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What is a spline?
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What is a spline?

I A spline is a physical tool used by shipbuilders to draw ship profiles

I A spline is a piecewise-defined function with a certain regularity
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From ships to data analysis: a brief history of the spline

1 Originally developed for ship-building in
the days before computer modeling, a
spline is a thin strip of wood pulled into
place by weights called ducks or knots.
Naval architects use a spline to draw a
smooth curve through a set of points via

2 The influence of each weight is greatest
at the point of contact, and decreases
smoothly further along the spline. To
get more control over a certain region
of the spline, the draftman simply add
more weights.
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Splines for data analysis

Mathematically a spline is a piecewise-defined function with a prescribed
regularity at the ‘conjuctions’
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Where are they used?

Splines find application in several domains: animation or modeling
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Where are they used?

Other domains of application are, Architecture, Design, Art, Automotive
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Splines a short history

Splines were introduced by
Isaac Jacob Schoenberg
Romanian-American mathematician (1903-1990)
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Splines a short history

A great impulse to splines was given by the work of
Larry Schumacker (Nashville, USA) and Carl de Boor (Madison, USA)
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Since the work of I.J.Schoenberg
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The Zoo of Splines

There is a large variety of spline species, referred to as the zoo of splines.

I Polynomial splines

I Exponential splines

I Rational splines

I Subdivision splines

I Chebyshev splines

I . . .

They find application in many different contexts ranging from geometric
modeling, image analysis, data approximation, solution of PDE...
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Interpolating, Smoothing, Approximating

My interest in splines is three-fold:

1 Interpolate exact data

2 Smooth noisy data

3 Approximate given data
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Spline models for data analysis and more

Spline models are also state-of-the-art technique to infer knowledge from data:

1 To model geometries in CAGD

2 As activation functions for Deep Learning

3 In data analysis, to predict data behaviour

Costanza Conti, Unifi Spline4representation 13 / 41



Polynomial splines: Definition in the simplest case

Spline

Given [a, b], m knots Ξ ≡ {a = ξ1 < ξ2 < . . . . < ξm = b}, a spline sp,Ξ of degree
p (order p + 1) and knots Ξ, is a piecewice polynomial such that:

s|[ξi ,ξi+1] ∈ Πp, i = 1, . . . ,m − 1,

s(j)(ξi ) = s(j)(ξi ), i = 2, . . . ,m − 1, j = 0, .., p − 1

• A linear spline (p = 1) is made of m − 1 strait lines connected at the spline knots ξi , i = 1, · · · ,m in such
a way that function is continuous in [a, b];

• A quadratic splines (p = 2) is made of m − 1 parabola arcs connected at the spline knots ξi , i = 1, · · · ,m

in such a way that function and first derivatives are continuous (no cups!) in [a, b]
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Polynomial splines: examples

• A cubic spline (p = 3), is made of m− 1 cubic arcs in such a way that function,
first and second derivatives are continuous in [a, b].
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Dimension of the spline space

How many degrees of freedom are needed to univocally identify a spline?

In the sub-intervals I1, · · · , Im−1, a spline is a polynomial of degree p which means
that it is given by giving (p + 1) coefficients. Hence, Sp,y is given by
(m − 1)× (p + 1) coefficients. At the ‘internal’ knots ξ2, · · · , ξm−1 all derivates
up to order p − 1 must agree, hence

lim
x→ξ−i

S
(j)
p,Ξ(x) = lim

x→ξ+
i

S
(j)
p,Ξ(x), for j = 0, · · · , p − 1, (m − 2)× p conditions.

Taking the difference, the number of free parameters of Sp,Ξ are

(m − 1)× (p + 1)− (m − 2)× p = m + p − 1.

Essentially, once p and the internal knots are given, a spline is identified by fixing
m + p − 1 coefficients and (m − 2) + p + 1 is the dimension of the spline space.

Costanza Conti, Unifi Spline4representation 16 / 41



Beyond ‘classical’ polynomial splines

A similar definition and analysis of the spline space can be done in a more general
context

I different knots moltiplicities

I different degree for the segments

I different types of segments

I . . .
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B-spline bases of spline spaces

Relevant to our discussion: every spline space posses an optimal basis

B-splines:

1 are ‘bell-shaped’ ;

2 non-negative;

3 compactly supported;

4 partition of unity;
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Splines in action for data analysis

Goal: to construct a good model for a given data set.

Definition (Least-squares polynomial spline)

Given the noisy data (xi , yi ), i = 1, . . . , n, a LS polynomial spline s ∈ Sp based on the
knots ξ1 · · · , ξm, approximates the data set by minimizing the error with respect to the
data

arg min
a1,··· ,am+p−1

n∑
i=1

wi (yi − s(xi ))2, with s(x) =

m+p−1∑
j=1

ajBj(x)

+ One needs to decide the number and the locations of the knots, ξ1, ..., ξm,
needed to define the B-spline basis functions Bj , j = 1, . . . ,m + p − 1.
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The correct model

+ If the knots and the abscissa of data coincide the spline is interpolating that is
when s(xi ) = yi , i = 1, · · · , n (a problem if the data is noisy causing overfitting!).
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Smoothing Spline

To prevent overfitting a penalty term can be introduced

Definition (Smoothing polynomial spline)

The smoothing spline is the solution of the penalized least sq. problem,

arg min
a1,...,an+p−1

n∑
i=1

wi (yi − s(xi ))2 + λ

∫ b

a

(s(p−1))2dx , with s(x) =

n+p−1∑
j=1

ajBj(x)

where x1, ..., xn are set as the spline knots and the smoothing parameter λ affects
the variability/fidelity with respect to the data.

+ Drawback: selection of λ and the coincidence of knots/abscissa.... λ = 0
overfitting λ >> 1 underfitting

+ CV, GCV, L-curves are the most used methods to select λ
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P-splines

In 1986 Eilers and Marx 1 propose a new family of splines with penalty:

P-splines ingredients

1 S3 cubic spline space spanned by polynomial cubic B-splines;

2 uniform set of m knots {ξ1, . . . , ξm} (dimension of the space m + 2);

3

∑
j∈Z

ajB
′′

j (x) =
∑
j∈Z

(∆2a)jbj(x), where (∆2a)j = aj − 2aj−1 + aj−2,

4 a certain level of approximation

1
P. H. C. Eilers, B. D. Marx,(1996) Flexible smoothing with B-splines and penalties, Statistical Science 11.
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Penalized Splines

Definition (P-Spline)

Given n real data points (xi , yi ), i = 1, . . . , n, x1 < · · · < xn, and the cubic spline
space S3 of dimension m + 2 (m− 2 internal knots), defined on [a, b], with a ≤ x1

and xn ≤ b spanned by m + 2 polynomial cubic B-splines Bj , j = 1, . . . ,m + 2
based on the uniform set of knots {ξ1, . . . , ξm} with ξ1 ≡ a and ξm ≡ b.

The P-spline s(x) =
∑m+2

j=1 ajBj(x), solve the penalized least squares problem

min
a1,...,am+2

n∑
i=1

wi

yi −
m+2∑
j=1

ajBj(xi )

2

+ λ

m+2∑
j=3

(
(∆2a)j

)2

with respect to the spline coefficients a = (a1, . . . , an) while (w1, . . . ,wn) are
weights and λ is a regularization parameter.
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Pspline properties

The work of Eilers and Marx on P-splines has led to important developments in
data regression through splines.

P-splines have a number of useful properties, inherited from B-splines:

I P-splines fit constant and linear polynomial data exactly;

I P-splines conserve moments (mean, variance) of the data;

I P-splines show no boundary effects, as many other smoothers.
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Beyond P-splines: a motivating application

Define data-driven models for data analysis and forecasting of exponential
data is a frequent need in nuclear magnetic resonance studies, atmospheric
pressure changes, epidemic growth patterns, etc.

Exponential data analysis

Given (xi , yi ), i = 1, . . . , n, a finite set of noisy data,

yi = f (xi ) + εi , i = 1, . . . , n, εi unknown noise sources

where f is the weighted sum of exponential functions

f (x) =
M∑
j=1

cje
αj x , αj ∈ R.
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Beyond P-splines

Our plan:

I Replace polynomial splines ⇒ with exponential-polynomial splines

I Extend polynomial B-splines ⇒ exponential-polynomial B-splines

I Generalize the polynomial P-splines idea ⇒ define HP-splines
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Beyond P-splines

We consider a two- and a four-dimensional exponential space for α ∈ R

E2,α := span{e−αx , x e−αx}, E4,α := span{eαx , x eαx , e−αx , x e−αx}

that are the null spaces of suitable differential operators L2 and L∗2 L2:

L2u := u
′′

+ 2α u
′

+ α2 u, L∗2 L2 = v (iv) − 2α2 v
′′

+ α4 v , α ∈ R.

+ We consider splines with segments in these spaces.
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Beyond P-splines

We defined2 an optimal basis for hyperbolic-polynomial splines:

HB-splines:

I with a bell-shaped graph;

I with a compact support identified by
5 uniform knots;

I C 2-regular, and with segments in the
space E4,α;

I reproducing functions in E2,α.

Graph of an exponential-polynomial Bα-spline

2
R. Campagna, C. Conti, S. Cuomo, Smoothing exponential-polynomial splines for multiexponential decay data, Dolomites Res. Notes Approx. 12

(2019) 86–100.
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Beyond P-splines

To define a new family of hyperbolic-polynomial penalized splines (HP-splines), we
start by considering the penalized least square problem

min
a1,...,am+2

n∑
i=1

wi

yi −
m+2∑
j=1

ajB
α
j (xi )

2

+ λ

∫ b

a

m+2∑
j=1

ajL2B
α
j (x)

2

dx .

Following the P-spline idea we substitute L2 with a difference operator:

∆h,α
2 u = eαhu(x + h)− 2u(x) + e−αhu(x − h), x ∈ [a, b], α, h ∈ R
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Approximation levels

I we use the uniformity of the knots, Bαj (x − `h) = Bαj+`(x) and write:

m+2∑
j=1

aj∆
h,α
2 Bαj (x) =

m+2∑
j=1

aj
(
eαhBαj−1(x)− 2Bj(x) + e−αhBαj+1(x)

)
.

I defining (∆h,α
2 a)j = eαhaj+1 − 2aj + e−αhaj−1 we see that

I we can switch the difference
m+2∑
j=1

aj∆
h,α
2 Bαj (x) =

m+2∑
j=1

(∆h,α
2 a)jB

α
j (x).
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Hyperbolic-polynomial Penalized Splines (HP-splines) 3

Definition (Hyperbolic-polynomial Penalized Spline)

Given the data (xi , yi )i=1,...,n and the uniform knots Ξ := {a = ξ1 < ξ2 · · · < ξm =
b}, with a ≤ x1, xn ≤ b. Defined the exponential-polynomial B-splines {Bαj }

m+2
j=1

basis with segments in the space E4,α := span{eαx , x eαx , e−αx , x e−αx}, α ∈ R,
the HPspline s(x) =

∑m+2
j=1 ajB

α
j (x) is the solution of

min
a1,...,am+2

m∑
i=1

wi

yi −
m+2∑
j=1

ajB
α
j (xi )

2

+ λ

m+2∑
j=1

(
(∆h,α

2 a)j
)2

.

+ HP-splines extend P-splines and reduce to them when α = 0.

3
R. Campagna, C. Conti, Penalized Hyperbolic-Polynomial Splines, Applied Mathematics Letters 118 (2021)
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Hyperbolic-polynomial Penalized Splines (HP-splines)

The minimization problem is equivalent to solve the linear system

BTWy =
(

BTWB + λ(Dh,α
2 )TDh,α

2

)
â, B := (Bαj (xi ))j=1,...,m+2

i=1,...,n

where y ∈ Rn, a ∈ R(m+2), B ∈ Rm×(m+2), W ∈ Rn×n, Dh,α
2 ∈ Rn×(m+2).

I BT band structure is inherited by the
B-splines locality and depends on the
B-splines at the data xj ;

I Dh,α
2 is three-banded, with exponential

terms depending on α.
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HP-spline properties (1)

1 P-splines P-splines can fit constant and linear polynomial data exactly:
I cubic B-splines fit polynomial data up to degree 1
I the reproduction property of the B-splines transfer to the P-splines, whatever the value of λ.

HP-splines E2,α-reproduction
I hyperbolic-polynomial B-splines reproduce E2,α

I the reproduction property of the hyperbolic-polynomial basis transfer to the
HP-splines, whatever the value of λ.
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HPspline properties (2)

1 P-splines conserve pol. moments (mean, variance) of the data:

n∑
i=1

ŷi =
n∑

i=1

yi and
n∑

i=1

xi ŷi =
n∑

i=1

xiyi ,

with ŷi = s(xi ) =
∑n+2

j=1 âjBj (xi ) computed (predicted) values.

HP-splines conserve exponential moments of the data:

n∑
i=1

e−αxi ŷi =
n∑

i=1

e−αxi yi and
n∑

i=1

xie
−αxi ŷi =

n∑
i=1

xie
−αxi yi .
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Numerical results

HP-splines in action
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Numerical results

I Test 1: example of regression of a real dataset and comparison
with P-spline.

I Test 2: Examples of working for different parameters:
I sensitivity with respect to λ, α and the level of noise σ
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Test 1: Benchmark Motorcycle Data

I L: HP-spline (black) vs P-spline (magenta), (n = 40, α = 0.3 and λ = 0.5)

I R: HP-splines with α = 0.3, λ = 0.5 and n ∈ {15, 20, 25, 30, 35, 40, 45, 50}. n = 15
and n = 20 grant a solution outside the 95% Bayesian conf. region.

+As expected, with no prior information, HP-spline behaves similarly to P-spline.
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Test 2: comparison with Pspline on a synthetic and noisy
data set

I Random (xi , yi )
m
i=1, with m = 40, xi ∈ [−1.5, 1.5], yi = f (xi ), f (x) = 10−5(e7x −

xe−7x), Gaussian noise with zero mean and st. dev. σ.

I Consider the HP-spline (black), with α = 3.

I results for n = 20, σ = 0.1, λ = 0.1 (left) and λ = 1 (right).
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n = 15, λ = 0.1, σ = 5 · 10−2 n = 15, λ = 0.1, σ = 10−1 n = 15, λ = 0.1, σ = 5 · 10−1

n = 20, λ = 0.1, σ = 5 · 10−2 n = 20, λ = 0.1, σ = 10−1 n = 20, λ = 0.1, σ = 5 · 10−1
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Conclusions and Future work

I Splines are a simple but powerful tool that find application everywhere;

I According to the type of application polynomial splines must be replaced with other
type of splines, for example exponential-polynomial splines;

I HP-splines inherit from P-splines the separation of the data from the free nodes
avoiding the problems of overfitting, and boundary effects;

I HP-splines enjoy analogous properties of P-splines: moments preservation, exponential-
polynomial reproduction;

I A clever selection of the frequency parameter α combined with a smart selection of
λ is presently under investigation.
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Thank you for your attention!!
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