Overview of the BEST collaboration and status of lattice QCD

CLAUDIA RATTI UNIVERSITY OF HOUSTON

X. An et al, "The BEST framework for the search for the QCD critical point and the chiral magnetic effect", NPA (2022)

- Is there a critical point in the QCD phase diagram?
- What are the degrees of freedom in the vicinity of the phase transition?
- Where is the transition line at high density?
- What are the phases of QCD at high density?
- Are we creating a thermal medium in experiments?

Open Questions

0.1

0.2

0.3

μ_ (GeV)

Run 2019:

- Collider: $\sqrt{s_{NN}}$ =14.6, 19.6, 200 GeV •
- Fixed target: $\sqrt{s_{NN}}$ =3.2 GeV •

Run 2020:

- Collider: $\sqrt{s_{NN}}$ =9.2, 11.5 GeV •
- Fixed target: $\sqrt{s_{NN}}=3.5, 3.9, 4.5, 5.2,$ • 6.2, 7.2, 7.7 GeV
- Run 2021:
 - Collider: $\sqrt{s_{NN}} = 7.7 \text{ GeV}$

Comparison of the facilities

 			(())		
				Compila	tion by D. Cebra
Facilty	RHIC BESII	SPS	NICA	SIS-100	J-PARC HI
				SIS-300	
Evp .	STAD	NIAC1			іцітс
схр	JIAK	INAOT		CDIVI	JULIZ
Start	+FX1		+ BIM@N		
Start.	2019-2021	2009	2022	2022	2025
_					
Energy:	7.7–19.6	4.9-17.3	2.7 - 11	2.7-8.2	2.0-6.2
√s _{NN} (GeV)	2.5-7.7		2.0-3.5		
Rate:	100 HZ	100 HZ	<10 kHz	<10 MHZ	100 MHZ
At 8 GeV	2000 Hz				
Physics:		CP&OD			
r nysies.	Craob			ODQDIIW	ODQDIIW
	Collider	Fixed target	Collider	Fixed target	Fixed target
	Fixed target	collisions	Fixed target		
CP=Critical	l Point OD= (Onset of Deco	onfinement D	HM=Dense Ha	dronic Matter

objectives:

- constraints on the existence of a critical point in the QCD phase diagram
- properties of baryon-rich QGP
- probe chiral symmetry restoration through chiral anomaly induced phenomena

path:

• construct a theoretical framework for interpreting the results from the BES @ RHIC

Hot and dense lattice QCD

BNL, UH

Major goals:

- QCD crossover temperature $T_c(\mu_B)$
 - switching temperature/energy density for fluid-dynamical modeling
- QCD equation of state (EoS) for $\mu_B > 0$
 - input for fluid-dynamical modeling & EoS with critical point
- skewness and kurtosis of conserved charge fluctuations for $\mu_B > 0$
 - equilibrium QCD baseline for the experimentally measured higher order cumulants of net proton, electric charge and kaon fluctuation

QCD crossover temperature

Width and strength of the transition WB:PRL (2020) 0.14 <u>χ</u>(Τ_c) σ [MeV] 60 0.14 χ (pbp) 0.12 0.135 40³x10 ⊡ 0.10 50 0.08 0.06 0.13 40 0.04 0.15 0.25 0.3 0.35 2 4.0 0.02 0 0.00 30 0.125 20 0.12 10 Proxy to the half width of the transition μ_B [MeV] 0.115 2 -8 -6 -2 0 4 0 $(\mu_B/T)^2$ 0 50 100 150 200 250 300

- The width of the transition is constant up to $\mu_B \sim 300 \text{ MeV}$
- Height of the peak of the chiral susceptibility at the crossover temperature: proxy for the strength
 of the crossover: roughly constant

QCD Equation of state for $\mu_{\rm B} > 0$ Taylor expansion of the pressure: $\chi_{2n}^{\ B}$ $\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \sum_{n=1}^{\infty} \frac{1}{(2n)!} \frac{\mathrm{d}^{2n}(p/T^4)}{\mathrm{d}(\frac{\mu_B}{T})^{2n}} \bigg|_{\mu=-0} \left(\frac{\mu_B}{T}\right)^{2n} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu_B}{T}\right)^{2n}$ Two choices: - $\mu_B \neq 0$, $\mu_S = \mu_O = 0$ - μ_{s} and μ_{o} are functions of T and μ_{B} to match the experimental constraints: <n₀>=0.4<n_B> <n_s>=0 WB: NPA (2017) 0.3 0.09 0.1 [WB 1607.02493] HRG [WB 1607.02493] HRG [WB 1607.02493] HRG 0.08 0.25 0.05 0.07 0.2 0.06 χ_4^B χ_6^B 0.05 χ_2^B 0.15 0.04 -0.05 0.1 0.03 0.02 0.05 -0.1 0.01 0 220 240 260 140 220 180 260 280 260 140 160 200 280 140 160 180 200 220 240 160 180 200 240 280 T [MeV] T [MeV] T [MeV]

QCD Equation of state for $\mu_B > 0$

• Taylor expansion of the pressure:

$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \sum_{n=1}^{\infty} \left. \frac{1}{(2n)!} \frac{\mathrm{d}^{2n}(p/T^4)}{d(\frac{\mu_B}{T})^{2n}} \right|_{\mu_B=0} \left(\frac{\mu_B}{T}\right)^{2n} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu_B}{T}\right)^{2n}$$

Novel expansion scheme

Exploiting the T and μ_B dependence of the density

we can write

$$rac{\chi_1^B(T,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T',0)$$

with

$$T'(T, \hat{\mu}_B) = T\left(1 + \kappa_2^{BB}(T)\hat{\mu}_B^2 + \kappa_4^{BB}(T)\hat{\mu}_B^4 + \mathcal{O}(\hat{\mu}_B^6)\right)$$

S. Borsanyi, C. R. et al., PRL (2021)

Novel expansion scheme

Exploiting the T and μ_B dependence of the density

we can write

$$\frac{\chi_1^B(T,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T',0)$$

with

$$T'(T, \hat{\mu}_B) = T\left(1 + \kappa_2^{BB}(T)\hat{\mu}_B^2 + \kappa_4^{BB}(T)\hat{\mu}_B^4 + \mathcal{O}(\hat{\mu}_B^6)\right)_{(a)}$$

We get all other thermodynamic quantities from the density 4.5 20 3.5 15 3 s/T³ (Т) р/Т⁴ (Т) 2.5 10 2 1.5 0.5 0 n 180 200 240 140 160 220 120 160 180 200 220 240 120 140 T [MeV] T [MeV]

See also A. Monnai et al., PRC (2019)

Higher order fluctuations

$$\begin{aligned} \frac{S_B \sigma_B^3}{M_B} &= \frac{\chi_3^B(T, \mu_B)}{\chi_1^B(T, \mu_B)} = \frac{\chi_4^B + s_1 \chi_{31}^{BS} + q_1 \chi_{31}^{BQ}}{\chi_2^B + s_1 \chi_{11}^{BS} + q_1 \chi_{11}^{BQ}} + \mathcal{O}(\mu_B^2) \equiv r_{31}^{B,0} + r_{31}^{B,2} \hat{\mu}_B^2 + \mathcal{O}(\mu_B^4) \\ \kappa_B \sigma_B^2 &= \frac{\chi_4^B(T, \mu_B)}{\chi_2^B(T, \mu_B)} = \frac{\chi_4^B}{\chi_2^B} + \mathcal{O}(\mu_B^2) \equiv r_{42}^{B,0} + r_{42}^{B,2} \hat{\mu}_B^2 + \mathcal{O}(\mu_B^4) \;, \end{aligned}$$

Alternative explanation: canonical suppression

15/37

P. Braun Munzinger et al., NPA (2017)

Comparison between theory and experiment

Real world may be complicated

- Critical point beyond the regime probed by lattice
- Non-equilibrium effects important
- Freeze-out, resonances, global charge conservation, etc.

Non-critical contributions: V. Vovchenko et al, 2107.00163

Motivates BEST (non-lattice) theory effort

✓ We built an equation of state which:

- ✓ Reproduces the one from lattice QCD up to $O(\mu_B^4)$ (provided by the BEST lattice QCD effort)
- Contains a critical point in the 3D Ising model universality class
- Can be readily used as input for hydrodynamic simulations to test the effect of the critical point on observables (has been tested by the BEST hydro working group)
- Future hydro simulations and comparison with BESII data will help to constrain the position of the critical point

Code available for everybody to use
 (download from https://www.bnl.gov/physics/best/resources.php)

Map the phase diagram

The relation between the Ising model scaling variables (h, r) and the QCD thermodynamic coordinates (T, μ_B) , can be expressed in linear form, with the use of **six parameters**:

Map the phase diagram

• The number of free parameters is reduced:

Assume the shape of transition line is a parabola (good approximation at BES-like energies) → reduce to four parameters:

$$\frac{T_C}{T_C(\mu_B=0)} = 1 + \kappa \left(\frac{\mu_B}{T_C(\mu_B=0)}\right)^2 + \mathcal{O}(\mu_B^4)$$

with the values $T_C(\mu_B=0)=155$ MeV, $\kappa=-0.0149$.

• For a chosen value of μ_{BC} , one gets

$$T_C = T_0 + \frac{\kappa}{T_0} \mu_{BC}^2 \qquad \qquad \alpha_1 = \tan^{-1} \left(2 \frac{\kappa}{T_0} \mu_{BC} \right)$$

• In the following: $\mu_{BC} = 350 \text{ MeV}$ w = 1 $T_C \simeq 143.2 \text{ MeV}$ $\alpha_2 - \alpha_1 = \pi/2$ $\rho = 2$ $\alpha_1 \simeq 4^{\circ}$

Expansion coefficients and EoS

P. Parotto, C. R. et al., PRC (2020)

Extract the "regular" contribution as the difference between the lattice and Ising ones

 $T^4 c_n^{\text{LAT}}(T) = T^4 c_n^{\text{Non-Ising}}(T) + T_C^4 c_n^{\text{Ising}}(T)$

Final EoS: Isentropic trajectories

P. Parotto, C. R. et al., PRC (2020)

• Relevant for hydrodynamic evolution are the lines of $s/n_B = \text{const}$:

- Low- μ_B : match behavior from Lattice QCD
- Close to the CP: some structure appears

Applications: Sign of kurtosis (D. Mroczek et al., PRD (2020); Critical bulk viscosity (M. Martinez et al., PRD (2019))

Scientific goals

• Model the *fluctuating initial conditions* for the baryon-asymmetric matter for baryon, electric charge, and strangeness

C. Shen, B. Schenke, PRC (2018) C. Shen, B. Schenke, NPA (2019)

 Develop (3+1)D viscous hydrodynamic code which includes all conserved currents and connect it to model for initial conditions
 G. Denicol et al., PRC (2018)

L. Du et al., NPA (2019)

• Extract <u>transport properties</u> of nuclear matter at finite baryon density

M. Li, C. Shen, PRC (2018) C. Gale et al., NPA (2019)

Hydrodynamics evolution

• The sequential collisions between nucleons contribute as energy-momentum and net-baryon density sources to the hydrodynamic fields

C. Shen, B. Schenke, PRC (2018) L. Du et al., NPA (2019)

- For recent developments and an alternative method based on a minimal extension of the Glauber model see C. Shen, S. Alzhrani, PRC (2020)
- Relativistic viscous hydrodynamic simulations extended to include the propagation of net baryon current including its dissipative diffusion

C. Shen, B. Schenke, NPA (2018)

Hydrodynamics evolution

• The sequential collisions between nucleons contribute as energy-momentum and net-baryon density sources to the hydrodynamic fields

C. Shen, B. Schenke, PRC (2018); L. Du et al., NPA (2019)

- For recent developments and an alternative method based on a minimal extension of the Glauber model see C. Shen, S. Alzhrani, PRC (2020);
- Relativistic viscous hydrodynamic simulations extended to include the propagation of net baryon current including its dissipative diffusion

C. Shen, B. Schenke, NPA (2018)

Approaches

One of the central goals of the BEST collaboration is to develop quantitative understanding of fluctuations near the CP

- Stochastic approach with noise M. Nahrgang et al., PRD (2019)
- Deterministic approach in which correlation functions are treated as additional variables with the hydrodynamics ones (Hydro+)

M. Stephanov and Yi Ying, PRD (2018)

- So far only applicable to crossover side of phase boundary
- So far limited to two-point functions

See also Y. Akamatsu et al, PRC (2017 and 2018); M. Martinez and T. Schaefer, PRC (2019); X. An et al., PRC (2020) S. Pratt and C. Plumberg, PRC (2019 and 2020)

Implementation

- Solution of stochastic hydro equations using a momentum filter by which fluctuating modes above a cutoff given by a microscopic scale are removed
 - M. Singh et al., QM2018 proceedings
- Solution of full stochastic diffusive equation in a finite-size system with Gaussian white noise: critical slowing down is observed M. Nahrgang et al., 1804.05728
- Hydro+ implemented in two main simulations

Scientific goals and achievements

 Model fluctuating initial conditions for axial charges Mace et al., PRD (2016) Shi et al., PRL (2020)

- $\begin{array}{c} & \alpha_{S}^{7/3}Q_{s}^{4} \\ \hline Q_{s}^{4} \\ \hline Q_{s}^{4} \\ \hline Q_{s}^{7/3}Q_{s}^{4} \\ \hline Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{4} \\ \hline Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3} \\ \hline Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3} \\ \hline Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3} \\ \hline Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3} \\ \hline Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3} \\ \hline Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3} \\ \hline Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{s}^{7/3}Q_{$
- Develop magneto-hydro code and incorporate anomalous hydro terms, studying the co-evolution of the dynamical magnetic field with the medium U. Gursoy et al., PRC (2018)

• Quantitatively characterize the experimental signals of CME Shi et al., Annals of Physics (2018)

Particlization

- Develop the interface between the hydrodynamic evolution and hadronic transport, such that it preserves fluctuations
 - micro-canonical Metropolis sampling algorithm: conserves all the charges as well as energy and momentum as given by hydrodynamics
 D. Oliinychenko, V. Koch, PRL (2019)
 - Particlization of hydro+: projects fluctuations from hydro+ onto the represented hadrons Pradeep et al., 2109.1318
 - Hadronic transport with tunable potentials
 - A. Sorensen, V. Koch, 2011.06635

Conclusions

- The BEST collaboration has made tremendous strides towards developing a dynamical framework for a quantitative description of low-energy heavy-ion collisions
- The BEST framework is modular: all components are being thoroughly tested
- The design will accommodate a global Bayesian analysis of BESII data, when they become available

Backup Slides

Two versions of the EoS

• Finite T and μ_B , but $\mu_S = \mu_Q = 0$

• Finite T, μ_B , μ_S and μ_Q such that $n_S=0$ and $n_Q=0.4n_B$

• Comparing isentropes...

QCD Equation of state for $\mu_{B_1} \mu_{S_2} \mu_Q > 0$ J. Noronha-Hostler, C.R. et al., PRC (2019)

See also A. Monnai et al., 1902.05095PRC (2019)

Expansion coefficients and EoS

P. Parotto et al.,: PRC (2020)

Extract the "regular" contribution as the difference between the lattice and Ising ones

 $T^4 c_n^{\text{LAT}}(T) = T^4 c_n^{\text{Non-Ising}}(T) + T_C^4 c_n^{\text{Ising}}(T)$

Final EoS: Isentropic trajectories

P. Parotto et al.,: hep-ph/1805.05249

• Relevant for hydrodynamic evolution are the lines of $s/n_B = \text{const}$:

- Low- μ_B : match behavior from Lattice QCD
- ▶ Close to the CP: some structure appears

Fluctuations along the QCD crossover

P. Steinbrecher for HotQCD, 1807.05607

Net-baryon variance

Disconnected chiral susceptibility

- Expected to be larger than HRG model result near the CP
- No sign of criticality

- Peak height expected to increase near the CP
- No sign of criticality

QCD Equation of state for $\mu_B > 0$

We now have the equation of state for µ_B/T≤2 or in terms of the RHIC energy scan:

Second Beam Energy Scan (BESII) at RHIC

- Planned for 2019-2020
- 24 weeks of runs each year
- Beam Energies have been chosen to keep the μ_B step ~50 MeV
- Chemical potentials of interest: μ_B/T ~1.5...4

Baryon Chemical Potential μ_B

√s (GeV)	19.6	14.5	11.5	9.1	7•7	6.2	5.2	4.5
μ _B (MeV)	205	260	315	370	420	487	541	589
# Events	400M	300M	230M	160M	100M	100M	100M	100M

Comparison of the facilities

				Compila	tion by D. Cebra
Facilty	RHIC BESII	SPS	NICA	SIS-100	J-PARC HI
				SIS-300	
Exp.:	STAR	NA61	MPD	CBM	JHITS
.	+FXT		+ BM@N		
Start:	2019-20	2009	2020	2022	2025
_	2018		2017		
Energy:	7.7–19.6	4.9-17.3	2.7 - 11	2.7-8.2	2.0-6.2
√s _{NN} (GeV)	2.5-7.7		2.0-3.5		
Rate:	100 HZ	100 HZ	<10 kHz	<10 MHZ	100 MHZ
At 8 GeV	2000 Hz				
Physics:	CP&OD	CP&OD	OD&DHM	OD&DHM	OD&DHM
	Collider Fixed target	Fixed target Lighter ion collisions	Collider Fixed target	Fixed target	Fixed target

CP=Critical Point OD= Onset of Deconfinement DHM=Dense Hadronic Matter

Heavy-ion collisions at RHIC BES

I. A. Karpenko, P. Huovinen, H. Petersen and M. Bleicher, Phys. Rev. C91 (2015) 064901 C. Shen and B. Schenke, Phys. Rev. C97 (2018) 024907

- Nuclei overlapping time is large at low collision energy
- Pre-equilibrium dynamics can play an important role

note: total evolution time ~ 10 fm

Energy-momentum space-time distribution

C. Shen and B. Schenke, Phys. Rev. C97 (2018) 024907 L. Du, U. Heinz and G. Vujanovic, Nucl. Phys. A982 (2019) 407-410

 An extended interaction zone for the energy-momentum sources from the 3D collision geometry
 Dynamically interweaves with hydrodynamics

BEST EOS with a critical point

 The BEST EOS is implemented in the state-of-the-art 3D hydrodynamic code (MUSIC)

Visible difference in the fireball trajectories with a critical point

A detailed quantification of various background correlations in the data-validated state-of-art hydrodynamic framework

[Schenke, Shen, Tribedy, 2019]

New Opportunity: Isobaric Collisions

Data analysis

GOAL: Bayesian Comparison of BEST models to BES data

- Collect and distill data (once BES data are available)
 state uncertainties
- Parameterize BEST beginning-to-end model
 a few dozen parameters; once model is available
- Construct and tune model emulator
 - Gaussian process or machine learning
 - Requires significant computational resources
- Determine (including uncertainty) likelihood of parameters
 - Markov Chain Monte Carlo
 - Parameters describe:
 - EoS, Viscosity, Diffusion constants....
 - and ultimately critical point and anomalous transport

Progress

- Emulators constructed:
 - Gaussian process
 - Machine-learning
 - Comparison underway

- John Bower grad stud, MSU
- Strategies for expressing uncertainties are being developed
- Sample problem
 - Imaging charge correlations
 - Should also be applicable to BES data

 $B_{\pi,\pi}(\Delta y), B_{K,K}(\Delta y), B_{p,p}(\Delta y), B_{p,K}(\Delta y)$ $\div C_{uu}(\Delta\eta), C_{ud}(\Delta\eta), C_{ss}(\Delta\eta), C_{us}(\Delta\eta)$ **Measured by STAR** Correlations in coordinate space

Progress

Charge Balance Functions,

Two emulators constructed: 1. Gaussian Process 2. Neural network Currently being compared

<u>Test of Neural Network Emulator</u> Balance functions used for training Balance function from trained Neural Network True BF using full model

Next steps

- Transport
 - Particlization for deterministic hydro (hydro+)
 - Connect particlization algorithm + SMASH to hydro; test
 - Implement mean field into SMASH transport; test
 - Run full code and calculate global observables such as flow
 - Connect to stochastic hydro; test
 - Match mean field to EOS
 - Ready to calculate fluctuations
- Data analysis
 - Finish warm-up projects
 - imaging
 - Machine learning vs Gaussian emulator comparison
 - Connect statistics codes with full BEST time evolution code
 - Collect statistics from experiments
 - Develop strategy for running, and allocate resources