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Gravitational-wave astronomy
• The past five years have witnessed a revolution in 

astronomy: direct detection of gravitational 
waves. 

• The ever-increasing number of GW observations 
of merging binary systems is providing us with a 
unique opportunity to test General Relativity in 
the strong field regime, shed light on the 
fundamental aspects of gravity and black holes, 
probe the fundamental nature of astrophysical 
compact objects. 

• Extraordinary scientific potential of upgraded 
detectors and future facilities.

Luca Santoni

[Nature Reviews Physics, 3, 344–366 (2021)]

• We are witnessing the dawn of the era of precision physics with gravitational waves.  
[Berti et al. ’15], [Barack et al. ’18],  [Cardoso and Pani ’19], [Baibhav et al. ‘19], [Barausse et al. ’20], [Perkins, Yunes and Berti ’20], [Bailes et al. 
’21], [Berti et al. ’22]…



Symmetries of black holes

• At the theoretical level, symmetries can help us shed light on the fundamental aspects of 
black holes and gravity, and constrain broad classes of theories beyond GR in a model-
independent way.
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Symmetries of black holes

• Black hole perturbation theory has a long history starting from the work of Regge and 
Wheeler and Zerilli. 

• Interestingly, recent investigations suggest the subject has depths yet to be plumbed.
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Outline

I will focus mainly on two observables: the Love numbers (LNs) and the quasi-normal 
modes (QNMs). 
 

I.  Ladder symmetries of black holes and the vanishing of the Love numbers. 
II.  More on symmetries and dualities. 
III.  EFT of BH perturbations.
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Ladder Symmetries of 
Black Holes

I.
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Hidden symmetries of black holes

• “The black holes of nature are the most perfect macroscopic objects there are in the 
universe: the only elements in their construction are our concepts of space and 
time.” 
(S. Chandrasekhar, in “The mathematical theory of black holes”) 
  

• Black holes are among the simplest and most robust objects in nature: uniquely 
determined by their mass and spin (and charge). 

• This simplicity is inherited by the perturbations. 

• Some aspects of this simplicity are well understood in terms of (hidden) symmetries of 
General Relativity. 
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Hidden symmetries of black holes
• For black holes in GR, one notable result that follows from symmetries is isospectrality, 

i.e. the degeneracy of the quasi-normal mode (QNM) spectra of the two d.o.f. in a 
gravitational wave. 

• Isospectrality has been known to follow from a duality of the linearized equations of 
motion (a.k.a. Chandrasekhar relation) since the 1970s [Chandrasekhar ’75].
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• Symmetry behind the vanishing of the Love numbers unclear until last year.



Static response and tidal deformability
• The Love numbers are the coefficients encoding the (static) tidal deformability of a 

compact object (analogous to the electric and magnetic susceptibilities in EM).

• In EM we solve� : 
�  

• The boundary condition at �  fixes � , while �  and �  are determined by regularity 
conditions across the surface (continuity of �  and � ). 

• For instance, if � , one finds �   (�  and � are the vacuum and 

dielectric permittivities). 

• �  are the coeffs. of the induced response.

⃗∇2Φ = 0
Φext = ∑

ℓ

Aℓ [rℓ + kℓr−ℓ−1] Pℓ(cos θ) , Φint = ∑
ℓ

BℓrℓPℓ(cos θ) .

r = + ∞ Aℓ kℓ Bℓ⃗E ∥
⃗D⊥

⃗E 0 = A1 ̂z kℓ=1 = −
ϵ/ϵ0 − 1
ϵ/ϵ0 + 2

r3
0 ϵ0 ϵ

kℓ
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Tidal Love numbers

• A novel and important channel to test GR and compact objects in the strong-field 
regime. 

• The explicit calculation in GR (in D=4) shows that �  for a black hole, as opposed to 
other types of compact objects. 
[Fang and Lovelace ’05], [Binnington and Poisson ‘09], [Damour and Nagar ’09], [Kol and Smolkin ’11].

kℓ = 0

• Tidal deformability affects the dynamics during 
the inspiral.  

• An alteration in the phase of the GW signal can 
be used to constrain the tidal deformability of the 
objects.
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Vanishing Love Numbers
• A conceptually clean way to define the (conservative) LNs is in terms of the worldline 

effective action [Goldberger and Rothstein ’04, ’05, …], [Kol and Smolkin ’11], [Porto ‘16]. 
• At distances large compared to the characteristic size of an object, there is an effective 

description where the object is modeled as a point particle. Corrections due to the 
object’s finite size and its internal structure are encoded in higher-derivative operators in 
the effective theory.  

• Let’s consider e.g. a scalar field around a BH:†  

                                

• �  are the LN coefficients. 
• One generically expects: �  and to find (classical) RG running. 
• After matching with the UV result: �  in D=4 and no running. 
• Generically non-zero in D>4 [Kol and Smolkin ’11], [Hui, Joyce, Penco, LS and Solomon ’21].

S = −
1
2 ∫ d4x (∂ϕ)2 − M∫ dτ + ∫ dτ[ − gϕ +

∞

∑
ℓ=0

λℓ

2ℓ! (∂(a1
⋯∂aℓ)T

ϕ)
2] .

λℓ

λℓ ∼ 𝒪(1)r2ℓ−1
s

λℓ = 0

†  is the quadratic Lagrangian for the scalar in the bulk;  is the coordinate that 
parameterizes the particle’s worldline.
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Vanishing Love Numbers

• The vanishing of the Love numbers is a naturalness puzzle from an effective field theory 
perspective. [Rothstein ’14], [Porto ’16] 

�  

• Looks like something that can very likely follow from a symmetry in the theory.

S = −
1
2 ∫ d4x (∂ϕ)2 − M∫ dτ + ∫ dτ[ − gϕ +

∞

∑
ℓ=0

λℓ

2ℓ! (∂(a1
⋯∂aℓ)T

ϕ)
2]
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Ladder symmetries of black holes

• In [2105.01069] we showed that the vanishing of the Love numbers is the consequence of 
linearly realized symmetries governing static perturbations around black holes.  

• The same symmetries are also connected to well-known ‘no-hair’ theorems of black holes 
in general relativity.  

• Underlying the symmetries is a ladder structure that can be used to construct the full 
tower of solutions, and derive their general properties: 
(1) solutions that decay with radius spontaneously break the symmetries, and must 
diverge at the horizon; 
(2) solutions regular at the horizon respect the symmetries, and take the form of a finite 
polynomial that grows with radius. 
 
Property (1) is consistent with no hair; (1) and (2) combined imply that the Love numbers 
vanish.
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An illustrative case: massless scalar field on Schwarzschild

• Starting point:           � .   

                                     �     where    �  . 

• Define operators:     �  

                                     �  . 

• “Commutators”:        �  
                                             i.e., �  are ladder operators; e.g., �  . 

• Implication:  �  is a good �  solution  
                        climb the ladder to get:   �   ,  
                        which (1) is regular at the horizon and (2) matches tidal field b.c. 

• Symmetry:    Define recursively  �  
                        which satisfy �  .  
                        �  is a (horizontal) symmetry of the scalar action,  
                        with conserved currents   � ,    �  . 

• Use conserved currents to connect asymptotics: 
                        �      and     �  . 
                        �     and     �  .

∂r(Δ∂rϕℓ) − ℓ(ℓ + 1)ϕℓ = 0 , Δ ≡ r(r − rs) , ϕ(r, θ, φ) = ∑
ℓm

ϕℓ(r)Yℓm(θ, φ)

Hℓϕℓ = 0 Hℓ ≡ − Δ(∂r(Δ∂r) − ℓ(ℓ + 1))

D+
ℓ ≡ − Δ∂r +

ℓ + 1
2

(rs − 2r) , D−
ℓ ≡ Δ∂r +

ℓ
2

(rs − 2r) ,

D−
ℓ+1D+

ℓ − D+
ℓ−1D

−
ℓ =

(2ℓ + 1)r2
s

4
Hℓ+1D+

ℓ = D+
ℓ Hℓ , Hℓ−1D−

ℓ = D−
ℓ Hℓ ,

D±
ℓ Hℓϕℓ = 0 ⇒ D±

ℓ ϕℓ ∝ ϕℓ±1

ϕ0 = constant ℓ = 0
ϕℓ = D+

ℓ−1⋯D+
0 ϕ0 ∼ 1 + … + rℓ

Qℓ ≡ D+
ℓ−1Qℓ−1D−

ℓ , Q0 ≡ Δ∂r

[Qℓ, Hℓ] = 0
δϕℓ = Qℓϕℓ

Pℓ ≡ Δ∂r(D−
1 ⋯D−

ℓ ϕℓ) ∂rPℓ = 0

ϕℓ ∼ rℓ as r → + ∞ ↔ ϕℓ ∼ const. as r → rs Pℓ = 0
ϕℓ ∼ r−(ℓ+1) as r → + ∞ ↔ ϕℓ ∼ log(r − rs) as r → rs Pℓ ≠ 0
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An illustrative case: massless scalar field on Schwarzschild

                       �      and     �  . 
                        �     and     �  .  

• The vanishing of the Love numbers follows from two facts: (1) the purely decaying 
solution (�  at large �) is divergent at the horizon, and (2) the solution that is 
regular at the horizon is a finite polynomial going as � .  

• The growing branch respects the symmetry, while the decaying branch spontaneously 
breaks the symmetry. 

• Fact (1) is consistent with the no-hair theorem (a black hole cannot sustain static, scalar 
profile that decays at infinity [Bekenstein ’72]).

ϕℓ ∼ rℓ as r → + ∞ ↔ ϕℓ ∼ const. as r → rs Pℓ = 0
ϕℓ ∼ r−(ℓ+1) as r → + ∞ ↔ ϕℓ ∼ log(r − rs) as r → rs Pℓ ≠ 0

∼ 1/rℓ+1 r
∼ 1 + r + … + rℓ

[Hui, Joyce, Penco, LS and Solomon ’21]
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From Schwarzschild to AdS, with Love
• The symmetry has a geometric origin: it arises from the (E)AdS isometries of a 

dimensionally reduced black hole spacetime.  
Let’s consider a static scalar �  in a Schwarzschild background, 

                     � . 

After a Weyl rescaling, the metric becomes �  with 
 
                               �  
 

�  

 
where � . The space has 6 Killing vectors: 3 rotations and 3 translations (or 
“boosts”). The translation that mixes �  and � acts on the original �  as 
                                        �  
or, equivalently, 
                                             �  .

ϕ

S =
1
2 ∫ dθdφdr g ϕ □ ϕ , ds2 = dr2 + Δ (dθ2 + sin2 θ dφ2)

EAdS3

g̃ij = Ω2gij , ϕ̃ = Ω− 1
2 ϕ , where Ω ≡ L2/Δ ,

S =
1
2 ∫ d3x g̃(ϕ̃ □̃ ϕ̃ +

r2
s

4L4
ϕ̃2) , ds̃2 = dr2

⋆ +
4L4

r2
s

sinh2( r⋆rs

2L2 )(dθ2 + sin2 θ dφ2)

dr⋆ = (L2/Δ)dr
r⋆ θ ϕ

δϕ = − 2Δ cos θ∂rϕ + (rs − 2r)∂θ(sin θ ϕ)

δϕℓ = cℓ+1D−
ℓ+1ϕℓ+1 − cℓD+

ℓ−1ϕℓ−1

[Hui, Joyce, Penco, LS and Solomon ’21]
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From Schwarzschild to AdS, with Love

• At large r, �  reduces to a SCT,   � .  

• We claim that this is the sought-after infrared symmetry that forbids Love number (and 
hair) couplings in the point-particle effective action.

δϕ δϕ = ci(xi − ⃗x 2∂i + 2xi ⃗x ⋅ ⃗∂ )ϕ

[Hui, Joyce, Penco, LS and Solomon ’21]
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Hidden symmetries at finite frequency

• In binary systems, the induced deformation in a compact object, as well as the perturbing 
tidal field of the companion, is never exactly static. 
Is it possible to extend the ladder symmetries beyond the static limit?  

• The scalar action is 

� . 

• Define the near-zone approximation by replacing  �   with  � .  

• This has the virtue of preserving the correct singularity as � , while still accurately 
capturing the dynamics at larger �, as long as � .

S =
1
2 ∫ dtdrdΩS2 [ r4

Δ
(∂tϕ)2 − Δ(∂rϕ)2 + ϕ∇2

ΩS2
ϕ]

(r4/Δ)∂2
t ϕ (r4

s /Δ)∂2
t ϕ

r → rs
r ωr ≪ 1

[Hui, Joyce, Penco, LS and Solomon ’22]
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Hidden symmetries at finite frequency

• In this limit, the scalar action is the same as that of a massless scalar minimally coupled to 
an effective near-zone metric: 

�  . 

• This metric has the following main properties: 
_ only extension of dynamics at finite �  that retains the (static) ladder generators; 
_ is a conformally-flat �  spacetime (�  6 KVs + 9 CKVs).

ds2near-zone = −
Δ
r2

s
dt2 +

r2
s

Δ
dr2 + r2

s (dθ2 + sin2 θ dφ2)

ω
AdS2 × S2 ⇒

[Hui, Joyce, Penco, LS and Solomon ’22]
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Hidden symmetries at finite frequency
• The 6 KVs and 9 CKVs are:

[Hui, Joyce, Penco, LS and Solomon ’22]
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�

J01 = − 2Δ
rs

cos θ ∂r−
∂rΔ
rs

sin θ ∂θ

J02 = − cos φ [ 2Δ
rs

sin θ ∂r+
∂rΔ
rs ( tan φ

sin θ
∂φ − cos θ∂θ)]

J03 = − sin φ [ 2Δ
rs

sin θ ∂r−
∂rΔ
rs ( cot φ

sin θ
∂φ + cos θ∂θ)]

K± = e±t/2rs
Δ

rs
cos θ ( r3

s

Δ ∂t ∓ ∂rΔ∂r ∓ 2 tan θ∂θ)
M± = e±t/2rs cos φ [ r2

s

Δ
sin θ∂t∓

Δ∂rΔ sin θ
rs

∂r±
2 Δ

rs
cos θ∂θ∓

2 Δ
rs

tan φ
sin θ

∂φ]
N± = e±t/2rs sin φ [ r2

s

Δ
sin θ∂t∓

Δ∂rΔ sin θ
rs

∂r±
2 Δ

rs
cos θ∂θ±

2 Δ
rs

cot φ
sin θ

∂φ]

�  

  

T = 2rs ∂t

L± = e±t/2rs(2rs ∂r Δ∂t ∓ Δ∂r)
J23 = ∂φ

J12 = cos φ ∂θ − cot θ sin φ ∂φ

J13 = sin φ ∂θ + cot θ cos φ ∂φ

• Different perspective on the vanishing of the LNs proposed by [Charalambous, Dubovsky and Ivanov ’21].  
• This unifies the different sets of symmetries. 
• Only � , �  and �  remain good symmetries in the static limit (� ). 

• �  recovers precisely the ladders:  �  , or equivalently
� ,   �  and � .

T Jij J0i ω = 0
J01 δϕ = ξμ∂μϕ+ 1

4 ∇μξμϕ
δϕℓ = cℓ+1D−

ℓ+1ϕℓ+1 − cℓD+
ℓ−1ϕℓ−1 D+

ℓ ≡ − Δ∂r+
ℓ + 1

2 (rs − 2r) D−
ℓ ≡ Δ∂r+

ℓ
2 (rs − 2r)



Hidden symmetries at finite frequency

• The ladder generators are useful because they allow to recursively define an on-shell 
conserved charge �  at each �  (horizontal charge). 

• Evaluating �  on the solution with the correct boundary condition at the horizon, one 
recovers the induced multipoles,  

                                                           �  

without the need of the explicit solution or any analytic continuation.

Pℓ ℓ

Pℓ

Pℓ ∝ iω
ℓ

∏
k=1

(k2 + 4ω2r2
s )

[Hui, Joyce, Penco, LS and Solomon ’22]
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Ladder in Kerr: static limit
[Hui, Joyce, Penco, LS and Solomon ’21]
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• The previous algebraic ladder structure has a direct analogue in a Kerr background: 
 
        
with �   and �  . 

• The static Klein-Gordon eq., � has both ladder and 
horizontal symmetries. 

• The ladder symmetries �  descend from a CKV of the 3D-static metric:  
 

• �  is the CKV that induces       
�  

• The conserved charges �  associated with the horizontal symmetries, evaluated for the 
“growing branch”, are non-zero (and imaginary), unlike in the Schwarzschild case:  

                                        �  

which reproduces the dissipative response [Le Tiec and Casals ’20].

ρ2 ≡ r2 + a2 cos2 θ Δ ≡ r2 − rrs + a2

∂r(Δ∂rϕℓ)+ a2m2

Δ ϕℓ − ℓ(ℓ + 1)ϕℓ = 0 ,

D±
ℓ

ξμ = (0, Δ cos θ, 1
2 (2r − rs)sin θ, 0)

δϕ = ξμ∂μϕ+ 1
2 (2r − rs)cos θ ϕ ⇒ δϕℓ = cℓ+1D−

ℓ+1ϕℓ+1 − cℓD+
ℓ−1ϕℓ−1 ,

Pℓ

Pℓ ∝ iq
ℓ

∏
k=1

(k2 + 4q2) , q ≡
am

r+ − r−
,

ds2 = −
ρ2 − rsr

ρ2
dt2 −

2arsr sin2 θ
ρ2

dtdφ +
ρ2

Δ
dr2 + ρ2dθ2 +

(r2 + a2)2 − a2Δ sin2 θ
ρ2

sin2 θdφ2

ds2
K =

ρ2 − rrs

Δ (dr2 + Δdθ2 +
Δ2 sin2 θ
ρ2 − rrs

dφ2) .



Ladder in Kerr: near-zone regime

• Different near-zone approximations at finite �  for the Kerr metric. 
• Some examples are: [Maldacena and Strominger ’97], [Castro, Maloney, and Strominger ’10], [Lowe and Skanata ’11], [Charalambous, 

Dubovsky, and Ivanov ’21]. 

• We are again interested in the near zone that retains the ladder symmetries of the static 
regime, i.e., 

�  ,          �  ,   � . 

• This is the equation of motion of a massless scalar propagating in the effective near-zone 
metric 

�  . 

• This takes the form of the Schwarzschild near zone after a coordinate redefinition. 
�  It is �  with 6 KVs and 9 CKVs (which include our previous ladder generators).

ω

∂r(Δ∂rϕℓ) + [ r2
s r2

+

Δ (ω − mΩ+)2 − ℓ(ℓ + 1)] ϕℓ = 0 Ω+ ≡ a
rsr+

Δ ≡ (r − r−)(r − r+)

ds2near-zone = −
Δ − a2 sin2 θ

rsr+
dt2 − 2a sin2 θdtdφ +

rsr+

Δ
dr2 + rsr+dΩ2

S2

⇒ AdS2 × S2

[Hui, Joyce, Penco, LS and Solomon ’22]
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Ladder in Spin: From Scalar to Vector and Tensor

• Consider for simplicity the static limit, � . 
• Ladder operators in the spin, � , raise and lower s in the Teukolsky equation 

(� ), 

    �  

• Allow to extend the previous results from the scalar to vector and tensor fields.  

• �  are related to what are known as Teukolsky–Starobinsky identities. In Chandrasekhar’s 
notation,  
 
�  
 
where � .  
 
The new twist we are adding is: in the static limit, we can truncate these operations, 
enabling us to increment s by unity, � .

ω = 0
E±

s
E±

s ϕ(s)
ℓ = ϕ(s±1)

ℓ

∂r(Δ∂rϕ(s)
ℓ ) + s(2r − rs)∂rϕ(s)

ℓ + (a2m2 + is(2r − rs)am
Δ

− (ℓ − s)(ℓ + s + 1))ϕ(s)
ℓ = 0 ,

E±
s

ϕ(−1) = Δ𝒟†
0𝒟

†
0Δϕ(1), ϕ(1) = 𝒟0𝒟0ϕ(−1), ϕ(−2) = Δ2𝒟†

0𝒟
†
0𝒟

†
0𝒟

†
0Δ

2ϕ(2), ϕ(2) = 𝒟0𝒟0𝒟0𝒟0ϕ(−2),

𝒟0 ≡ ∂r + i[am − ω(r2 + a2)]/Δ

E±
s ϕ(s)

ℓ = ϕ(s±1)
ℓ

[Hui, Joyce, Penco, LS and Solomon ’21, ’22]
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More on Symmetries and 
Dualities

II.
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More hidden symmetries and dualities

• Isospectrality and the vanishing of the Love numbers are fragile properties of gravity that 
are usually broken in theories beyond GR. 
[Cardoso, Kimura, Maselli, Berti, Macedo and McManus ’19], [Cardoso and Pani ’19] 

• Studying symmetries of gravity beyond GR and massless spin-2 perturbations:  
(1) allows us to better understand why black holes are so robust and GR so special;  
(2) in order to test GR with GW observations, it is important to understand whether there 
are other theories that share the same properties and yield similar predictions for the 
observables. 

• Hints of isospectrality for partially massless spin-2 perturbations—analogously to massless 
spin-2 perturbations in GR. [Brito, Cardoso and Pani ’13]
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Partially massless spin-2 perturbations in S(A)dS

• Partially massless fields are special irreducible representations of massive spinning 
particles on Einstein spacetimes. 

• For SdS, when �  (in D=4), the massive spin-2 field inherits a gauge symmetry that 
allows to remove the helicity-0 component. 

• In D=4, the number of propagating d.o.f. is 4 instead of 5: 2 even and 2 odd. 

�   

• For generic � , the equations are coupled and proving isospectrality amounts to finding a 
duality transformation relating �  and � . 

• One can quite easily find a solution for �  [Rosen and LS ’20] 

                   �  

• The symmetry is regular and finite at the horizons �  isospectrality (only in SdS). 

• This is another example of even-odd duality, different from the Chandrasekhar relation in 
GR.

m2 = 2Λ
3

d2

dr2
⋆

⃗h ± + 𝕎± ⋅ ⃗h ± = 0 , 𝕎± ij = ω2δij − 𝕍± ij .

ℓ
⃗h +

⃗h −

ℓ = 1

h+ = f(r)∂rh− + F(r)h− , F =
18f(r)

9r − Λr3
+

2
9

rsΛ , f(r) = 1 −
rs

r
−

Λr2

3
.

⇒

[Rosen and LS ’20]
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Partially massless spin-2 perturbations in SdS

• How about higher-dimensional SdS spacetimes? 

• Isospectrality for massless spin-2 perturbations is known to be broken in D>4 [Konoplya ’03]. 
The same is true for partially massless fields [Rosen and LS ’20].  

• Consider, e.g., the extremal or the eikonal limit. The equations admit analytic solutions for 
the QNMs: 

�  

    where �   and 

�  

    with � .

ω
κ

= − i (n +
1
2 ) +

r̄2U(r̄)
D − 3

−
1
4

, n = 0, 1, 2…

κ = Λ(rc − rb)/(D − 2)

U(r̄) =

m2+
ℓ(ℓ + D − 3) − D + 2

r̄2
−

D − 4
r̄2

 (even) ,

m2+
ℓ(ℓ + D − 3) − D + 2

r̄2
 (odd) ,

m2+
ℓ(ℓ + D − 3)

r̄2
 (tensor) .

m2 = 2Λ
D − 1

[Rosen and LS ’20]
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Dualities and Love numbers
• Dualities like the Chandrasekhar relation have implications not only for the QNMs but 

also for the LNs. 

• Let’s take the Chandrasekhar relation in GR:    

                                �  

where �  and � . 

• In the asymptotic regions (� ), � . This implies that �  and �  
are related nontrivially. 

• In particular, since the constant is finite, whenever �  vanishes, �  must be zero as well, 
and viceversa.  

• In D>4, there are cases in which � , but �  [Hui, Joyce, Penco, LS and Solomon ’20]. 
A symmetry may exist, but it diverges at the boundary.

h+ = f(r)∂rh− + ( 3rs(rs − r)
r2(2λr + 3rs)

−
2λ(λ + 1)

3rs ) h− .

f = 1−
rs

r λ ≡ (ℓ − 1)(ℓ + 2)/2

r⋆ → ± ∞ h+ = constant × h− λ(E)
ℓ λ(B)

ℓ

λ(E)
ℓ λ(B)

ℓ

λ(B)
ℓ = 0 λ(E)

ℓ ≠ 0
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Effective Field Theory of 
BH perturbations

III.
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Black holes beyond GR

• One main goal of gravitational-wave astronomy is to test General Relativity. 

• Different ways to test GR: 
(1) Null test: are two numbers (mass and spin) sufficient to reconcile with observations?  
(2) Concrete models help guide our thinking on the form of possible deviations and the 
associated model testing. 
(3) Parametrize the deviations from general relativistic expectations in a model-
independent way: 
     _ this can take the form of a “phenomenological parametrization”, or  
        [Loutrel, Yunes and Pretorius  ’14], [Cardoso et al. ’19], [McManus et al. ’19], [Glampedakis and Silva ’19], [Maselli et at. ’19]… 
     _ parametrization at the level of an Effective Field Theory (EFT). 
            [Endlich et al. ’17], [Cardoso et al ’18], [Franciolini, Hui, Penco, LS and Trincherini ’18], [Hui, Podo, LS and Trincherini ’21]…

• Clear signatures of new physics at the level, e.g., of the QNM spectrum include: the 
presence of extra modes in addition to the GW polarizations, the shifting of the ringdown 
frequencies, the breaking of isospectrality, the presence of ‘echoes’ in the GW signal.
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Black holes beyond GR

• Usually hard in more phenomenological parametrizations to see which variations of the 
parameters correspond to theories respecting physical principles like locality, Lorentz 
invariance, the equivalence principle, etc.  

• A parametrization at the level of an EFT makes instead more transparent which types of 
deformations correspond to theories that respect physical principles, and makes it easier 
to connect UV theories with observations through a systematic matching procedure.  

• Mapping between the two approaches can be very complicated. 
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EFT for BH perturbations

Strategy:  

• Fix the low-energy degrees of freedom:  
(1) if only �  and � , include powers of the Riemann tensor;  
[Endlich et al. ’17], [Cardoso, Kimura, Maselli, Senatore ’18], [Cano et al. ’20]… 
(2) possibility of additional (scalar, vector, ...) modes. 
[Franciolini, Hui, Penco, LS and Trincherini ’18], [Hui, Podo, LS and Trincherini ’21] 

• Include all possible operators, up to a certain order in derivatives, compatible with the 
symmetries.

h+ h×
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EFT for BH perturbations

• I’ll focus on case (2): 
[Franciolini, Hui, Penco, LS and Trincherini ’18], [Hui, Podo, LS and Trincherini ’21] 
 

        �

• �  [Witek et al. ’18], [Perkins et al. ’19, ’21] 

• �  for all the leading interactions involving the scalar �  to become strong at 
the same scale.  

• Under these conditions, �  can induce order unity changes to the observables 
compared to �  (that is, compared e.g. to [Sotiriou and Zhou ’14], [Blázquez-Salcedo ’16]). 

• An EFT is a convenient model-independent framework that allows to catch them all in a 
single shot.

SEFT = ∫ d4x −g [−
1
2

(∂Φ)2 + α MPlΦ𝒢GB + c
(∂Φ)2 □ Φ

Λ3
+ cn,m

∇nΦm

Λn+m−4
+ …]

α ≲ (1.7 km)2

Λ ∼ (MPl /α)1/3 Φ

(∂Φ)2 □ Φ
Φ𝒢GB
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EFT for BH QNMs in scalar-tensor theories

• The BH is equipped with an extra scalar d.o.f. (hair) 

�  . 

• In the unitary gauge (� ), the most general action for GR + scalar field is 

�  

(� is the goldstone boson that nonlinearly realizes spatial translations.)

Φ(x) = Φ̄(r) + π(x)

π = 0

S = ∫ d4x −gℒ (gμν, ϵμνρσ, Rμνρσ, grr, Kμν, ∇μ; r) .

π

S = ∫ d4x −g[ M2
Pl

2
R − Λ(r) − f(r)grr − α(r)K̄μνKμν

+M4
2(r)(δgrr)2 + M3

3(r)δgrrδK + M2
4(r)K̄μνδgrrδKμν + M2

5(r)(∂rδgrr)2 + M2
6(r)(∂rδgrr)δK

+M7(r)K̄μν(∂rδgrr)δKμν + M2
8(r)(∂aδgrr)2 + M2

9(r)(δK )2 + M2
10(r)δKμνδKμν + M11(r)K̄μνδKδKμν

+M12(r)K̄μνδKμρδKν
ρ + λ(r)K̄μρK̄ρ

νδKδKμν + M2
13(r)δgrrδR̂ + M14(r)K̄μνδgrrδR̂μν + …] .

[Franciolini, Hui, Penco, LS and Trincherini ’18] 
[Hui, Podo, LS and Trincherini ’21]
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EFT for BH QNMs in scalar-tensor theories

S = ∫ d4x −g[ M2
Pl

2
R − Λ(r) − f(r)grr − α(r)K̄μνKμν

+M4
2(r)(δgrr)2 + M3

3(r)δgrrδK + M2
4(r)K̄μνδgrrδKμν + M2

5(r)(∂rδgrr)2 + M2
6(r)(∂rδgrr)δK

+M7(r)K̄μν(∂rδgrr)δKμν + M2
8(r)(∂aδgrr)2 + M2

9(r)(δK )2 + M2
10(r)δKμνδKμν + M11(r)K̄μνδKδKμν

+M12(r)K̄μνδKμρδKν
ρ + λ(r)K̄μρK̄ρ

νδKδKμν + M2
13(r)δgrrδR̂ + M14(r)K̄μνδgrrδR̂μν + …] .

• The coefficients �  encode all possible deviations from GR for BH with scalar hair. 
• If the scalar-matter coupling is gravitational (or bigger), the most relevant signature is the 

scalar mode itself. 
• If the scalar-matter coupling is absent or very weak, potential signatures include:  

_ modified QNMs while preserving isospectrality; 
_ breaking of isospectrality; 
_ even-odd mixing (if pseudo-scalar). 

• `Tunings’ among the couplings allow to recover isospectrality.  
[Hui, Podo, LS and Trincherini ’21], [Cardoso et al. ’19]

Mi(r)

[Franciolini, Hui, Penco, LS and Trincherini ’18]
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EFT for BH QNMs in scalar-tensor theories

• Generalized to slowly-rotating black holes in [Hui, Podo, LS and Trincherini ’21]. 

• How to connect deviations from the GR QNM spectrum to the theory?  
_ ’Phenomenological’ parametrization: reconstruct finite-series potential from modified 
GR QNMs. [Volkel, Franchini and Barausse ‘22] 
_ EFT approach: `WKB’-like approach can connect the deviations in the QNM spectrum to 
(derivatives of) the effective couplings computed at the light ring. [Franciolini, Hui, Penco, LS and 
Trincherini ’18]
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EFT for BH QNMs in scalar-tensor theories

• In theories beyond GR the equations for the perturbations are often coupled: 

�  .  

• A generalized `WKB’-like approach to estimate the QNMs consists in expanding around 
the maxima of the eigenvalues of the potential matrix [Hui, Podo, LS and Trincherini, in preparation].

( d2

dr2
⋆

+ ω2 − 𝕍(r)) ⋅ ⃗h = 0
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Conclusions
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Conclusions and open directions

• Symmetries and EFTs are key tools that can shed light on the fundamental aspects of 
gravity and compact objects, and constrain broad classes of theories beyond GR.  

• Isospectrality and the vanishing of the Love numbers in GR are examples of properties 
that follow from (hidden) symmetries in the theory.
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Conclusions and open directions

Some open questions: 
 
_ Consequences of the new symmetry generators for other observables (e.g., the QNMs)? 

_ The symmetry generators involving �  act as `ladders in � ’. They generate solutions 
outside the near-zone regime. Still, they reproduce the QNM spectrum at large n (e.g. [Bertini, 

Cacciatori and Klemm ’11]). Can we make this robust by finding ladder symmetries at any � ? 

_ �  are related to SCTs on flat space. How about the horizontal symmetry? 
(See also [Achour, Livine, Mukohyama and Uzan ’22] for a recent development on the horizontal symmetry.) 
_ Isospectrality of partially massless field on Kerr spacetime? 

_ Characterize more systematically how different operators in the EFT affect the 
observables. 

_ Can we use (nonlinearly realized) symmetries to say something about the nonlinear 
regime in the merger?

e±t/2rs ω

ω

D±
ℓ
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