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Why studying gauge theories in three dimensions

Most studies of gauge theories strictly connected with High Energy Physics
and fundamental interactions.

Gauge theories are also very important in condensed matter physics.

1) U(1) gauge symmetry: charged systems...

2) Discrete gauge symmetries: Z2 gauge models appear in several contexts,
giving rise to topological transitions (they control the dynamics of classes of
topological defects)

3) Emergent gauge symmetries: a new concept that is now used to interpret
many exotic 2D quantum transitions.



A simple case of emergent U(1) gauge symmetry

Spin-1/2 antiferromagnet on a square lattice

H =
∑
〈xy〉

Jxy Sx · Sy

with two types of bond couplings Jxy (thick lines and dashed lines)

If all couplings are identical, we have a standard antiferromagnet.
Order parameter: N =

∑
x (−1)PSx .

Gapless excitations: spin waves.



If the couplings along
the dashed lines are
zero, the ground state
is formed by spin-zero
singlets on the thick
bonds.
Gapped excitations:
Spin-one bonds
(triplons, excitons).

There is a quantum phase transition between the two states.
Is there an order parameter for both phases?



Deconfined criticality

The solution: fractionalization and emergent U(1) symmetry

1) We first move from the quantum theory to a classical model in 2+1 d.
2) The order parameter is the spinon, a two-dimensional complex spinor z
related to the spin S by Sx = z̄xσzx „ where σ is a Pauli matrix.
3) The relation between z and S is defined modulo a U(1) transformation:
emergence of a U(1) gauge invariance
4) The order parameter of the paramagnetic dimer phase is density of
defects.

Field theory: (2+1) Abelian-Higgs model.
A detailed analysis of the path-integral formulation shows that one should
consider the formulation with noncompact gauge fields.



Abelian-Higgs model

We consider an Nf -component unit-length scalar field zx and a real U(1) field
Ax,µ defined on the lattice bonds.

Matter action [λx,µ = exp(iAx,µ)]

Sm = J
∑
xµ

Re z̄xλx,µzx+µ

Gauge compact action:

Sg,c = κ
∑

P

Re λx,µλx+µ,ν λ̄x+ν,µλ̄x,ν

Gauge non compact action:

Sg,nc = −κ
2

2

∑
P

(∇µAx,ν −∇νAx,µ)2

In the compact case, there excitations connected to monopole configurations:
in the absence of matter fields, these excitations make the theory always
confining (Polyakov).



Critical behavior: the field-theory point of view

First approach: Landau-Ginzburg-Wilson framework

The critical dynamics is ONLY controlled by the dynamics of the
gauge-invariant matter sector. Gauge fields are only relevent for selecting the
gauge-invariant sector.

The relevant symmetry group is the global symmetry group. More precisely,
the universality class of the transition is determined uniquely by the the global
symmetry breaking pattern and the transformation properties
(representation) of the fhe matter field under global transformations.
The gauge symmetry group is largely irrelevant.

This is the approach used by Pisarski and Wilczek to study the finite-T
transition in QCD. They consider the order parameter φij = ψ̄i,Lψj,R and the
most general scalar theory for φ (without gauge fields) with
SU(Nf )L ⊗ SU(Nf )R global symmetry.
PW’s assumtion is that, at criticality, the universal behavior of the finite-T
QCD and of the scalar theory is the same.



Critical behavior: the field-theory point of view

Second approach: Gauge-field theory

One can consider the gauge field theory with the same field content and use
the usual Wilson-FIsher approach, i.e., determine the stable fixed points of
the renormalization-group flow. The fixed points that correspond to non-zero
values of the gauge couplings are charged fixed points (CFPs).

Charged fixed points cannot be obtained in the LGW approach.

Computationally, one can determine them using the Wilson-Fisher
ε-expansion, i.e. perturbatively in powers of ε = 4− d .

AT PRESENT: all physical systems studied have LGW transitions
CFPs have been identified in Abelian-Higgs models for Nf ≥ 10.
Little evidence of CFPs in non-Abelian systems. A candidate has been found
in a system with Nf = 40 flavors, SU(Nf ) global symmetry and SU(2) gauge
invariance (it does not exist for Nf = 20).



The compact Abelian-Higgs model
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Scalar matter: scalar field z with Nf

components and |z| = 1.
U(1) gauge fields with standard Wilson
action.
SU(Nf ) global invariance.
κ is the plaquette coupling S = κΠx,µν ,
J is the matter field coupling S =
Jzx zx+µUx,µ.

Single transition line, independent of κ (κ is irrelevant).
It is a standard order-disorder transition. For Nf = 2, the order parameter is
the Neél order parameter of the antiferromagnet, z̄xσzx . For generic Nf , we
should use the SU(Nf ) adjoint (gauge-invariant) combination z̄azb − δab/Nf .



The compact Abelian-Higgs field theory: LGW approach

Field: a hermitian traceless scalar field φab that is a coarse-grained
representation of the order parameter z̄azb − δab/Nf .
Lagrangian: the most general up to four powers of the field.

L =
1
2

Tr ∂µφ∂µφ+
r
2

Tr φ2 + g3Tr φ3 + g4,1Tr φ4 + g4,2(Tr φ2)2

Because of the presence of a φ3 term we predict a first-order transition,
independently of Nf .

Nf = 2 is peculiar, simce Tr φ3 = 0.
Tr φ = 0 = λ1 + λ2, implies λ2 = −λ1.
Tr φ3 = λ3

1 + λ3
2 = 0

Moreover, if we write φ = ψ · σ, we can rewrite L as the LGW for an O(3) real
field ψ. For Nf = 2 we predict O(3) behavior.



The compact Abelian-Higgs model: numerical results

Numerical simulations:
1) O(3) behavior for Nf = 2
2) first-order transition for Nf ≥ 3, with a latent heat EHT − ELT and a surface
tension (eβσL2

is the height of the barrier between the two phases) that
increase with Nf .

A first-order transition is predicted in the limit Nf →∞.
Textbook results for Nf →∞: Continuum and lattice calculations predict a
continuous transition, under the usual technical assumptions.

Which technical assumption fails?
Analytic calculations consider a saddle point with Ux,µ = 1 modulo gauge
transformations. This is correct in the ordered phase, but not in the
disordered phase, where monopole configurations are also relevant for
Nf →∞.

We have verified that Ux,µ does not order for Nf →∞ in the (matter)
disordered phase (J small).



The noncompact Abelian-Higgs model
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The gauge field is a real field Ax,µ

with gauge action
κ
2 (∇µAx,ν −∇νAx,µ)2

on each plaquette [∇µ is the lattice
derivative].
Scalar matter and interactions: as
before with Ux,µ = exp(iAx,µ).
Gauge group: (noncompact) R in-
stead of (compact) U(1).

There is a new transition line (line
MH) that divides the (matter) or-
dered phase (large-J phase).

There are two different large-J phases: "molecular" (compact/noncompact
does not play any role), "Higgs" (peculiar of the noncompact model).



MH line

For J →∞ we should maximize the matter-field interaction on each link
S ∼ J z̄x · zx+µUx,µ.
It implies zx = Uxy zy for nearest neighbors xy .
If x → z → y (z is a n.n. of x , y is a n.n. of z:

zx = Uxzzz = UxzUzy zy = [
∏

path x→y

Up] zy

This result can be generalized to any lattice path. In particular to a plaquette:
zx = Πx zx . Therefore, for J →∞, we have Πx = 1. Modulo gauge
transformations, this implies Ux,µ = 1, which implies

Ax,µ = 2πnx,µ nx,µ ∈ Z

For J →∞ we have a discrete gauge theory with gauge (n.c.) group Z.
Duality can be used to prove that the model has a topological transition in the
XY/O(2) universality class.



MH line

Interaction: 2π2κ
∑

P(∇µnx,ν −∇νnx,µ)2

Two phases:
1) small κ; fields are disordered and nx,ν fluctuate wildly.
2) large κ; gauge fields are ordered. Modulo gauge transformations we have
nx,µ = 0 at most of the lattice sites.

For κ small and any J the model is equivalent to the compact one (one can
imagine the compact one as a model with fields Ax,µ in which changes by
2πnx,µ are unconstrained).
For large J and large κ, we have Ax,µ = 0 at most of the lattice sites
(periodicity is completely lost). This phase is only possible in the noncompact
model.
If one is looking at new physics (DQC), one should consider the CH line.



Numerical results

We have studied the CM and the CH line.

CM line: as in the compact model, we have O(3) continuous transitions for
Nf = 2, first-order transitions for Nf ≥ 3.

CH line: first-order transition for Nf = 2, 4, continuous transitions for
Nf = 10, 15, 25. These transitions are not LGW transitions. Are they
associated with charged fixed points?

Results from the Abelian-Higgs field theory in ε expansion [ε = 4− d ].
A CFP exists for Nf > N∗f , with (at 4 loops)

N∗f = 183
[
1− 1.752 ε+ 0.789 ε2 + 0.362 ε3 + O(ε4)

]
.

This expansion does not look to be very predictive for d = 3, i.e., ε = 1.
Anyway it indicates that a CFP exists for Nf large enough!



Numerical results

Just to give an example of the quality of the numerical results. Here Nf = 25.
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The transition is clearly continuous. We estimate ν = 0.802(8),
ηq = 0.883(7).



Numerical results

How can we be sure that the transitions we have found are those predicted
by the continuum Abelian-Higgs field theory?

Large-Nf expressions:

ν = 1− 48
π2Nf

+ O(N−2
f ) ηq = 1− 32

π2Nf
+ O(N−2

f ) ,

Nf ν νln ηq ηq,ln

25 0.802(8) 0.805 0.883(7) 0.870
15 0.721(3) 0.676 0.815(10) 0.784
10 0.64(2) 0.514 0.74(2) 0.678

Comparison: quite good agreement for Nf = 25, larger differences for
Nf = 15, 10 that can be explained in terms of 1/N2

f corrections
The conjecture that the transition is controlled by the field-theory CFP is
supported by the numerical results

A CFP exists for Nf > N∗f with 4 < N∗f < 10.
Unfortunately the CFP is not relevant for the physical case Nf = 2.



Charge-Q compact model

S = J
∑
〈xy〉

Re z̄x · zy UQ
xy + κ

∑
P

Re ΠP .

The matter fields belong to the charge-Q rep. of U(1).
We can rewrite the model as follows. Define

Uxy = exp
(

iAxy

Q

)
Vxy = eiAxy − πQ ≤ Axy ≤ πQ

The action becomes

S = J
∑
〈xy〉

Re z̄x · zy Vxy + κ
∑

P(µ,ν)

cos
[

1
Q

(∇µAxν −∇νAxµ)2
]

It interpolates between the compact (Q = 1) and the n.c. model Q →∞.

For J →∞ we again obtain a discrete gauge theory. Since Vx,µ = 1 modulo
gauge transformations

Axµ = 2πnx,µ nx,µ ∈ ZQ

ZQ : additive group of integers modulo Q.



Charge-Q compact model

κ

J

0 ∞

∞

disordered
confined

ordered
deconfined

ordered
confined

DC-OD line

DC-OC line

O
C
-O

D
lin

eCPN−1

Zq

O(2N)

0 0.1 0.2 0.3 0.4 0.5

R
ξ

1

1.01

1.02

1.03

1.04

1.05

U

L=16

L=32

L=64

L=48

L=64

q=2, N=25, κ=1

non comp.

Same phase diagram as in the n.c. case.
Along the analogue of the CH line (DC-OD line) we find a transition controlled
by the field theory CFP for Nf large (verified for Nf = 25).



Conclusions

We have studied three models:
1) compact AH model
2) noncompact AH model
3) compact charge-Q AH model (it interpolates between 1 and 2)

For Nf = 2 we only find a LGW FP [O(3) behavior] or first-order behavior.
Ongoing work: this is is still true if we replace the U(1) gauge group with the
subgroup Zp with p ≥ 3. This is agreement with the LGW hypothesis on the
irrelevance of the gauge group.

Transitions controlled by the field-theory CFP are observed for Nf > N∗f , with
N∗f = 5-9.
A CFP transition requires the presence of a topological transition that kills
some of the low-energy topological excitations (monopoles) that are present
in the compact model.
The ε expansion is not predictive for N∗f . In 4D we get N∗f = 183, to be
compared with the single-digit result in 3D.



Conclusions

What does it happen with fermions?

In 4D, the SU(3) gauge theory with Nf Dirac fermions has a CFP for
Nf > N∗f = 33/2 = 16.5.

Speculations. What is the critical value in 3D? If a CFP exists for physically
interesting values of Nf , we should revisit our predictions for the
finite-temperature transition of QCD.

Pisarski and Wilczek assume that the relevant fixed point is a LGW fixed
point, while instead the physics may be controlled by a CFP.


