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Inflation

Inflation Solves

@ The Horizon Problem

@ The Flatness Problem

@ The formation of struture in the universe

v,

ns—1
D3 (q) = A3 (j) (Aeom)

*

\

Problems

o Fine-tuning of the inflation potential/inflaton
@ Requires specific initial conditions

@ Is an Effective field theory, leaving the initial singularity as an
unresolved problem
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Holographic Cosmology

> A full Quantum Gravity description of the early universe through a
Holographic dual QFT in 3-dimensions

> Built upon the dS/CFT correspondence (Strominger, 2001;

Maldacena, 2003)

Holographic
RG Flow

Domain-wall/
cosmology
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Cosmology
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The Holographic Dual QFT

1

S=—5— [ iTr [(D¢)2 + %F,-J-F"f + A" + PDy'Y + WZW]

&ym

@ The fields ¢ are SU(N)-valued
e In 3-dimensions, with a dimensional coupling, [g,,] = 1.
@ See (McFadden and Skenderis, 2010) for more

Promote gy, to a field with appropriate conformal transformation
properties — CFT (generalalized conformal invariance).

IR Behavior

> Time in the bulk is mapped to Inverse RG-Flow in the dual

> Therefore the IR of the dual corresponds to the initial singularity
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Holographic Dictionary

EMT two-point functions

Through symmetry arguments have
(Tij(q) Tu(—q)) = A(@)Njs + B(q)mijmw

We can relate A and B to the scalar and tensor power spectra of the
CMB (As and A; respectively)

Holographic Dictionary
3 3
—q 2 —2q
Ai(gq)= — 1T A =
5(9) 16m2ImB(—iq)’ () m2ImA(—iq)

Figure: The Cosmic
Microwave Background
as observed by Planck
(Akrami et al., 2018)
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Perturbation Theory in the dual

> Corrections to the mass (m?¢?-term) from renormalization.
> Theory IR-finite at one-loop order

Smp < g2D(p)N'(N)

w/a

P k& 1 » _ log(Jpal)
pp)= | e REkprap PR =T

—7/a

> At higher loop order there are polynomial IR divergences

A Finiteness Conjecture

Divergences are an artifact of perturbation theory (Jackiw and Templeton,
1981; Appelquist and Pisarski, 1981)

g takes the role of an IR-regulator in the log. (e.g. D(p) = log(g) as
p — 0). Accounts for higher-loops also!
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A first test of holographic cosmology

> Data suggest no
fermions in theory just
scalars and gauge fields
(Afshordi et al., 2017)

> Holographic Cosmology
fits data with / > 30 as
well as ACDM
(perturbative regime)

10+ 1)C, /277 [uK?]

) Figure: CMB power spectrum, with
> Acpm tensions at low Acpm and Holographic cosmology fits.
multi-poles.

> To fully test the model

ns—1
- aq
need to go |nt.o the . A%(q) = A2 <_> (Acom)
non-perturbative regime *
_ A
- 8% |og |9
1+ q I°g|ﬁgq*|

(HC)

simulation.

Need a for a lattice J A%?(q)
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We start with a simple pure-scalar SU(N) theory. UV understood (see
Laine, 1995) For N = 2 the model is equivalent to O(3) and N = 3 in
same universality as O(8) (see Campostrini et al., 2002; Pelissetto and
Vicari, 2015; Hasenbusch, 2022 for example for O(N).)

Scalar Lattice Action

ZTr[ Dup()) + (m* — m2)$(x) + 9()*

xe/\

where a bare-mass parameter has been added so that it can be tuned to
sit at the phase-transition

o Test IR-finiteness of the theory

@ Find the bare mass parameter value in the continuum limit
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Ensembles

o Implemented with the GRID framework (github.com/paboyle/Grid)

@ Generated on SKL Cluseters (STFC DiRAC CSD3, Cambridge and
Iridis5, Southampton)

e O(10°) configurations per ensemble

2,4
0.1, 0.2, 0.3, 05, 0.6
8, 16, 24, 32, 48, 64, 96, 128
2 | Many points in the vicinity of the transition

oo =2

3

Open Source
o Code DOI: 10.5281/zenodo.4290508
e Data DOI: 10.5281/zenodo.4266114

Ben Kitching-Morley University of Southampton Nonperturbative IR finiteness 31st March 2022 11 / 23



Phase Transitions and the Binder Cumulant

We can tune the parameter m

Consider the zero-mode (EFT)

In m — oo limit ground state is symmetric

In m — —oo limit there is SSB

Therefore the theory contains a phase transition.

The holographic map can be used when the theory is at the critical mass J
point.

We therefore need something to quantify the phase transition:

Binder Cumulant

Where M is the Magnetisation
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Reweighting

We use multi-histogram reweighting which allows you to interpolate
between simulated mass points (Ferrenberg and Swendsen, 1988)

0.650

= f D¢e_5m[¢] O 0.625
: W 0.600
[ De (M Sl 5o

Y

(Om)

[ Dpe (M =mDF+Splel "
. <ei(m2img)¢20>mo 0500
<ei(m27m(%)¢2>mo 0475

Sm= 2 [ @ [T [(@u0(0)? + (7 — mD)o(x? + 6(°]
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Scaling laws

The Binder Cumulant, like all critical quantities, follows a Scaling Law

Binder Cumulant Scaling Law
1
= 1 (2 (m(e: 1) mi(e) (1)

5= f (g (7(B, g, L) — m(g)) (gLW”)

I

We can Taylor expand f near the critical point. To first order this gives
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Competing Anzatz

We can express the critical mass in different ways

Critical Bare-mass parameter

mg(g’ L) = mg(g)h—loop + 6D/R(A/R(g7 L))N(N)

with

D(p) = Dir(p) =

Competing Anzatz
> MODEL 1: IR Divergences, Aig = 1/L

> MODEL 2: IR-finite a. la. Jackiw and Templeton, 1981; Appelquist
and Pisarski, 1981, Ajg = g /(47 N)
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A first look at the data
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Determining the preferred anzatz (*)

How do we determine the preferred anzatz?
> Frequentist Analysis: Through determining which anzatz can fit the
most data (up to a significatance level a.)

> Bayesian Analysis: Through directly comparing the likelihoods of
the models

Pros & Cons

o Frequentist Is conceptually, and often computationally simpler, but
doesn't answer the question directly

o Bayesian Directly answers the question "Which model do the data
prefer?”, but has ambiguities
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Method 1: Frequentist

N 2 4
gL (IR Finite) | 12.8 | 12.8
gL min (IR Infinite) | 32 24

¢ ag=01 ¢ ag=03 b ag=06
ag =0.2 ¢ ag=05 2-loop, L =

—0.290 b

0.000 0005 0.010 0015 002 0.025
1/(gL)M"

Critical scaling parameter, v agrees with Hasenbusch, 2001 for N.= 2.
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Bayesian Evidence

We can apply Bayes Theorem:

p(Mdata) = / da p(M(a)|data) p(a|M),
) /da p(data|M(a)) p(M(a))

p(data)

p(alM),

__p(M)
p(data)

[ da L)) paim),

We can then define the Bayes Factor

Bayes Factor

p(Mi|data) _ [ daiL(M(a1)) p(ca|M) p(Mi)

Kdata) = Wpldata) — [ ez L(M(a2) p(aalM) p(Ma)
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Jeffreys' Scale

o First written in Harold Jeffreys’ book Theory of Probability in
1939

@ Along with variants it is popular to this day

log1o(K) Interpretation
x <0 Support for the alternative model
0<x<1/2 Barely worth mentioning
1/2<x<1 Substantial
l<x<15 Strong
15 <x<?2 Very Strong
x> 2 Decisive
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How can we choose priors? (*)

@ For a problem with Gaussian errors, we choose a uniformly
distributed prior

Physics can give bounds on prior (e.g. fy € [0,1])
Or at least a natural parameterisation

If not, ideally we would use as large a prior as possible

However, the integration above is non-trivial, so we have to
compromise.

@ Priors here chosen to be large enough to contain distribution within
10 sigma.
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We conclude that the scalar SU(N) theory is IR-finite
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Updates & Future Works

@ Code has been adapted to run on NVidea GPU'’s for new Tursa
machine in Edinburgh
@ Gauge Fields have been implemented in GRID code

@ Renormalization of T-Tr[¢?] correlator complete (Del Debbio et al.,
2021)

v

Ongoing work

@ N =3 and N =5 datasets have been produced, fitting ongoing

@ We want to determine if we can take a large-N limit

@ Renormalization of the TT-correlator is underway. Once complete
this will allow fitting to CMB data

A\

Thank you for listening!
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