
Fitting models for Numerical Inversion
of the Laplace Transform

Salvatore Cuomo

University of Naples Federico II

March 30, 2022 -Florence, Italy

joint work with: Costanza Conti and Rosanna Campagna

Workshop Phase transitions in particle physics - Galileo Galilei Institute

1 / 26



Overview

▶ Introduction to Numerical Inversion of the Laplace Transform (ILT)

▶ Inverting Laplace Transform in a discrete data framework

▶ Some Inversion scheme (Pike and Gaver methods)

▶ Numerical Experiments

▶ Conclusions
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The Laplace Transform (LT) and its inversion

▶ The Laplace Transform F of a function f , is a complex function obtained by the
integral map:

F (s) =

∫ ∞

0
e−st f (t)dt, Re(s) > σ0 , (1)

where σ0 is the abscissa of convergence of Laplace Transform, a value that
guarantees existence of F , and s is a complex variable.

▶ We focus on the real numerical inversion of the Laplace Transform, i.e. on the
design and the implementation of a numerical method which computes f (t),
under the hypothesis that F is known on the real axis only.
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Well-posed problems (Hadamard)

A problem is well-posed if the following three properties hold.

▶ Existence: For all suitable data, a
solution exists.

▶ Uniqueness:For all suitable data,
the solution is unique.

▶ Stability:The solution depends
continuously on the data.

A problem that violates any of the three properties of well-posedness is called an
ill-posed problem.
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Real inversion of LT

The real numerical inversion of the Laplace Transform

f = L−1[F ] s.t. F (s) =

∫ +∞

0
e−st f (t)dt = L[f ]

is an inverse ill-posed problem (according to Hadamard definition), since L−1 it insn’t
a continuous functional operator.

Numerical inversion methods require regularization techniques to deal with the strong
ill-conditioning.

Numerical algorithms and related software elements exist, based on:

1. sensitivity analysis for the conditioning evaluation of inversion formulas;

2. stopping rules for automatic algorithms;

3. theoretical and computable estimates of approximation errors on the f (t)
computation.
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Inversion LT: a story telling

The development of accurate numerical inversion LT is a long standing problem.

▶ Based on asymptotic expansion (Laplace’s method) of the forward integral.

Post (1930),Gaver (1966), Valko-Abate (2004),Weeks Methods (1966)

▶ Laguerre polynomial expansion method.

Ward (1954), Weeks (1966), Weideman (1999), Talbot’s Method (1979)

▶ Deformed contour methods:

Talbot (1979), Weideman Trefethen (2007)
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Numerical Inversion of LT: the main issue
Numerical Methods for the inversion of the Laplace Transform require the evaluation
of the LT in some (prefixed) points.

In many the applications nothing is known about the LT function and /or only a finite
data set of LT-values is generally available.

Example (Approximations of series expansions)

f (t) = sin5(t)cos5(t); F (s) =
∞∑
n=0

(−1)n

512

(
5

22n
− 5

62n+1
+

1

102n+1

)
s2n

Approximation on F introduces: truncation and/or discretization errors.

Example (Integration)

▶ f (t + T ) = f (t), F (s) = 1
1−eTs

∫ T

0
f (t)e−pxdx

▶ g(t) = 1
t
f (t) G(s) =

∫∞
s

F (x)dx

Quadrature rules give only a tabulated form for the LT.
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Inverting Laplace Transform in a discrete data framework

Definition (Discrete Data Problem)

Let be (ti ,Fi ), i = 1, . . . ,N, a finite set of LT data, with F unknown, except a finite
number of its values.

The Laplace Transform inversion procedure consists in:

1. to represent the data by a functional form: a continuous fitting model, s,
“performing” the LT properties,

2. to apply a LTI numerical method to the continuous model.

The approximation error on the computed inverse, fs(t), depends on:

1. the fitting error, agreeable with the conditioning of the inversion formula;

2. the conditioning and stability of the inversion formula.
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A RBF-based fitting model

Here we start from a scattered data interpolation problem: given the data Fi at location
x i ∈ Rd , i = 1, 2, . . . , n, find a continuous function s(x) (interpolant) satisfying s(x i ) = Fi ,
i = 1, . . . , n.

Definition (PHS+poly)
PHS interpolant augmented with polynomials
is the sum of a RBF interpolant, particularly a polyharmonic spline (PHS), and a polynomial
term

s(x) =
n∑

j=1

λj |x − xj |m +
s∑

k=1

βk pk(x), (∗)

with the matching conditions
∑n

j=1 λjpk (xj) = 0, k = 1, . . . , s,.

{pk(x)}sk=1 is a basis for the multivariate polynomial space Πd
l of total degree l in d

dimensions with s =
(
l+d
l

)
.

PHS are conditionally positive definite RBFs; the combination with polynomials

guarantees a well-posed interpolation problem, no matter how the nodes are scattered.
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Theoretical remarks on the accuracy

Let p(α)(x) = xα1
1 · · · xαd

d be the mth element of total degree α = α1 + · · ·+ αn from the
augmented polynomial basis. Let F be a smooth multivariable function. The approximation
error of the local RBF+poly interpolant (∗) of F can be bounded over the stencil as:

∥s(x)− F (x)∥∞ ≤ C hl+1 max
x∈Ω

|Lk [F (x)]|

where h is the internodal distance and Lk the differential operator

L(α) =
1

α1! · · ·αd !

∂α

∂xα1
1 · · · ∂xαd

d

and such that each βk = Lk [F (x)] + O(hl+1), k = 1, . . . , s. The model leads to an accuracy

which convergence order is determined by the degree l of augmented polynomial terms 1.

1Bayona, V. (2019) An insight into RBF-FD approximations augmented with polynomials.
Computers & Mathematics with Applications, 77(9), 2337-2353.
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Numerical Inversion Methods

Inversion methods compute approximations of the inverse function taking information
from the related LT at specific points , e.g.:

1. the Weeks’ method computes the coefficients of a truncated series of the inverse
function, based on Laguerre polynomials, by a Lagrange interpolation of F , on
Chebyshev zeros [S.C. et al., 2007, Rosanna Campagna et al. 2013 & 2014];

2. the Fourier method gives the inverse function as a Fourier cosine series, deriving
from the discretization of the Riemann inversion formula by trapezoidal
quadrature [Dubner H., Abate J., 1968];

3. the Pike’s method assumes the truncation expansion of the inverse function in
terms of eigenfunctions and eigenvalues of the LT, to be computed in suitable
points [Pike E.R., 1978];

4. the Gaver-Stehfest method is based on a linear combination of LT values, at
uniformly distributed points; [Rosanna Campagna et al. 2018].
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Pike’s LTI method

f (t) =

∫ ∞

0

< F (·), ψ+(ω, ·) >
λ+(ω)

ψ+(ω, t)dω+

∫ ∞

0

< F (·), ψ−(ω, ·) >
λ−(ω)

ψ−(ω, t)dω (2)

where ψ± and λ± are eigenfunctions and eigenvalues of the operator Laplace integral,
following [Pike, 1978], the f in (2) is approximated by a truncated series:

fM(t) =
M∑
k=0

c+k
λ+(k∆ω)

ψ+(k∆ω, t) +
M∑
k=1

c−k
λ−(k∆ω)

ψ−(k∆ω, t) (3)

where ∆ω = 2π/(ln(L2)− ln(L1)), and

c±k =


∆ω

∫ L2
L1

F (s)ψ±(k∆ω, s)ds if k ̸= 0

∆ω
2

∫ L2
L1

F (s)ψ±(0, s)ds if k = 0

. (4)
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Pike’s LTI method (cont.)

The solution requires to compute the coefficients ck , by solving the integrals:

c±k =


∆ω

∫ L2
L1

F (s)ψ±(k∆ω, s)ds if k ̸= 0

∆ω
2

∫ L2
L1

F (s)ψ±(0, s)ds if k = 0

.

∆ω is an amplification factor for the fitting error:

∥c±k − c̃±k ∥ ≤


|∆ω|

∫ L2
L1

|F (x)− s(x)| · |ψ±(k∆ω, x)|dx if k ̸= 0

∣∣∆ω
2

∣∣ ∫ L2
L1

|F (x)− s(x)| · |ψ±(0, x)|dx if k = 0

.

Following [Pike, 1978], we set ∆ω = 2π/(105 − 10−15) = 6.2832e − 05, granting a
contained growth of the fitting error.
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Gaver’s LTI formula

The LT inverse function is approximated by a linear combination of F − values:

fM(t) = γ(t)
M∑
i=1

ViF (iγ(t)), γ(t) = ln 2/t (5)

and

Vi = (−1)i+M/2

min(i,M/2)∑
k=[(i+1)/2]

kM/2(2k)!

(M/2− k)!k!(k − 1)!(i − k)!(2k − i)!
(6)

An upper bound for the approximation error is computed:

|fM(t)− fs(t)| ≤ γ(t)
M∑
i=1

|Vi ||F (i γ(t))− s (i γ(t)) | ≤

≤

(
γ(t)M

M∑
i=1

|Vi |

)
∥F − s∥∞

≤ θ(t,M)∥F − s∥∞ := Θ(t,M,∆, s)
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Numerical Experiments

The fitting model has to approximate the F -values, required by the inversion formula.

Numerical experiments highlight:

▶ the accuracy of the fitting model;

▶ the impact of the fitting error introduced and its extrapolation feature, on the
inverse solution.

▶ Test 1 (from 1.1 to 1.3): LTI by Pike’s method applied to the PHS+poly model;

▶ Test 2 (from 2.1 to 2.2): LTI by Gaver-Stehfest (GS)’s method applied to the
PHS+poly model.
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Test 1.1 (LT inversion by Pike’s formula) 1/5

Data:

▶ (xi , yi )
N
i=1, with {xi}Ni=1 uniformly distributed in a subset [a, b] = [1, 10] and

yi = F (xi ) with

F (x) = e−x/(1 + x), f (t) = e−(t−1)u(t − 1), t > 1, u(t) step function.

Output:

▶ an approximation of f at the points

tj ∈ [1.5, 10], t1 = 1.5, tj+1 = tj + 0.5, j = 1, ..., 17.

Procedure:

▶ define the PHS+poly model s on different sets of N knots (with
N = 20, 40, 60, 80, 100);

▶ apply Pike’s inversion formula to s, integrating s on [L1, L2] ⊃ [a, b]. The
eigenfunctions number is set to M = 25.
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Test 1.1 (LT inversion by Pike’s formula) 2/5

Set PHS r7 augmented with 17 degree polynomials. Integration interval
[L1, L2] = [10−15, 10] ⊃ [1, 10].
The fitting error decreases when the number of knots grows up:
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Test 1.1 (LT inversion by Pike’s formula) 3/5

fs

(N = 20, ..., 100) vs fF (left); Absolute errors |fs(t)− fF (t)| (right).

The discrepancy w.r.t. the true f depends on the conditioning of the inversion formula.

N = 20 N = 40 N = 60 N = 80 N = 100

MSE =
∥fF−fs∥22

18 9.8497e-05 3.4910e-05 2.3182e-05 1.8887e-05 1.8887e-05
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Test 1.2 (LT inversion by Pike’s formula) 4/5

Set PHS r7 augmented with 25 degree polynomials. [L1, L2] = [10−15, 10]. The fitting error
decreases, according with the theoretical bound.

For each t ∈ [1.5, 10] the accuracy on F reflects on the inverse computation.
N = 20 N = 40 N = 60 N = 80 N = 100

MSE =
∥fF−fs∥2

2

18 1.4045e-01 4.8312e-06 7.1163e-06 6.6879e-06 6.6879e-06
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Test 1.3 (LT inversion by Pike’s formula) 5/5

In this test we highlight the accuracy in the extrapolation, when the PHS+poly is integrated
on [L1, L2] = [10−15, 12] ⊃ [1, 10]. Set PHS r7 + 17 degree polynomials.

The fitting error outside the knots interval, reflects on the inverse accuracy:
N = 20 N = 40 N = 60 N = 80 N = 100

MSE =
∥fF−fs∥2

2

18 6.5622e-03 8.5175e-03 9.3977e-03 8.5368e-03 8.5368e-03
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Test 2.1 (LT inversion by GS’s formula) 2/4

The evaluation points change with t; figure describes their distribution w.r.t. the knots interval
and the corresponding fitting errors.

Fitting error (blue continuos line, ’-’) between F and s on 500 points of a wide interval including all the
GS points generating by the fixed t values. Fitting error at the GS points distribution for the minimum
(′◦′) for the median (′⋄′) and for the maximum (′+′) t. Fitting error at the Interpolating knots (′∗′).
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Test 2.1 (LT inversion by GS’s formula) 3/4

We observe the good quality of the approximated inverse LT, also when the inversion
formula requires the extrapolation of information from data, by evaluating the
spline model outside the knots interval.

Figure 1: fM vs fs , obtained by applying the algorithm to F and s respectively (left). Pointwise
absolute error |fM(t)− fs(t)|.
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Test 2.2 (LT inversion by GS’s formula) 4/4

Set F (x) = 2ax
(x2+a2)2

, a = 2, with f (t) = tsin(at).

The amplification factor θ of the inversion formula gives information on the possible
fatal impact of the fitting error on the solution.

▶ ∥F − s∥∞ is the maximum discrepancy on the GS points for each t;

▶ θ(t,M) is the amplification factor due to the inversion formula;

▶ Θ(t,M,∆, s) is the computable upper bound for the approximation error.

t |fM(t)− fs(t)| ∥F − s∥∞ θ(t,M) Θ(t,M,∆, s)

2.0 8.97946e-11 4.43530e-11 1.50993e+05 6.69701e-06
3.0 8.00476e-09 1.65883e-09 1.00662e+05 1.66982e-04
4.0 5.30296e-10 6.83621e-10 7.54967e+04 5.16111e-05
5.0 2.20194e-08 4.83468e-09 6.03973e+04 2.92002e-04
8.0 1.45021e-08 3.16201e-09 3.77483e+04 1.19360e-04
9.0 1.57366e-06 7.90296e-09 3.35541e+04 2.65177e-04
10.0 2.23597e-07 1.22119e-08 3.01987e+04 3.68783e-04
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Conclusions

▶ Laplace transform inversion formulas work on continuous models;

▶ fitting models can help to recover missing information;

▶ The results emphasize that a good fitting model is a necessary requirement for
the application of the inversion method.
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