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Gravitational binaries (motivation I)

We will focus on
the inspiral part

1602.03837
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The aim

Use a particle-physicist approach to derive classical observables relevant

to gravitational binaries

This is the framework

we will consider

1710.10599
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The approach

1 Model the celestial bodies as “elementary” particles with known

couplings to gravity (massless fields in general): this defines the

classical objects in an EFT approach or in UV complete theory

2 Use perturbative amplitudes to describe the large-distance scattering

and take the classical limit

3 Export the new information obtained from open to closed orbits

Each of these steps can be tackled technically in several ways. Here I

would like to emphasize two general points

� It is a general approach applicable to all perturbative gravitational

theories (GR, supergravity, string theory) and various types of

objects (Schwarzschild, Kerr, shockwaves, strings . . . )

� Classical physics is obtained by resumming an infinite set of

contributions which leads to exponentiation
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Motivation (II)

Why is this useful? A new perspective on an old (and difficult!) problem

can sometime bring conceptual and practical progress.

A (very partial) list of results emerged over the last four years

� Impressive results at high PM order (3PM solved, 4PM in progress)
See: Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng 2112.10750 and refs therein

� Analytic continuation from open to closed trajectories
See: Cho, Kälin, Porto 2112.03976 and refs therein

� New results on the radiated energy and angular momentum
See: Herrmann, Parra-Martinez, Ruf, Zeng 2101.07255, Manohar, Ridgway, Shen 2203.04283

� A new avenue to study spinning objects (Kerr and beyond)
See: Aoude, Haddad, Helset 2203.06197, Bern, Kosmopoulos, Roiban, Teng 2203.06202 and refs therein

� New insights on and from the high energy regime
See: Di Vecchia, Heissenberg, RR, Veneziano: 2104.03256, 2204.02378
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The elastic scattering



An example: scalar particles in GR

Consider the 2→ 2 scattering with p21 = p24 =−m2
1, p22 = p23 =−m2

2

1 4π − χ

χ

2
3 π − χ

χ

b
bJχ

2

known coupling

1 n

1 m

known coupling

Tree amplitude

(also disconnected)

p2

p1

p3

p4

A spacetime picture of the scattering Diagrammatic picture

. . .

. . .

Graviton
lines

Key classical quantities:

The centre-of-mass energy E , E2=s=−(p1 + p2)2, σ = − p1p2
m1m2

.

The angular momentum J = p bJ , p = |~pi |, Ep = m1m2

√
σ2 − 1

The momentum transferred Q = p1 + p4, |Q| = 2p sin
(
χ
2

)
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One particle exchange

Let us start from the 1-particle exchange

q A0 =
8πGβ
q2 + . . .

βN=8 = 4m2
1m

2
2σ

2

βGR = 4m2
1m

2
2

(
σ2 − 1

D−2

)
1

2 3

4

q is quantum and the dots contain analytic terms as q → 0

In terms of classical quantity b ∼ ~/q

Ã(s, b) =

∫
dD−2q

(2π)D−2
A(s, q2)

4pE
e ib·q .

In D = 4− 2ε→ 4 we have

iÃN=8
0 =

2im1m2G (πb2)εσ2Γ(−ε)√
σ2 − 1

→ −i Gm1m2

~
log(b)

4σ2

√
σ2 − 1

No well defined classical limit?! 6



Two particle exchange

Consider the two particle exchange. The non-analytic contributions are

q1

1

2 3

4

q2
A1(s, q

2) = a
(1)
1 (s)

(q2)1+ε +
a
(2)
1 (s)

(q2)
1
2+ε

+ a
(3)
1 (s)
(q2)ε + . . .

with q1 + q2 = qq1

1

2 3

4

q2

+ + . . .

(I) From a
(1)
1 we have O

(
1
~2

)
term: iÃ(1)

1 (s, b) = 1
2 (iÃ0)2. Then

resumming the leading contributions (as ~→ 0) we expect

1 + iÃ0 + iÃ(1)
1 + . . . = e iÃ0 (eikonal exponentiation)

(II) a
(2)
1 yield a new contribution O

(
1
~
)

(which is O(ε) in N = 8)

(III) a
(n≥3)
1 yields a long-range, but quantum terms O(~n−3)

Terms with negative powers of ~ exponentiate
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The eikonal

The semiclassical limit requires that the long range part of Ã takes the

form

1 + iÃ(s, b) =
(

1 + 2i∆(s, b)
)
e i2δ(s,b)

where δ is O(~−1) and ∆ encodes the quantum terms O(~m) with m ≥ 0

δ =
∑

k δk and ∆ =
∑

k ∆k , k ≥ 0, are of order G k+1 (PM expansion)

N = 8 in D = 4: we have 2δ0 = − log(b) 4Gm1m2σ
2

~
√
σ2−1 , δ1 = 0

Caron-Huot, Zahraee

Ignoring the quantum terms the inverse FT reads

i A(s,Q2)
4pE =

∫
dD−2b

(
e i2δ(s,b) − 1

)
e−

i
~ b·Q

A stationary phase approximation yields Qµ= ~∂ Re 2δ(s,b)
∂bµ = 2p sin

(
χ
2

)
GR in D = 4: we have 2 sin

(
χ1PM

2

)
= 2GE(2σ2−1)

b (σ2−1) and

2 sin
(
χ2PM

2

)
= 3πG 2E(m1+m2)

4b2
5σ2−1
σ2−1
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Regime of validity

In N = 8 sugra, the box diagrams give the full 1-loop amplitude

For scalars minimally coupled to GR ϕmin there are UV divergent

diagrams

2 3

1 4

q

ϕ1

ϕ2

These UV divergences can be absorbed in a local redefinition of the

action of each particle. The Schwarzschild BHs are “described” by ϕmin

Is this a fine-tuning? Yes, but we are interested in large distance physics

b > Ri ' GEi . When does this EFT approach break down for BHs?

� Orthodox answer: when large curvatures arise
� At b ∼ Ri : new physics at the horizon scale? Maybe even at larger

scales as possible in string theory (due to tidal effects)?
D’Appollonio, Di Vecchia, RR, Veneziano 1310.1254 and refs therein

9



Novelties at 3PM

The 3PM eikonal δ2 is derived by taking the classical limit of the 2-loop

amplitude. It presents several novelties:

� It is the first term (in the scalar case) that cannot be obtained from

the probe limit (Damour 1912.02139)

� It has an imaginary part: elastic unitarity is lost. This is due to the

existence of a 3-particle cut to the unitary relation

p2

p1 k1

k2

k

q1

q2 −k2

−k1 p4

p3

−k

q4

q3

AMN
5 (p1, p2, k1, k2, k) A∗MN

5 (p3, p4,−k1,−k2,−k)
εMN
+,×

εMN
+,×

� It is not entirely captured by potential gravitons

� The real part (and thus the deflection angle) has a universal

Ultra-Relativistic (UR) limit
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Results in N = 8 (as an example)

Start from the 2-loop amplitude in N = 8 (known in terms of scalar

integrals) and extract the first non-analytic terms in the small q expansion

A2(s, q2) =
asscl2 (s)
(q2)1+2ε +

ascl2 (s)

(q2)
1
2
+2ε

+
acl2 (s)
(q2)2ε + . . .

Go to b-space and solve for δ2. By using also δ0,1 and ∆1, we get DHRV

(2δ2) =
16m2

1m
2
2G

3σ6

b2(σ2−1)2
− 16m2

1m
2
2σ

4G3

b2(σ2−1)
cosh−1(σ)

[
1− σ(σ2−2)

(σ2−1)
3
2

]
−i16m

2
1m

2
2G

3

πb2
σ4

(σ2−1)2

{
1
ε

(
σ2 + σ(σ2−2)

(σ2−1)
1
2
cosh−1(σ)

)

− (log(4(σ2 − 1))− 3 log(πb2eγE))
[
σ2 + σ(σ2−2)

(σ2−1)
1
2
cosh−1(σ)

]

+(σ2 − 1)
[
1 + σ(σ2−2)

(σ2−1)
3
2

]
(cosh−1(σ))2 + σ(σ2−2)

(σ2−1)
1
2
Li2(1− z2) + 2σ2

}

Parra-Martinez, Ruf, Zeng: 2005.04236

A consequence of analyticity

and crossing – DHRV: 2104.03256

radiation reaction

PN limit v → 0,

σ2 − 1 = v2(1− v2)−1 ∼ v2 ,
cosh−1(σ) ∼ v

z = σ −
√
σ2 − 1

In the UR limit (σ � 1), Re(2δ2)→ 16G 3(m1m2σ)
2

b2 which is universal!
Amati, Ciafaloni, Veneziano; Ademollo, Bellini, Ciafaloni; DNRVW 1911.11716; Bern, Ita, Parra-Martinez, Ruf; DHRV: 2008.12743
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Radiative effects



Soft eikonal operator

So far we pretended that the elastic scattering exists. . . but this is not

true in GR: Imδ2 is divergent! How to define finite observables?

Dress the elastic scattering it with soft gravitons (ω < ω∗ ∼ v
b ). The

emission of such gravitons exponentiate in momentum space
Bloch-Nordsieck, Weinberg; Laddha, Saha, Sahoo, Sen; Addazi, Bianchi, Veneziano

We know that the exchanged gravitons exponentiate in impact parameter

space (eikonal exponentiation). Combining the two we obtain

Ss.r.(σ, b; a, a
†) = exp

(
1
h̄

∫
~k

∑
j

[
fj(k)a†j(k) − f∗j (k)aj(k)

])
× [1 + 2i∆(σ, b)] eiRe2δ(σ,b)

fj(k) = ε∗µνj (k)Fµν(k) , Fµν(k) =
∑
n
κ pµnp

ν
n

pn·k

with

S-matrix with
soft gravitons

a†j and aj are the creation/annihilation operators for soft graviton (with

physical polarisations j = 1, 2 in D = 4)

The fj ’s act on δ as Qµ = pµ1 + pµ4 = ~∂2Reδ
∂bµ

= 2pb̂µ sin χ
2 = −(pµ2 + pµ3 )
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The soft energy spectrum

The elastic amplitude 〈0|Ss.r |0〉 is suppressed: applying the BCH formula

to normal order the exponential one generates the divergent part of Im2δ2

The final state Ss.r |0〉 contains a coherent superposition of soft gravitons

We can take the expectation value of an observable O in the final state

〈O〉 = 〈0|S†
s.r.O Ss.r.|0〉 .

and derive various classical quantities. The soft energy spectrum is
DHRV 2204.02378

dEN=8

dω ' 4G
π

[
2m1m2σ

2 arccoshσ√
σ2−1 − 2m1m2σ

2
Q

arccoshσQ√
σ2
Q
−1

− (Q2)2

4m2
1

arccosh

(
1+ Q2

2m2
1

)
√(

1+ Q2

2m2
1

)2

−1

− (Q2)2

4m2
2

arccosh

(
1+ Q2

2m2
2

)
√(

1+ Q2

2m2
2

)2

−1

]
Q=2p sin Θs

2

ω → 0 limit

non-linear memory
ignored

dEgr

dω '
4G
π

[
2m1m2

(
σ2 − 1

2

) arccoshσ√
σ2−1 − 2m1m2

(
σ2
Q − 1

2

) arccoshσQ√
σ2
Q
−1

+
m2

1

2 −m
2
1

((
1 + Q2

2m2
1

)2
− 1

2

)arccosh(1+ Q2

2m2
1

)
√(

1+ Q2

2m2
1

)2

−1
+
m2

2

2 −m
2
2

((
1 + Q2

2m2
2

)2
− 1

2

)arccosh(1+ Q2

2m2
2

)
√(

1+ Q2

2m2
2

)2

−1

]
with σQ = σ − Q2

2m1m2
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The ultrarelativistic threshold

The standard PM approach is equivalent to a Taylor expansion in Q2

2m2
i

dEN=8

dω ' 4GQ2

π

[
σ2

σ2−1 + (σ2−2)σ
(σ2−1)3/2

arccoshσ
]

dEgr

dω ' 2G
π Q

2
[

8−5σ2

3(σ2−1) +
(2σ2−3)σ
(σ2−1)3/2

arccoshσ
]

Notice the relation dEN=8

dω ' limε→0[−4εImδ2] DHRV 2101.05772

An energy crisis at σ � 1?! The soft spectrum is reliable till ω∗ ∼ 1
b

The total energy emitted by soft gravitons is E rad
soft ' E (c1 log(σ) + c2) as

σ →∞ (ci are constant ∼ χ3, c2 is not universal)

However, when Q2

2m2
i
& 1, the standard PM expansion breaks down: this

happens in the extreme UR regime (σ χ2 & 1 for mj ∼ mi ) D’Eath; Kovacs, Thorne

In the UR limit, the exact formula yield a universal, finite result:
dE rad

soft

dω '
Gsχ2

π

[
1 + log 4

χ2

]
Gruzinov,Veneziano; Ciafaloni, Colferai, Veneziano
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Beyond the ultrarelativistic threshold

What about the full spectrum? In the regime 1� σ < 1
χ2 , the apparent

energy crisis becomes worse E rad ∼ Eχ3
√
σ Herrmann, Parra-Martinez, Ruf, Zeng

The region 1
b < ω <

√
σ
b is the dominant one

In the extreme UR regime, a natural guess is that the
√
σ singularities are

replaced by 1
χ (for instance ω <

√
σ
b → ω < 1

R )

However there might an extra log(1/χ) enhancement in E rad (due to the

“high frequency” region 1
R < ω < 1

Rχ2 )
Gruzinov, Veneziano; Colferai, Ciafaloni, Veneziano

There are still open questions:

� How does E rad changes as we move from σχ2 < 1 to σχ2 � 1?

� Does E rad become universal when σχ2 � 1 (as for the soft

spectrum)? Work in progress
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Conclusion

We can use amplitudes based techniques to extract the theoretical

information needed to analyse the inspiral/scattering of binary systems

The approach is flexible and can be applied to different theories/objects

It captures all aspects: conservative, radiation-reaction and real radiation

I didn’t discuss many interesting technical (construction of the

integrands, integration, . . . ) and conceptual (KMOC, analytic

continuation to the bound case) developments

I focused on the question: is it consistent to model BHs as “elementary”

particles when describing the inspiral/scattering phase?

It is a very concrete question and for Schwarzschild BHs we didn’t find

any problem up to 3PM order. . . but I doubt that this is the whole story

(in particular for Kerr)!
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Extra slides



Connection to bound orbits

The derivatives of the eikonal give standard observables

Time delay ∆T =
∂ Re 2δ

∂E
, Scatt. angle χ =

∂ Re 2δ

∂J

An analytic continuation to σ < 1 describes bound states (E < m1 +m2).

This implies
√
σ2 − 1→ i

√
1− σ2, b → ±ib so as to have J → ±J

Kälin, Porto

By using the eikonal δ̃ after analytic continuation, we can introduce the

periastron advance K and the period P

P =
[∂ Re 2δ̃

∂E
− (J → −J)

]
, K − 1 =

1

2π

[∂ Re 2δ̃

∂J
+ (J → −J)

]
From δ̃0,1 we can derive Eqs. (347) for K and n = 2π

P of Blanchet’s

review at all orders in ε and first subleading order in j = J2

G 2
ε

(m1m2)2
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Bound orbits: data

From Blanchet’s review 1310.1528

ν = m1m2

(m1+m2)2
,

√
1−2(1−σ)ν−1

ν = − ε
2 , j = J2

G 2
ε

(m1m2)2

The 2PM approximation (δ̃0,1) reproduce the terms in the boxes plus all

the ε corrections at the same order of 1/j .
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