal Cauchy development of a two-ended X is inextendible)




® Weak CC is not implied by Strong CC and the two are independent:

violates SCCC, but not WCCC violates WCCC, but not the SCCC

“Cannot predict the future
“naked singularity, not clothed by horizon”
from initial data”



=> MOoTIvaTtion. bR IntTeriors I AGo (In snorT)

Frenkel-Hartnoll-Kruthoff-Shi: [2004.01192]
Santos-Horowitz-Hartnoll-Kruthoff:

Reissner-Nordstrom-AdS [2008.12786], [2006.10056]

Add a charged scalar field => Hairy BH forms

—) (Holographic Superconductor)
RN-AdS becomes unstable

to formation of scalar
condensate

Dive into the interior of hairy BH:

System goes through 3 epochs
( r is now timelike coord )
& deep in the interior one

approaches not a Cauchy Horizon
; but a Kasner (spacelike) singularity
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This talk in a nutshell:

Mubakis mubtandis |\ T
is there some umver'sallty in this physucs7

That is to say, do we have similar physics for asymptotically flat BHs>

* Mutatis mutandis is a Medieval Latin phrase meaning "with things changed that should be changed"
or "once the necessary changes have been made”.

It ramaince iinnatiiralized in Fnalich and ie tharafare 1iciniallv italicized in writinn



=> lhis Talk: Diving into BH inTerior ot an asymp. fiat charged hairy BH
1. Start with Reissner-Nordstrom

2. Add an (appropriate) charged scalar field => RN unstable to scalar condensation
3. Associated hairy BHs have novel properties: Maximal Warm Holes [ Part 1]
4. Dive into the interior of the associated hairy BH [ Part 2 ]
Find that the system goes through 3 epochs:
- Einstein-Rosen bridge collapse epoch
- Josephson oscillations epoch

- Kasner cosmology epoch

before a Kasner singularity forms deep in the interior (no Cauchy horizon)




Part 1:
Black Holes of the theory & their properties

Maximal Warm Holes



—> The theory and its phase diagram of solutions
* Einstein-Maxwell with charged scalar field & a scalar-Maxwell coupling:
S = [dtey=g[R - F* ~ D)D) - 4m?|uf* — daF?|uf]

F =dA
D=V -—-i1qA

required to have scalar condensation when A=0 & hairy BHs branching from RN

Scalar-Maxwell coupling:

(Theories with self-interacting V also have hairy BHs but they do not branch from RN)

* Ansatz for solutions (static, spherically symmetric)

2
ds® = —p(r) g(r)*dt* + % + r*(d6? + sin® 0 d¢?)
p(r

A=0(r)dt, ¢ =1"=y(r)
* Reissner-Nordstrom (RN) solution (no scalar field)

P("“)ZPRN(”'“)E(T_H?)agr_r_)a g(r)=1, and (I)(T):(I’RN(T)E(l_%)“

Q= pry and ry = M +/M? — Q2. u: chemical potential



* Perturb RN with scalar field: (¢, 7) = 9)(r) e "

:2[TQpRNmJ'(r)]#{[“W%N( e 20 <>2}$<r>—o

pRN( )

° If q2,u2 < m?  the scalar field decays exponentially at infinity:
o=/ mP—q2p? Exponential decay: characteristic of
~1
P = - [b +O(r )] ) bound states

e Otherwise (¢°11* > m?), scalar field oscillates asymptotically => it's not bound to BH.
Such solutions would have infinite energy =>discard

* Near horizon of the extremal RN black hole: set r_ = r, inRN; introduce coord
T T
t = +T’ and r=7r(1+Ap) & takelimit A — 0

=> Solution reduces to the direct product form AdS2 x S2:
2

d
dsias,xs2 = Lias, (—p2d7'2 + %) + 77 (6 +sin® 6 d¢?)

0 AAngxSQ = lads, pdT

* Full extreme BH is unstable if effective scalar mass in AdS2 x S2 violates AdS2 BF bound:

1 1(1
2 19 9272 2 9
meffLAdSQ =m LAds2 — ¢ Mags, < 1 = > 9 [Z + (m —(q )LAdSQ—‘



e Conclusion:

Extremal RN has p=1 so we can have bound states (¢° < m* )

1(1
that violate the BF bound if a > 7 [1 - (m2 — q2)LidS2]

* Instability confirmed by a full numerical analysis:

Im(w/m)

Q — M)m

*Plot for a =1, q/m=1/2
* Red: Onseft of instability (w=0). Blue: extremality (Q-M=0)



* RN are unstable to condensation of bound states if ¢“u* < m”

=> in a phase diagram of static solutions, there should exist hairy BHs
bifurcating from the RN onset of instability

* Indeed, that's the case. Phase diagram for a =1, q/m=1:
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Maximal warm holes (largest Q for given M
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* Blue: RN onseft = Bifurcation/Merger of RN with hairy BH
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Why do maximal warm holes exist in this theory but not others?

* As one increases Q (for fixed M),

the region near the horizon behaves as a typical BH with scalar hair

and wants to become singular.

* However, if the M is large enough (M>0.8), before one reaches a singular horizon,

the asymptotic (bound state) condition q2 ,u2 < m? is saturated.
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* Since one cannot support scalar hair if this bound is violated

(& there are no other BHs without hair having Q > M),
the would be "extremal” BH has T > O.

This is a new kind of extremal BH that we are calling a maximal warm hole



Part 2:
Diving into the interior of a Hairy BH




= 1tneorem. no 1Lnner forizon in Tne presence or a scaiar Tieia
See also: Santos-Horowitz-Hartnoll-Kruthoff [2008.12786]

* Ansatz to study BH interior: Cai-Li-Yang, [2009.05520]
2 di2 d22 A2 A= ®(z)dt,
s > [ f(z)e 7 +f(z)+1—/<:x2+( kx”)do ¢:¢T2¢(z)

* From the EOM, there is a quantity that is conserved (0,C71 =0):

X

Ch = - (e7X f)’ —4e2®' O(1 + 4o p?) + 2/@[

)
2z 22y

dx

I‘Q
* Assume that besides the event horizon there is also an inner horizon:

f=0 at horizons & f(z) <0 for zu<z<zr =>f'(zr)>0 e
(Infinity is at z =0)

* EOM => 3=0 at horizons

x(zg4) f
2 f(o) <0 /
H > >
27 _@ ZH /Z/
dx > 0

€

* At event horizon: () =

x(27)
. . e 2
* At inner horizon: C = 5 f’(z;[) + QKJ
25 ey
Since the constant must be same this leads to a contradiction

=> NO Inner horizon can be present (unlike it was incorrectly assumed)

12



—> So what happens when we dive into the interior of a hairy BH?

* Would-be Inner horizon z: is replaced by a Kasner (spacelike) singularity as z—> 00

* As z increases, In-falling observer experiences 3 epochs :

1) the collapse of the Einstein-Rosen bridge:;

2) Josephson oscillations of the condensate;

3) a Kasner cosmology, sometimes with transitions that change the Kasner exponents
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27y W@ JOUSEpPIISUII currerit

The EOM: . 2.-3 [(1 + 4ot )e%cp’] _ f \_/ In Maxwell EOM

(]

Z%e > = 7
2.2 X
qYie€ 2
X/_4Z< f; ¢2¢2+¢')=0, q = q/m
_X N/
e 2 (6 zf> + 2%k = 2y5 0 — (1 + 4a¢2) XA = 0, Y+ = rym
2z

* All three stages can be understood not only numerically but also analytically,
despite the highly nonlinear nature of the EOM (~ like in the BKL original analysis)

* Procedure to understand analytically the problem:
— We use the numerics to find which terms in EOM are relevant for the 3 stages

— The remaining terms can be dropped => mutilated EOM can be solved analytically
— Finally, we check for self-consistency of the procedure.

* The 3 epochs & their approx analytical solns are cleanly identified for Y <<1 (eg T~Tc).
The scalar field y starts small, but nevertheless destroys the inner horizon !



207y Y }D’ JOUSEpPIISUII currerit

The EOM: .23 [(1 + day )e%cp,]f - =270, InMaxwell EOM

(e_EfW) (/2/ y+eXCI>2 96X 220 ) b =0

(]

ZG

/ q y+ 2 %2 /2
X —4z < PP+ | =0 N
I’ q = q/m
N
e 2 (e;f) + 2%k —}/ﬁ{@bQ — (1 + 4a¢2) X217 = 0, Y+ = Tr+m

* All three stages can be understood not only numerically but also analytically,
despite the highly nonlinear nature of the EOM

* Procedure to understand analytically the problem:
— We use the numerics to find which terms in EOM are relevant for the 3 stages
— The remaining terms can be dropped => mutilated EOM can be solved analytically
— Finally, we check for self-consistency of the procedure.

* The 3 epochs & their approx analytical solns are cleanly identified for Y <<1 (eg T~Tc).
The scalar field y starts small, but nevertheless destroys the inner horizon !

For example, during the ER collapse and Josephson epochs (and often during the Kasner period)
one can numerically verify (and a posterior justify) that the mass terms of y and the charge
term of ¢ in the Maxwell eqn can be dropped by the time the interesting dynamics kicks.



— £pocn 1: colilapse OoT Tne tinstein-Kosen (EK) priage
* The linear vanishing of g towards the would-be inner horizon is replaced by
a rapid collapse to an exponentially small value!

* In the BH interior, g, sets the measure for the spatial # coord that runs along the
wormhole connecting the two exteriors of the BH: this is the Einstein-Rosen bridge.

* The rapid decrease in g;; can be thought of as a collapse of the ER bridge for a fixed
coord separation Aft.

g C% W (61_26_(62/61)2 (Z_ZO)) ¢ = 25 T2, 7 2y
1 22(E222 — k) Y ~ Y, cos | Yy qP, 7 + 0,
W(z) = ProducLog(x) )
0010 f : 010f

0005 F

005+
0.001 |

g 5.x 1074} W :
14 | 000 [,

1. x1074F

i —005 |
5.x107% I

1.06 1.08 110 112 114 116 1.06 1.08 110 112 114 116



=> Epocn <. Josepnson osciliations oT Tne conaensarte

- After the collapse of the EP bridge, the derivative of Max field is small,®’ x e X/2 « 1,
which can be used to solve the scalar field g in terms of Bessel functions:

qP,|c g®,|c
b = cady <y+|222| 3) + oY, (?JH ‘ 3)

222

=> Josephson oscillations
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= Cpocn oS. RaAsner Cosmoiogy ana rvransivions

* At large z, y behaves logarithmically => signals entrance into a Kasner cosmology regime:

2
Y|s>1 >~ Blnz N flass1 = — foz*T20 => metric in which all components
B = _% Cs X|ooo1 > 48%1In 2 are powers of z & y~In z
* Maxwell potential is remains unimportant (negligible) while B2 >1/2:
E 1—282
(I) X~ (I)K + K2 <<1

1+ 4a821n° 2

* Introducing the proper time 7 = f«/gzzdz o 7~ (B/246%) (2 =0 <7 =0)

the solution takes the standard (generalised) Kasner form: (b= 2L
< Pz = QLa
ds® = —dr? 4+ TPt dt? + T2pm(d$2 + d¢2)7 Y =pylnT _ 262;3
Py = 33273

=> Spacelike curvature singularity at 7 =0 (z=00) [except when ps=1<—> =00 ].

=> The would-be inner horizon is replaced by a (spacelike) Kasner singularity

* While 2>1/2 (Max & <<1): system remains described by Kasner Cosmology

with decreasina 2« till the Kasner sinaularity is reached



* Parameter f controls the Kasner exponents & is an oscillating function, well fitted by:

|

B
Q/Qc_l

5=Asin[ +C’]

This clearly shows the extreme sensitivity
of the Kasner exponents on Q
near the critical charge Qc.

|
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* So we can have f2<1/2 at the beginning of the Kasner epoch. If so there are new effects.
p*<1/2=> g, increases during initial and intermediate stages of Kasner epoch.

JELI—
But Maxwell & is no longer small (177
and its growth causes a transition 15| i __
to a different Kasner solution wi’rh\ Pnew |
new exponents ff—> fnew . < 10 _'

= 10+
N I

If % new>1/2 the system now |
05+

goes through a new Kasner period y
with decreasing gy till the Kasner | L

singularity is reached T I oL TOF7~ e For e TPt TP




* If % new>1/2 after the transition, the system now goes through a Kasner period with
decreasing g till the Kasner singularity is reached.

60/ 4
p2<1/2 B2 new>1/2
20:55 _Zg_ét
Intermediate Kasner G et
O?"V\r ------------------------------------------------------------------------------------------------------------------------------ — T
: ------------------------------------------------- B - log(gtt)
e £ ]
_405 --------------------------------------------

* However if, after the transition, one still has f? new <1/2
the system will go through new Kasner transitions (generically, a finite # of them)

till an ultimate 2 fina1 >1/2 that finally makes g, ->0 as the Kasner sing. is reached.

For fine-tuned initial data, there can be an infinite # of transitions:
chaotic BKL oscillatory behaviour (Belinskii-Khalatnikov-Lifshitz'70)

* All these findings are in agreement with the theorem (no Inner Horizon when i present):

the presence of a scalar field destroys the possibility of having a Inner Horizon



10 f KeinTorce a Key properTy:

| - | © Extreme sensitivity of the Kasner
ol | exponents on Q
S “ near the critical charge Qc.
04+
* Spacelike curvature singularity
02} ’ at 7 =0 (z=00)

(OXON ‘ ‘ ‘ ‘ ‘ ‘
1.0000 1.0005 10010 10015 10020 1.0025 1.0030

Q/Qe

[Figure 9: The Kasner exponent p; as a function of )/Q. from the onset of the scalar
nstability to the maximum charge this black hole can carry. This is for a =
and mM = 1. The solution with maximum @Q/Q. is singular.
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Figure 10: The Kasner exponents inside a family of maximal warm holes (the red curve
-0.010¢ , ‘ ‘ family of Fig. 1 in [7]). These are maximally charged black holes with « = 1, ¢ = m. The
0.0 0.5 1.0 15 20 wiggles on the right are a result of the solution having a charge that approaches (.. At




—> Conclusions / main messages
« Hairy BHs can terminate on non-singular BHs with maximal Q but non-zero Temperature:
maximal warm holes
« We have shown that the Hairy BH interior is a complicated place to live:

— An in-falling observer goes through 3 epochs before approaching a spacelike Kasner singularity

— Scalar field destroys the would-be Cauchy horizon:
it “gets replaced” by a spacelike Kasner singularity

* Henneaux 2202.04155:
BKL dynamics when approaching spacelike singularity has a cosmological billiard description:
billiard table in hyperbolic space where Kasner <-> geodesic motion of a ball
& bounces on walls => transitions to new Kasner cosmologies.
For our action, for generic initial conditions the volume of the table is infinite
=> Typically, system settles into a single final Kasner cosmology.
But exists set of measure zero of initial conditions—> endless chaotic BKL oscillatory behaviour




Event at Galileo Galilei Institute

New horizons for (no-)horizon physics: from gauge to gravity and back

Tod&y we qob rid of owne horizon (Cautkfj)
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= Maximal warm holes and tThe endpoinT ot Hawking evaporation

o Typically, in a theory without g > m particles, a near-extremal BH will Hawking radiate
neutral massless particles such as gravitons, photons and become extremal.

« Since an extremal BH has T=0, it is a stable endpoint for this process.

o But maximal warm holes are smooth BHs with maximal Q and nonzero T
=> need another scenario for the endpoint of their Hawking evaporation

o Fix a=1 and g=m. Hairy BHs have T/m<<1:
— charged particles created by the Schwinger mechanism with rate ~ e mm?/qE
— neutral photons/gravitons are produced thermally.
« Since charged particle emission is exp suppressed, BH should loose M but not Q => ~ vertical line.

« So for large Mm, Hawking evaporation would appear to end on the red line.
But these BHs have nonzero T => they would appear to keep radiating. This is a puzzle!
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=7 AXIimal warm noies a ine enapoint o7 rifawning evaporarion

 Resolution:
« Schwinger rate of charged particle production is not actually exp suppressed but O(1):

g=m, and we checked E/m ~ O(1).
« In contrast, for warm holes, T ~ 103 => rate of thermal radiation, T4 ~ 10-12, is highly suppressed.

» Thus, late stages of Hawking radiation are dominated by the production of g=m particles
=> Q-M approximately constant
=> Hawking radiation causes the BH to evolve along a horizontal line (rather than a vertical line)
=> ends in a singular (S=0) extremal (7=0) solution as expected.

0.025

0.020

0.015+

0.010+

(Q — M)m

0.005}
0.000 8

—0.005;

-0Q010(
0.0 0.5 1.0 1.5 2.0

N .-




08 r

04+

02}

00t

06
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for all scalar-Maxwell couplings a
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Figure 3: Maximal warm holes in theories with ¢ = m and different couplings . These

are all nonsingular (S > 0) black holes with maximum charge-ane-nonzere~F—As they

approach the solution with minimum mass, S — 0 and T' — 0.
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Figure 5: Black holes with g = m as a function of ¢/m, with « = 1. When @ > M,
these are maximal warm holes. The green shaded region denotes RN black holes, and the
bottom blue curve denotes the onset of their instability when gu = m. For masses outside

the rance of the maximal warm holes. the extremal hlack haole is singiilar.



