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The aim

Use a particle-physicist approach to derive classical observables relevant
to gravitational binaries
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A technique for translating the classical scattering function of two gravitationally interacting bpdies into
a corresponding (effective one-body) Hamiltonian description has been recently introduced [Phys. Rev. D
94, 104015 (2016)]. Using this technique, we derive, for the first time, to second-order in Newton’s
constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbitrary (possibly
relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian is found to have a
tame high-energy structure which we relate both to gravitational self-force studies of large mass-ratio
binary systems, and to the ultra high-energy quantum scattering results of Amati, Ciafaloni and Veneziano.
We derive several consequences of our second post-Minkowskian Hamiltonian: (i) the need to use special
phase-space gauges to get a tame high-energy limit; and (ii) predictions about a (rest-mass independent)
linear Regge trajectory behavior of high-angular-momenta, high-energ lar o Ways of testing
these predictions by dedicated numerical ions are indicated. [We finally indicate a way to connect
) ) our classical results to the quantum gravitational scattering amplitude of two particles, and we urge
we will consider amplitude experts to use their novel techniques to compute the two-loop scattering amplitude of scalar

masses, from which one could deduce the third post-Minkowskian effective one-body F

This is the framework




The approach

1 Model the celestial bodies as “elementary” particles with known
couplings to gravity (massless fields in general): this defines the
classical objects in an EFT approach or in UV complete theory

2 Use perturbative amplitudes to describe the large-distance scattering
and take the classical limit

3 Export the new information obtained from open to closed orbits

Each of these steps can be tackled technically in several ways. Here |

would like to emphasize two general points

e |t is a general approach applicable to all perturbative gravitational
theories (GR, supergravity, string theory) and various types of
objects (Schwarzschild, Kerr, shockwaves, strings . ..)

e Classical physics is obtained by resumming an infinite set of
contributions which leads to exponentiation



Motivation (1)

Why is this useful? A new perspective on an old (and difficult!) problem
can sometime bring conceptual and practical progress.

A (very partial) list of results emerged over the last four years

e Impressive results at high PM order (3PM solved, 4PM in progress)

See: Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng 2112.10750 and refs therein

Analytic continuation from open to closed trajectories
See: Cho, Kilin, Porto 2112.03976 and refs therein

e New results on the radiated energy and angular momentum
See: Herrmann, Parra-Martinez, Ruf, Zeng 2101.07255, Manohar, Ridgway, Shen 2203.04283

e A new avenue to study spinning objects (Kerr and beyond)

See: Aoude, Haddad, Helset 2203.06197, Bern, Kosmopoulos, Roiban, Teng 2203.06202 and refs therein

e New insights on and from the high energy regime
See: Di Vecchia, Heissenberg, RR, Veneziano: 2104.03256, 2204.02378



The elastic scattering



An example: scalar particles in GR

= P2 known coupling p3 ——»

n

Graviton e -a.mplitude
lines (also disconnected),
m
<—p1 known coupling P4 ——
A spacetime picture of the scattering Diagrammatic picture
Key classical quantities:

The centre-of-mass energy E, E2=s=—(p; + p2)?, 0 = =2l

The angular momentum J = p by, p = |p;

The momentum transferred @ = p1 + pa
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One particle exchange

Let us start from the 1-particle exchange

3 ﬁﬁN:S = dm?mio?
q Ay = S’r?ﬁ +

g ..
\i B = 4m3Im2 (02 = ﬁ)

g is quantum and the dots contain analytic terms as g — 0

2

In terms of classical quantity b ~ h/q

T, dD72q A(Saq2) ib-
A(s,b):/(%)D_2 €.

In D=4 —2¢ — 4 we have

2imymyG(nb?)0’M (=€) . Gmyimy log(b) i
0?2 —1 2 ol

g

A= =

No well defined classical limit?! 6



Two particle exchange

Consider the two particle exchange. The non-analytic contributions are

2 3 2 3
(1) ) 3)
2y — a1 °(s) 4 a(s) | a4 (s)
yiu| o e + Pooa As(s,¢%) = v + (q;)%+‘ T T
n a2 with ¢; + ¢ = ¢
1 4 1 4

(I) From 3(11) we have O (75) term: ij(ll)(s, b) = %(i.ﬁo)z. Then
resumming the leading contributions (as 7 — 0) we expect
14+ iAo+ i.A:(Ll) + ... = e (eikonal exponentiation)

(m a§2) yield a new contribution O (+) (which is O(e) in N = 8)
() agnz?’) yields a long-range, but quantum terms O(h"~3)

Terms with negative powers of i exponentiate



The eikonal

The semiclassical limit requires that the long range part of A takes the
form

1+ iA(s, b) = (1 + 2iA(s, b)) e/23(s:b)

where 6 is O(h~1) and A encodes the quantum terms O(h™) with m > 0
§=>,0kand A=Y, Ay, k>0, are of order Gk*1 (PM expansion)

r N my m: 0'2
N =8in D = 4: we have 20y = — Iog(b)%, =0
Ignoring the quantum terms the inverse FT reads

i D—2 i26(s,b —ip.Q
4PE /d b i25(s,b) _ )e 3

A stationary phase approximation yields Q" = h%{i‘(sb) =2psin (%)

GR in D = 4: we have 2sin (X)) — % and

2F 2
X2Pm 3nG E(m+m) 5021
2sin (X4*) = 402 0?1



Regime of validity

In N/ = 8 sugra, the box diagrams give the full 1-loop amplitude

For scalars minimally coupled to GR @i, there are UV divergent
diagrams

These UV divergences can be absorbed in a local redefinition of the
action of each particle. The Schwarzschild BHs are “described” by ¢min

Is this a fine-tuning? Yes, but we are interested in large distance physics
b > R; ~ GE;. When does this EFT approach break down for BHs?

e Orthodox answer: when large curvatures arise
e At b ~ R;: new physics at the horizon scale? Maybe even at larger

scales as possible in string theory (due to tidal effects)?

D’Appollonio, Di Vecchia, RR, Veneziano 1310.1254 and refs therein



Novelties at 3PM

The 3PM eikonal d; is derived by taking the classical limit of the 2-loop
amplitude. It presents several novelties:

e It is the first term (in the scalar case) that cannot be obtained from

the probe limit (Damour 1912.02139)
e It has an imaginary part: elastic unitarity is lost. This is due to the
existence of a 3-particle cut to the unitary relation

D2 kg —» -~ —ky Pz —>

AN (py,pa, ks ko, k) AEMN (py py, —ky, —ka, —k)

Py —>

L~ =B
| —
e |t is not entirely captured by potential gravitons
e The real part (and thus the deflection angle) has a universal
Ultra-Relativistic (UR) limit
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Results in A/ = 8 (as an example)

Start from the 2-loop amplitude in A/ = 8 (known in terms of scalar
integrals) and extract the first non-analytic terms in the small g expansion

S5l (g 220(s 2l(s
-A2(Sa q2) = (; )1522 = (qi);lé + (22()22 + ...

Go to b-space and solve for d>. By using also dp 1 and Aj, we get DHRV

radiation reaction \‘

N 16m2m3G°o° 16m?m204G3 — —2 O
(202) = bz(laz 0z b2t022—1) cosh ((J')|: ”UZ 1))} Parra-Martinez, Ruf, Zeng: 2005.04236

¥— A consequence of analyticity
16m2m3G% g ; 022 =i = a yUCIty
—ilomie TCem {l (0 2+ 7:”(271); cosh™ (o )) and crossing — DHRV: 2104.03256
— (log(4(c® — 1)) — 3log(mb%e7)) [0 + (a(: 0 cosh™ (0)]

+(0?—1) [1 + %} (cosh™(0))% + 2= Liy(1 — 22) + 202

PN limit v — 0,
(02— ( 2 1)2

o2 —1=v?(1—-v*)"" ~o?,
cosh™ (o) ~ v
z=0—Vo?-1

In the UR limit (o > 1), Re(25,) — 20€mma) \yhich is universall

Amati, Ciafaloni, Veneziano; Ademollo, Bellini, Ciafaloni; DNRVW 1911.11716; Bern, Ita, Parra-Martinez, Ruf; DHRV: 2008.12743

11



Radiative effects




Soft eikonal operator

So far we pretended that the elastic scattering exists. . . but this is not
true in GR: Imd, is divergent! How to define finite observables?

Dress the elastic scattering it with soft gravitons (w < w, ~ ¥). The
emission of such gravitons exponentiate in momentum space

Bloch-Nordsieck, Weinberg; Laddha, Saha, Sahoo, Sen; Addazi, Bianchi, Veneziano
We know that the exchanged gravitons exponentiate in impact parameter
space (eikonal exponentiation). Combining the two we obtain

|
1
! with
I

Ser(obia,al) = exp (4 fi X, [£i(0)al (k) - £ (K)as (k)] -
£i(k) = (B)Fu(k), Fr(k) = X, 2o

I
( S-matrix with x (14 2iA(0,b)] ¢iRe25(a,b) “
soft gravitons I

a}r and a; are the creation/annihilation operators for soft graviton (with
physical polarisations j = 1,2 in D = 4)

The fi's act on § as Q" = pi' + p = ﬁagffé = 2pb#sin ¥ = —(p4 + p§)
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The soft energy spectrum

The elastic amplitude (0|S;.,|0) is suppressed: applying the BCH formula
to normal order the exponential one generates the divergent part of Im2d,

The final state S; ,|0) contains a coherent superposition of soft gravitons

We can take the expectation value of an observable O in the final state
<O> = <0|S;7‘.O Sslr.|0>-

and derive various classical quantities. The soft energy spectrum is
DHRV 2204.02378

dEN=8 2 dr((()sh(y 2 arccoshog
dw/‘ |:2m1m20 arteosig 2m1m20'Q 51
2 2
arccosh (1+Q—) arccosh <1+ Q—)
w — 0 limit ,@72”‘%,@ 3
li i cﬂ s QZ . e
non-linear :;\emory 1+j =il 1+2m —1JQ=2psin 9=
ignore
dE* _, 4G 2 _ 1) arccosho _ o 2 1) arccoshog . _
e =s [Qmwnz (=1 RN — 2mamy ((TQ 2) 7\/0(2)7,1 with 0 = 0 — 22—
2
. ol 22 arccosh (1+ M‘) > ) 2 arccosh(HfT)
AT VS ~L -_ ) 1/ ma _ _ " 2/
5t —mi((1+5%) 1) +5i-m3((1+ &) 1)

2 2
Q2 \ _ Q2
( +om? ) ! (1+27,T§) -1
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The ultrarelativistic threshold

The standard PM approach is equivalent to a Taylor expansion in

2m?
dEN=8 4G Q° | o2 (at )o
e & 5 + 0T/ arccosho
ng 202 [ 8-502 (20°—3)0
e &2 240 [3(0_2 ) + (0T=1)5/2 arccosho
. . N=8 .
Notice the relation diw ) ||me_>0[f4dm§2] DHRV 2101.05772

An energy crisis at o > 17! The soft spectrum is reliable till w, ~ %

The total energy emitted by soft gravitons is EX% ~ E(c; log(c) + ¢) as

S
o — oo (¢; are constant ~ x3, ¢ is not universal)

2
However, when % 2 1, the standard PM expansion breaks down: this

happens in the extreme UR regime (o x? = 1 for mj ~ m;) o ovacs, Thorne

In the UR limit, the exact formula yield a universal, finite result:
dEra

2
Gs 4
dzc):& ~ TrX |:1 + |Og — Gruzinov,Veneziano; Ciafaloni, Colferai, Veneziano
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Beyond the ult ivistic threshold

What about the full spectrum? In the regime 1 < o < % the apparent
energy crisis becomes worse E™4 ~ Ex3\/o Herrmann, Parra-Martinez, Ruf, Zeng

The region § < w < % is the dominant one

In the extreme UR regime, a natural guess is that the /o singularities are
replaced by i (for instance w < ? —w<§)

However there might an extra log(1/x) enhancement in E™¢ (due to the
“high frequency” region % <w < z15)

Gruzinov, Veneziano; Colferai, Ciafaloni, Veneziano
There are still open questions:
e How does E™9 changes as we move from ox? < 1 to ox? > 17

e Does £79 become universal when ox? > 1 (as for the soft
spectrum)?

Work in progress
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Conclusion

We can use amplitudes based techniques to extract the theoretical
information needed to analyse the inspiral/scattering of binary systems

The approach is flexible and can be applied to different theories/objects
It captures all aspects: conservative, radiation-reaction and real radiation

| didn't discuss many interesting technical (construction of the
integrands, integration, ...) and conceptual (KMOC, analytic
continuation to the bound case) developments

| focused on the question: is it consistent to model BHs as “elementary”
particles when describing the inspiral /scattering phase?

It is a very concrete question and for Schwarzschild BHs we didn't find
any problem up to 3PM order. .. but | doubt that this is the whole story
(in particular for Kerr)!
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Extra slides




Connection to bound orbits

The derivatives of the eikonal give standard observables

ORe2) ORe2)

Time delay AT = 5E Scatt. angle x = 57

An analytic continuation to o < 1 describes bound states (£ < m1 + m2).
This implies Vo2 —1 — iv/1 — 02, b — *£ib so as to have J — £J

Kalin, Porto

By using the eikonal § after analytic continuation, we can introduce the
periastron advance K and the period P

O Re 2
P=|= ~U—-9] K-1=

1 [ORe 26
2 o0J

+(J— —-J)

From &1 we can derive Eqgs. (347) for K and n = 22 of Blanchet's
review at all orders in € and first subleading order in j = J—i%
G? (mymo)
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Bound orbits: data

From Blanchet's review 1310.1528

£3/2 (3
Gm

2 192
{1+8( 15+l/)+ﬁ|:555+301/+111/ +1_/2( 5+2l/):| i

5760
[ 20885 — 49950 = 3150° + 1350 + oy (17 9y +2v )

3072
16 ) ) 1
* — 10080 + (13952 — 1237%)v — 144007 ) | + O 5 ) ¢ (347a)
e €2 [3 15 }
K=1H—+4+—|=(-5+2v 7T-2v
7T ]( ) 7 = ( )
e [24 1 ) o )
138 (575l/+41/ HTZ’ —10080 + (13952 — 12377%)v — 14400
1
+ % (7392 + (—8000 + 1237°)v + 3361/2>] +0 <6_8> . (347b)
v = myms V1-2(1—0o)r—1 e . J72 €
= (mtm)? v =72+ J T G lmmy

The 2PM approximation (5071) reproduce the terms in the boxes plus all
the € corrections at the same order of 1/;.
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