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What is a spline?
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What is a spline?

> A spline is a physical tool used by shipbuilders to draw ship profiles

> A spline is a piecewise-defined function with a certain regularity
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From ships to data analysis: a brief history of the spline

@ Originally developed for ship-building in
the days before computer modeling, a
spline is a thin strip of wood pulled into
place by weights called ducks or knots.
Naval architects use a spline to draw a
smooth curve through a set of points via

® The influence of each weight is greatest
at the point of contact, and decreases
smoothly further along the spline. To
get more control over a certain region
of the spline, the draftman simply add
more weights.
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Splines for data analysis

Mathematically a spline is a piecewise-defined function with a prescribed
regularity at the ‘conjuctions’
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Where are they used?

Splines find application in several domains: animation or modeling
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Where are they used?

Other domains of application are, Architecture, Design, Art, Automotive
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Splines a short history

Splines were introduced by
Isaac Jacob Schoenberg

Romanian-American mathematician (1903-1990)

SPLINE INTERPOLATION AND BEST
QUADRATURE FORMULAE

BY 1. J. SCHOENBERG
Communicated by Felix Browder, October 9, 1963

1. The spline interpolation formula, A spline function S(x), of
degree k(20), having the knots

1) 20 <2y < v <y

is by definition a function of the class C** which reduces to a poly-
nomial of degree not exceeding k in each of the n+2 intervals in
which the points (1) divide the real axis. The function S(x) is seen to
depend linearly on n+k+1 parameters. In [S, Theorem 2, p. 258]
are given the precise conditions under which we can interpolate
uniquely by S(x) arbitrarily given ordinates at n+£+-1 points on the
real axis.

For the remainder of this note we set k=2m—1 (1Sm=n) and
single out from this family of spline functions the

CLass Zn: The class of spline functions S(x) of degree 2m—1, knots
(1), and the additional property that S(x) reduces to polynomials of
degree not exceeding m— 1 in each of the ranges (— @, xo) and (xa, + ).

The restriction that m=# is essential, otherwise 2. reduces to
T (here and below s denotes a generic polynomial of degree <k,
as well as their class). In a paper [1] soon to appear C. de Boor ob-
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Cardinal Interpolation and Spline Functions*
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Tatroduction . . . w7

1 A Few Properties of Spline Functions with Equidistant Knots
‘The B-Splines
“The Cosine Polyomials (1) and Related Lemms.
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Splines a short history

A great impulse to splines was given by the work of
Larry Schumacker (Nashville, USA) and Carl de Boor (Madison, USA)

Spline Functions: D, SR
Basic Theory e ; 2828 A Practical
Third Edition 1 scenegs | Guide to
| & 14 L0 . Splines
ekt
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Since the work of I.J.Schoenberg

Analyze search results

¢ Back to results S Export (B Print X Email

TITLE-ABS-KEY ( spline )
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Year |, Documents
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2018 2997
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Year
2015 2662
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The Zoo of Splines

There is a large variety of spline species, referred to as the zoo of splines.

» Polynomial splines
» Exponential splines
» Rational splines

» Subdivision splines

» Chebyshev splines

They find application in many different contexts ranging from geometric
modeling, image analysis, data approximation, solution of PDE...
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Interpolating, Smoothing, Approximating

My interest in splines is three-fold:

@ Interpolate exact data

@® Smooth noisy data

© Approximate given data

Costanza Conti, Unifi Spline4representation



Spline models for data analysis and more

Spline models are also state-of-the-art technique to infer knowledge from data:

@ To model geometries in CAGD
@® As activation functions for Deep Learning

© In data analysis, to predict data behaviour
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Polynomial splines: Definition in the simplest case

Given [a,b], mknots = ={a=¢& <& < ... <&, = b}, a spline s, = of degree
p (order p+ 1) and knots =, is a piecewice polynomial such that:

Sligne) €Mpy i=1,...,m—1,

sO(E)=sU(&), i=2,....m—1, j=0,.,p—1

o A linear spline (p = 1) is made of m — 1 strait lines connected at the spline knots &;, i =1,--- ,m in such
a way that function is continuous in [a, b];
e A quadratic splines (p = 2) is made of m — 1 parabola arcs connected at the spline knots &;, i =1,-+-, m

in such a way that function and first derivatives are continuous (no cups!) in [a, b]

ps | B3 Pye
”ﬂ Rl ) et [
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Polynomial splines: examples

e A cubic spline (p = 3), is made of m — 1 cubic arcs in such a way that function,

first and second derivatives are continuous in [a, b].
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Dimension of the spline space

How many degrees of freedom are needed to univocally identify a spline?

In the sub-intervals /1, -+, l,_1, a spline is a polynomial of degree p which means
that it is given by giving (p + 1) coefficients. Hence, S, , is given by
(m—1) x (p+ 1) coefficients. At the ‘internal’ knots &, - ,&m—_1 all derivates

up to order p — 1 must agree, hence

lim S,(J{)E(x) = lim S(j):(x)7 forj=0,---,p—1, (m—2)xp conditions.

x—E; R
Taking the difference, the number of free parameters of S, = are
(m=1)x(p+1)—(m=2)xp=m+p—1

Essentially, once p and the internal knots are given, a spline is identified by fixing
m+ p — 1 coefficients and (m — 2) + p + 1 is the dimension of the spline space.
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Beyond ‘classical’ polynomial splines

A similar definition and analysis of the spline space can be done in a more general
context

» different knots moltiplicities
> different degree for the segments
» different types of segments

|
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B-spline bases of spline spaces

Relevant to our discussion: every spline space posses an optimal basis

Em’ N
5 31 A
s <] /
s ;
g3 FANAN
HIS Ny \
2 3+ ¥ ¥ f T
-4 2 ] 2 4
.
.
5 39 _
H N
¢ S /
5 o] X, A
2 3+ T T T T T
-4 2 ] 2 4
.

Costanza Conti, Unifi Spline4representation

18 /41



B-spline bases of spline spaces

Relevant to our discussion: every spline space posses an optimal basis

B-splines:

B-splines of order 2
00 04 08

-4 2 S 2 4
@ are 'bell-shaped’;
I
@® non-negative; s s
-4 2 ] 2 4
A
© compactly supported; i — N

@ partition of unity;
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Splines in action for data analysis

Goal: to construct a good model for a given data set.

Costanza Conti, Unifi Spline4representation 19/41



Splines in action for data analysis

Goal: to construct a good model for a given data set.

Definition (Least-squares polynomial spline)

Given the noisy data (x;,y:), i = 1,...,n, a LS polynomial spline s € S, based on the

knots &1 - -+ ,&m, approximates the data set by minimizing the error with respect to the
data
m+p—1
arg min Z wi(yi — s(xi))?, with s(x) = Z ajBj(x)
“sdmip—1 j_q j=1
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Splines in action for data analysis

Goal: to construct a good model for a given data set.

Definition (Least-squares polynomial spline)

Given the noisy data (x;,y:), i = 1,...,n, a LS polynomial spline s € S, based on the

knots &1 - - -

data

,&m, approximates the data set by minimizing the error with respect to the

m+p—1
arg min Z wi(yi — s(xi))?, with s(x) = Z ajBj(x)
“sdmip—1 j_q j=1

1= One needs to decide the number and the locations of the knots, &1, ..., &,
needed to define the B-spline basis functions B;, j =1,...,m+p—1.
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The correct model

= |f the knots and the abscissa of data coincide the spline is interpolating that is
when s(x;) = y;, i =1,---,n (a problem if the data is noisy causing overfitting!).

i

Underfitting X Balanced Overfitting
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Smoothing Spline

To prevent overfitting a penalty term can be introduced

Definition (Smoothing polynomial spline)

The smoothing spline is the solution of the penalized least sq. problem,

n b n+p—1

arg min Z w;(yi — s(x))? + )\/ (s?PV)2dx, with s(x) = Z ajBj(x)
al,---,dntp—1 =il a J:]-
where x1, ..., x, are set as the spline knots and the smoothing parameter \ affects
the variability /fidelity with respect to the data.

4
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Smoothing Spline

To prevent overfitting a penalty term can be introduced

Definition (Smoothing polynomial spline)

The smoothing spline is the solution of the penalized least sq. problem,

n b n+p—1

arg min Z w;(yi — s(x))? + )\/ (s?PV)2dx, with s(x) = Z ajBj(x)
al,---,dntp—1 =il a J:]-

where x1, ..., x, are set as the spline knots and the smoothing parameter \ affects
the variability /fidelity with respect to the data.

4

w= Drawback: selection of A and the coincidence of knots/abscissa.... A =0
overfitting A >> 1 underfitting
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Smoothing Spline

To prevent overfitting a penalty term can be introduced

Definition (Smoothing polynomial spline)

The smoothing spline is the solution of the penalized least sq. problem,

b n+p—1
a

arg min Y _ wi(yi — s(x;))> + A / (sP)dx, with s(x)= > aiBj(x)

BN gooonChm=1l 7 :
1oeedntp—1 ;g Jj=1

where x1, ..., x, are set as the spline knots and the smoothing parameter \ affects
the variability /fidelity with respect to the data.

4

w= Drawback: selection of A and the coincidence of knots/abscissa.... A =0
overfitting A >> 1 underfitting

== CV, GCV, L-curves are the most used methods to select \
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P-splines

In 1986 Eilers and Marx ! propose a new family of splines with penalty:

P-splines ingredients

A\ |

1P. H. C. Eilers, B. D. Marx,(1996) Flexible smoothing with B-splines and penalties, Statistical Science 11.
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P-splines

In 1986 Eilers and Marx ! propose a new family of splines with penalty:
P-splines ingredients

@ Sz cubic spline space spanned by polynomial cubic B-splines;

1P. H. C. Eilers, B. D. Marx,(1996) Flexible smoothing with B-splines and penalties, Statistical Science 11.
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P-splines

In 1986 Eilers and Marx ! propose a new family of splines with penalty:

P-splines ingredients

@ Sz cubic spline space spanned by polynomial cubic B-splines;

® uniform set of m knots {1, ...,&,} (dimension of the space m + 2);

1P. H. C. Eilers, B. D. Marx,(1996) Flexible smoothing with B-splines and penalties, Statistical Science 11.

Costanza Conti, Unifi Spline4representation



P-splines

In 1986 Eilers and Marx ! propose a new family of splines with penalty:

P-splines ingredients

@ Sz cubic spline space spanned by polynomial cubic B-splines;

® uniform set of m knots {1, ...,&,} (dimension of the space m + 2);

(3] Z ajBJfl(x) = Z(Aza)jbj(x), where (A%a); = a; — 2a3;_; + aj_2,
JEZ JEZ

1P. H. C. Eilers, B. D. Marx,(1996) Flexible smoothing with B-splines and penalties, Statistical Science 11.
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P-splines

In 1986 Eilers and Marx ! propose a new family of splines with penalty:

P-splines ingredients

@ Sz cubic spline space spanned by polynomial cubic B-splines;

® uniform set of m knots {1, ...,&,} (dimension of the space m + 2);

(3] Z ajBJfl(x) = Z(Aza)jbj(x), where (A%a); = a; — 2a3;_; + aj_2,
JEZ JEZ

O a certain level of approximation

1P. H. C. Eilers, B. D. Marx,(1996) Flexible smoothing with B-splines and penalties, Statistical Science 11.
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Penalized Splines

Definition (P-Spline)

Given n real data points (x;,y;),i =1,...,n, x3 < -+ < X,, and the cubic spline
space S3 of dimension m+ 2 (m — 2 internal knots), defined on [a, b], with a < x
and x, < b spanned by m + 2 polynomial cubic B-splines B;, j = 1,...,m+ 2
based on the uniform set of knots {¢1,...,&m} with & = a and &, = b.

The P-spline s(x) = ij? ajBj(x), solve the penalized least squares problem

2
m-+2 m+2

2
2
7m7|§1m+zz wi | yi— Z aBi(x) | + )\Z ((A a)j)
Jj=1 Jj=3
with respect to the spline coefficients a = (ay,...,a,) while (wy,...,w,) are

weights and A is a regularization parameter.

V.
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Pspline properties

The work of Eilers and Marx on P-splines has led to important developments in
data regression through splines.
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Pspline properties

The work of Eilers and Marx on P-splines has led to important developments in
data regression through splines.

P-splines have a number of useful properties, inherited from B-splines:
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Pspline properties

The work of Eilers and Marx on P-splines has led to important developments in
data regression through splines.

P-splines have a number of useful properties, inherited from B-splines:

> P-splines fit constant and linear polynomial data exactly;
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Pspline properties

The work of Eilers and Marx on P-splines has led to important developments in
data regression through splines.

P-splines have a number of useful properties, inherited from B-splines:

> P-splines fit constant and linear polynomial data exactly;

» P-splines conserve moments (mean, variance) of the data;

Costanza Conti, Unifi Spline4representation



Pspline properties

The work of Eilers and Marx on P-splines has led to important developments in
data regression through splines.

P-splines have a number of useful properties, inherited from B-splines:

> P-splines fit constant and linear polynomial data exactly;
» P-splines conserve moments (mean, variance) of the data;

» P-splines show no boundary effects, as many other smoothers.
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Beyond P-splines: a motivating application

Define data-driven models for data analysis and forecasting of exponential
data is a frequent need in nuclear magnetic resonance studies, atmospheric
pressure changes, epidemic growth patterns, etc.
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Beyond P-splines: a motivating application

Define data-driven models for data analysis and forecasting of exponential
data is a frequent need in nuclear magnetic resonance studies, atmospheric
pressure changes, epidemic growth patterns, etc.

Exponential data analysis
Given (xi,yi), i =1,...,n, a finite set of noisy data,
yi=f(xi)+ei, i=1,...,n, ¢&; unknown noise sources

where f is the weighted sum of exponential functions

M
f(x) = Z ce®”, aj €R.
=t
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Beyond P-splines

» Replace polynomial splines = with exponential-polynomial splines
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Beyond P-splines

» Replace polynomial splines = with exponential-polynomial splines

» Extend polynomial B-splines = exponential-polynomial B-splines
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Beyond P-splines

» Replace polynomial splines = with exponential-polynomial splines

» Extend polynomial B-splines = exponential-polynomial B-splines

» Generalize the polynomial P-splines idea = define HP-splines
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Beyond P-splines

We consider a two- and a four-dimensional exponential space for o € R

Ep o :=span{e™ ", xe ™}, E,, :=span{e™, xe™*, e™*, xe” ¥}
that are the null spaces of suitable differential operators £, and £ L»:

Lou = U +2au +a? u, L3Lp= viV) — 202" 4ot v, a € R.

1 We consider splines with segments in these spaces.
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Beyond P-splines

We defined? an optimal basis for hyperbolic-polynomial splines:

HB-splines:

> with a bell-shaped graph; o
» with a compact support identified by -
5 uniform knots; § 7 . A

» C2-regular, and with segments in the
space E4 o;

Graph of an exponential-polynomial B -spline

> reproducing functions in Ej .

2R. Campagna, C. Conti, S. Cuomo, Smoothing exponential-polynomial splines for multiexponential decay data, Dolomites Res. Notes Approx. 12
(2019) 86-100.
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Beyond P-splines

To define a new family of hyperbolic-polynomial penalized splines (HP-splines), we
start by considering the penalized least square problem

2 2
n m+2 b m+2
min g wi | vi— E aj *(x7) + A E ajﬁszo‘(x) dx.
Alyeny am+2 a P—
i=1 j=

Following the P-spline idea we substitute £, with a difference operator:

A u=etu(x + h) —2u(x) + e Mu(x — h), xe[ab], a,heR
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Approximation levels

> we use the uniformity of the knots, B*(x — (h) = B{ ,(x) and write:

m+2 m+2

Z ajAh OZBO‘ - Z ] ( athq_l(X) - 2Bj(x) +e ahBJO-éFl( )) :

Jj=1

ah

> defining (AD“a); = e*"a;,1 — 23 + e “"a; | we see that

m+2 m+2
> we can switch the difference Z ajAg’o‘Bj“(x) = Z(Ag’aa)ij“(x).
j=1 j=1
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Hyperbolic-polynomial Penalized Splines (HP-splines) 3

Definition (Hyperbolic-polynomial Penalized Spline)

Given the data (x;, y;)i=1,....» and the uniform knots =:={a=& < & - <&n =
b}, with a < x1, x, < b. Deflned the exponential-polynomial B-splines {Bo‘ m+2
basis with segments in the space E4 ,, := span{e®*, xe®*, e~ ¥, xe~*}, «a E R
the HPspline s(x) = ZJ’"JEZ ajBf(x) is the solution of

m+2 m+2

m|n ZW, Vi — Zaj (x7) +)\Z(Aha )

o3dm+2

3R. Campagna, C. Conti, Penalized Hyperbolic-Polynomial Splines, Applied Mathematics Letters 118 (2021)
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Hyperbolic-polynomial Penalized Splines (HP-splines) 3

Definition (Hyperbolic-polynomial Penalized Spline)

Given the data (x;, y;)i=1,....» and the uniform knots =:={a=& < & - <&n =
b}, with a < xq, x, < b. Defined the exponential-polynomial B-splines {BO‘ m+2
basis with segments in the space E4 ,, := span{e®*, xe®*, e~ ¥, xe~*}, «a E R
the HPspline s(x) = ZJ’"JEZ ajBf(x) is the solution of

m+2 m+2

m|n ZW, Vi — Zaj (x7) +)\Z(Aha )

o3dm+2

5 HP-splines extend P-splines and reduce to them when o = 0.

3R. Campagna, C. Conti, Penalized Hyperbolic-Polynomial Splines, Applied Mathematics Letters 118 (2021)
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Hyperbolic-polynomial Penalized Splines (HP-splines)

The minimization problem is equivalent to solve the linear system

=1,....m+2
=1,...,n

h, ha a . a j

BTWy — (BTWB +A(DS*)TD! a) 5 Bi=(B(x))

where y € R”, a € R(M2)| B ¢ RmX(m+2) \y ¢ Roxn, Dhe ¢ Rnx(m2)
» B’ band structure is inherited by the

B-splines locality and depends on the
B-splines at the data x;;

» D) is three-banded, with exponential
terms depending on «.
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HP-spline properties (1)

@ P-splines P-splines can fit constant and linear polynomial data exactly:

> cubic B-splines fit polynomial data up to degree 1
> the reproduction property of the B-splines transfer to the P-splines, whatever the value of .

HP-splines E, ,-reproduction
> hyperbolic-polynomial B-splines reproduce E; ,
> the reproduction property of the hyperbolic-polynomial basis transfer to the
HP-splines, whatever the value of \.

* data

2 ¢ spline knots
P-spline
-spline
unction

2 o 2 4 6 s 10
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HPspline properties (2)

@ P-splines conserve pol. moments (mean, variance) of the data:
n n n n
STH=>"y and > xzi=> xyi,
i=1 i=1 i=1 i=1

with 9i = s(x;) = "*2 1 4;Bj(x;) computed (predicted) values.

HP-splines conserve exponential moments of the data:

§ e (xx, § e ax, § x;e ax, § x;e ax,
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Numerical results

HP-splines in action
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Numerical results

» Test 1: example of regression of a real dataset and comparison
with P-spline.

» Test 2: Examples of working for different parameters:
> sensitivity with respect to A, a and the level of noise o
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Test 1. Benchmark Motorcycle Data

> L: HP-spline (black) vs P-spline (magenta), (n =40, @ = 0.3 and A = 0.5)

> R: HP-splines with a = 0.3, A = 0.5 and n € {15, 20, 25, 30, 35, 40,45,50}. n =15
and n = 20 grant a solution outside the 95% Bayesian conf. region.

IS As expected, with no prior information, HP-spline behaves similarly to P-spline.
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Test 2: comparison with Pspline on a synthetic and noisy
data set

» Random (x;,y:)™;, with m = 40, x; € [-1.5,1.5], y; = f(x;), f(x) = 107°(e™ —
xe~ ™), Gaussian noise with zero mean and st. dev. o.

» Consider the HP-spline (black), with oo = 3.
> results for n =20, 0 = 0.1, A = 0.1 (left) and A = 1 (right).
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n=15 A=0.1, o =10~}

n=20, A\=0.1, 0 =5-.10"2 n=20, A\=0.1, o =101 n=20, A\=0.1, 0 =5-10" !

line4representation
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Conclusions and Future work

Costanza Conti, Unifi Spline4representation



Conclusions and Future work

» Splines are a simple but powerful tool that find application everywhere;
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Conclusions and Future work

» Splines are a simple but powerful tool that find application everywhere;

» According to the type of application polynomial splines must be replaced with other
type of splines, for example exponential-polynomial splines;
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Conclusions and Future work

» Splines are a simple but powerful tool that find application everywhere;
» According to the type of application polynomial splines must be replaced with other

type of splines, for example exponential-polynomial splines;

» HP-splines inherit from P-splines the separation of the data from the free nodes
avoiding the problems of overfitting, and boundary effects;
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» Splines are a simple but powerful tool that find application everywhere;
» According to the type of application polynomial splines must be replaced with other

type of splines, for example exponential-polynomial splines;

» HP-splines inherit from P-splines the separation of the data from the free nodes
avoiding the problems of overfitting, and boundary effects;

» HP-splines enjoy analogous properties of P-splines: moments preservation, exponential-
polynomial reproduction;

Costanza Conti, Unifi Spline4representation



Conclusions and Future work

» Splines are a simple but powerful tool that find application everywhere;
» According to the type of application polynomial splines must be replaced with other

type of splines, for example exponential-polynomial splines;

» HP-splines inherit from P-splines the separation of the data from the free nodes
avoiding the problems of overfitting, and boundary effects;

» HP-splines enjoy analogous properties of P-splines: moments preservation, exponential-
polynomial reproduction;

» A clever selection of the frequency parameter v combined with a smart selection of
A is presently under investigation.
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Thank you for your attention!!
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