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Paper

Broader LatCos collaboration including Valentin Nourry, Lizzie Dobson.
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Inflation

Inflation Solves

The Horizon Problem

The Flatness Problem

The formation of struture in the universe

Testable

∆2
R(q) = ∆2

0

(
q

q∗

)ns−1

(ΛCDM)

Problems

Fine-tuning of the inflation potential/inflaton

Requires specific initial conditions

Is an Effective field theory, leaving the initial singularity as an
unresolved problem
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Holographic Cosmology

. A full Quantum Gravity description of the early universe through a
Holographic dual QFT in 3-dimensions

. Built upon the dS/CFT correspondence (Strominger, 2001;
Maldacena, 2003)
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The Holographic Dual QFT

Action

S =
1

g2
YM

∫
d3x Tr

[
(Dφ)2 +

1

2
FijF

ij + λφ4 + ψ̄Diγ
iψ + µψ̄ψφ

]
The fields φ are SU(N)-valued

In 3-dimensions, with a dimensional coupling, [g2
YM ] = 1.

See (McFadden and Skenderis, 2010) for more

Promote gYM to a field with appropriate conformal transformation
properties −→ CFT (generalalized conformal invariance).

IR Behavior

. Time in the bulk is mapped to Inverse RG-Flow in the dual

. Therefore the IR of the dual corresponds to the initial singularity
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Holographic Dictionary

EMT two-point functions

Through symmetry arguments have

〈Tij(q̄)Tkl(−q̄)〉 = A(q̄)Πijkl + B(q̄)πijπkl

We can relate A and B to the scalar and tensor power spectra of the
CMB (∆s and ∆t respectively)

Holographic Dictionary

∆2
S(q) =

−q3

16π2ImB(−iq)
, ∆2

T (q) =
−2q3

π2ImA(−iq)
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Figure: The Cosmic
Microwave Background
as observed by Planck
(Akrami et al., 2018)
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Perturbation Theory in the dual

. Corrections to the mass (m2φ2-term) from renormalization.

. Theory IR-finite at one-loop order

Two-loop

δm2 ∝ g2D(p)N (N)

D(p) =

π/a∫
−π/a

d3k

(2π)3

d3q

(2π)3

1

k2 q2 (k + p + q)2

p→0−−−→ DIR(p) = − log(|pa|)
(4π)2

. At higher loop order there are polynomial IR divergences

A Finiteness Conjecture

Divergences are an artifact of perturbation theory (Jackiw and Templeton,
1981; Appelquist and Pisarski, 1981)
g takes the role of an IR-regulator in the log. (e.g. D(p) ∝ log(g) as
p → 0). Accounts for higher-loops also!

Ben Kitching-Morley University of Southampton Nonperturbative IR finiteness 31st March 2022 8 / 23



A first test of holographic cosmology

. Data suggest no
fermions in theory just
scalars and gauge fields
(Afshordi et al., 2017)

. Holographic Cosmology
fits data with l ≥ 30 as
well as ΛCDM

(perturbative regime)

. ΛCDM tensions at low
multi-poles.

. To fully test the model
need to go into the
non-perturbative regime

Need a for a lattice
simulation.

Figure: CMB power spectrum, with
ΛCDM and Holographic cosmology fits.

Fitting functions

∆2
R(q) = ∆2

0

(
q

q∗

)ns−1

(ΛCDM)

∆2
R(q) =

∆2
0

1 + gq∗
q log | q

βgq∗
|(HC )
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Strategy

We start with a simple pure-scalar SU(N) theory. UV understood (see
Laine, 1995) For N = 2 the model is equivalent to O(3) and N = 3 in
same universality as O(8) (see Campostrini et al., 2002; Pelissetto and
Vicari, 2015; Hasenbusch, 2022 for example for O(N).)

Scalar Lattice Action

S =
N

g

∑
x∈Λ

Tr
[
(∂µφ(x))2 + (m2 −m2

c)φ(x)2 + φ(x)4
]

where a bare-mass parameter has been added so that it can be tuned to
sit at the phase-transition

Goals

Test IR-finiteness of the theory

Find the bare mass parameter value in the continuum limit
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Ensembles

Implemented with the GRID framework (github.com/paboyle/Grid)

Generated on SKL Cluseters (STFC DiRAC CSD3, Cambridge and
Iridis5, Southampton)

O(105) configurations per ensemble

N 2, 4
g 0.1, 0.2, 0.3, 0.5, 0.6
L 8, 16, 24, 32, 48, 64, 96, 128

m2 Many points in the vicinity of the transition

Open Source

Code DOI: 10.5281/zenodo.4290508

Data DOI: 10.5281/zenodo.4266114
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Phase Transitions and the Binder Cumulant

We can tune the parameter m

Consider the zero-mode (EFT)

In m→∞ limit ground state is symmetric

In m→ −∞ limit there is SSB

Therefore the theory contains a phase transition.

The holographic map can be used when the theory is at the critical mass
point.

We therefore need something to quantify the phase transition:

Binder Cumulant

B = 1− N

3

〈Tr
[
M4
]
〉

〈Tr [M2]〉2

Where M is the Magnetisation
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Reweighting

We use multi-histogram reweighting which allows you to interpolate
between simulated mass points (Ferrenberg and Swendsen, 1988)

〈Om〉 =

∫
Dφe−Sm[φ]O∫
Dφe−Sm[φ]

=

∫
Dφe−(m2−m2

0)φ2+S ′m0
[φ]O∫

Dφe−(m2−m2
0)φ2+S ′m0

[φ]

=
〈e−(m2−m2

0)φ2O〉m0

〈e−(m2−m2
0)φ2〉m0

Sm =
N

g

∫
d3x

[
Tr
[
(∂µφ(x))2 + (m2 −m2

c)φ(x)2 + φ(x)4
]]
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Scaling laws

The Binder Cumulant, like all critical quantities, follows a Scaling Law

Binder Cumulant Scaling Law

B = f

(
1

g2

(
m2(g , L)−m2

c(g)
)

(gL)1/ν

)
=⇒ B̄ = f

(
1

g2

(
m2(B̄, g , L)−m2

c(g)
)

(gL)1/ν

)
We can Taylor expand f near the critical point. To first order this gives

General fit anzatz

m2(B̄, g , L) =m2
c(g , L) + g2(gL)−1/ν B̄ − f (0)

f ′(0)
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Competing Anzatz

We can express the critical mass in different ways

Critical Bare-mass parameter

m2
c(g , L) = m2

c(g)|1−loop + βDIR(ΛIR(g , L))N (N)

with

D(p) = DIR(p) = − log(ΛIR)

(4π)2

Competing Anzatz

. MODEL 1: IR Divergences, ΛIR = 1/L

. MODEL 2: IR-finite a. la. Jackiw and Templeton, 1981; Appelquist
and Pisarski, 1981, ΛIR = g/(4πN)
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A first look at the data
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Determining the preferred anzatz (*)

How do we determine the preferred anzatz?

. Frequentist Analysis: Through determining which anzatz can fit the
most data (up to a significatance level α.)

. Bayesian Analysis: Through directly comparing the likelihoods of
the models

Pros & Cons

Frequentist Is conceptually, and often computationally simpler, but
doesn’t answer the question directly

Bayesian Directly answers the question ”Which model do the data
prefer?”, but has ambiguities
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Method 1: Frequentist

N 2 4

gLmin (IR Finite) 12.8 12.8
gLmin (IR Infinite) 32 24

0.000 0.005 0.010 0.015 0.020 0.025
1/(gL)1/ν

−0.310

−0.305

−0.300

−0.295

−0.290

a
m

2 (g
,L

)/
g

ag =0.1
ag =0.2

ag =0.3
ag =0.5

ag =0.6
2-loop, L =∞

Critical scaling parameter, ν agrees with Hasenbusch, 2001 for N = 2.
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Bayesian Evidence

We can apply Bayes Theorem:

p(M|data) =

∫
dα p(M(α)|data) p(α|M),

=

∫
dα

p(data|M(α)) p(M(α))

p(data)
p(α|M),

=
p(M)

p(data)

∫
dα L(M(α)) p(α|M),

We can then define the Bayes Factor

Bayes Factor

K (data) =
p(M1|data)

p(M2|data)
=

∫
dα1 L(M(α1)) p(α1|M)∫
dα2 L(M(α2)) p(α2|M)

p(M1)

p(M2)
.
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Jeffreys’ Scale

First written in Harold Jeffreys’ book Theory of Probability in
1939

Along with variants it is popular to this day

log10(K ) Interpretation

x < 0 Support for the alternative model
0 < x < 1/2 Barely worth mentioning
1/2 < x < 1 Substantial
1 < x < 1.5 Strong
1.5 < x < 2 Very Strong

x > 2 Decisive
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How can we choose priors? (*)

For a problem with Gaussian errors, we choose a uniformly
distributed prior

Physics can give bounds on prior (e.g. f0 ∈ [0, 1])

Or at least a natural parameterisation

If not, ideally we would use as large a prior as possible

However, the integration above is non-trivial, so we have to
compromise.

Priors here chosen to be large enough to contain distribution within
10 sigma.
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Results
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We conclude that the scalar SU(N) theory is IR-finite
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Updates & Future Works

Updates

Code has been adapted to run on NVidea GPU’s for new Tursa
machine in Edinburgh

Gauge Fields have been implemented in GRID code

Renormalization of T -Tr [φ2] correlator complete (Del Debbio et al.,
2021)

Ongoing work

N = 3 and N = 5 datasets have been produced, fitting ongoing

We want to determine if we can take a large-N limit

Renormalization of the TT -correlator is underway. Once complete
this will allow fitting to CMB data

Thank you for listening!
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