A template for Composite Higgs models SU(2) gauge theory with N_f=2 fundamental fermions

Antonio Rago University of Plymouth & CERN

with V. Drach, P. Fritzsch, F. Romero-Lopez

[2107.09974] & [2012.09761]

Scattering observables as a probe of New Physics

LHC Run II:

Vector Boson Scattering :

- Probe the structure of electroweak interactions in the SM
- Very sensitive to new physics.

New strong dynamics Beyond the Standard Model:

- Dynamical origin to the EWSB
- investigated at the LHC.

Study of the properties of the Higgs boson Measure Vector Boson Scattering

[Covarelli et al, Int.J.Mod.Phys.A 36 (2021) 16, 2130009, 2102.10991]

• Scattering processes of the new strong sector contribute to SM processes

Composite Higgs models in a nutshell

Symmetry broken by a condensate (new sector fermions)

Higgs and longitudinal Z/W emerge as mesons

A composite Higgs boson can arise as a pNGB or as a light resonance based on the misalignment of the condensate with respect to the EW gauge symmetry

f: Higgs decay constant v: EW scale

Standard particles Quarks Force particles

Sigma observables as a probe of New Physics

underlying fermions.

predictions for the LHC.

• In general, the phenomenological implications of the new scalar resonance in a composite Higgs scenario will depend on the underlying dynamics and on the details of the electroweak embedding.

• One feature of a strongly interacting sector is the inevitable presence of a flavour singlet state of positive parity.

• In QCD-like theories, the σ is expected to be a resonance of two Goldstone bosons in the limit of massless

• In these models, aside from the Goldstone bosons, also the presence of new resonances like the σ can affect the

Sigma observables as a probe of New Physics

Phenomenological perspectives in the context of Composite Higgs models:

 0^{++} state mixes with the Higgs boson: alter its physical properties 0^{++} is expected to show up at the LHC as a heavy resonance

Such a resonance is expected to be produced at the LHC similarly to the SM Higgs, i.e. via gluon fusion and vector boson fusion mechanisms

Phenomenological implication for theories based on $SU(4) \rightarrow Sp(4)$ breaking considered

[Buarque Franzosi, Cacciapaglia et al *Eur.Phys.J.C* 80 (2020) 1, 28, 1809.09146]

SU(2)c with Nf=2 fundamental Dirac flavours

Fundamental representation of SU(2) is pseudo-real Chiral symmetry breaking pattern : $SU(4) \rightarrow Sp(4)$

UV completion of a Minimal composite Higgs model

The Higgs is a linear combination of GBs and of the 0⁺ state

Not excluded by experimental data

- [Buarque Franzosi, Cacciapaglia et al *Eur.Phys.J.C* 80 (2020) 1, 28, 1809.09146]

[G. Cacciapaglia & F. Sannino, JHEP 04 (2014) 111 1402.0233]

[Arbey et al, Phys.Rev.D 95 (2017) 1, 015028 1502.04718]

GBs in SU(2)c with Nf=2

Goal: build a correlation of operator with flavour singlet quantum numbers

$$Q = \begin{pmatrix} u_L \\ d_L \\ \tilde{u}_L \\ \tilde{u}_L \\ \tilde{d}_L \end{pmatrix} = \begin{pmatrix} u_L \\ d_L \\ (-i\sigma_2)C\bar{u}_R^T \\ (-i\sigma_2)C\bar{d}_R^T \end{pmatrix}$$

With the above convention we can define the multiplet and the singlet as

$$\Pi^i = \frac{1}{2} \left[Q^T (-i\sigma_2) \mathbf{e} \right]$$

$$\mathcal{O}_{\sigma} = \frac{1}{\sqrt{2}} \left[Q^T (-i\sigma_2) \right]$$

and $X^{1,\dots,5}$ are the generators of SU(4)/Sp(4).

$$E = \begin{pmatrix} 0 & 1_2 \\ -1_2 & 0 \end{pmatrix}$$

 $C\gamma_5 X^i EQ + h.c]$,

(2)CEQ + h.c].

GBs in SU(2)c with Nf=2 (cont.)

 $\Pi_{ud}(x) = u^{T}($ $\Pi_{\bar{u}\bar{d}}(x) = \bar{u}(x)$ π^{-} $\pi^{+}(x)$ $\pi^{0}(x) = \frac{1}{\sqrt{2}} \left[\bar{u}(x)\gamma_{5}u(x)\right]$

The two GBs flavour singlet operator is

$$\mathcal{O}_{\Pi\Pi} = -\frac{4}{\sqrt{5}} \sum_{i=1}^{5} \Pi^{i} \Pi^{i} = \frac{1}{\sqrt{5}} \Big[+\pi^{+}\pi^{-} + \pi^{-}\pi^{+} - \pi^{0}\pi^{0} + \Pi_{ud} \Pi_{\bar{u}\bar{d}} + \Pi_{\bar{u}\bar{d}} \Pi_{ud} \Big].$$

The fermion bilinear operator with the flavour singlet quantum number reads:

$$\mathcal{O}_{\sigma} = \frac{1}{\sqrt{2}} \left[Q^T(-i\sigma_2)CEQ + \text{h.c} \right] = \frac{1}{\sqrt{2}} \left[\bar{u}(x)u(x) + \bar{d}(x)d(x) \right].$$

$$egin{aligned} & f(x)(-i\sigma_2)C\gamma_5 d(x),\ & f(x)(-i\sigma_2)C\gamma_5 ar{d}(x)^T,\ & -(x) &= ar{u}(x)\gamma_5 d(x),\ & f(x) &= -ar{d}(x)\gamma_5 u(x),\ & f(x) &= -ar{d}(x)\gamma_5 u(x),\ & f(x) &= -ar{d}(x)\gamma_5 d(x)igg], \end{aligned}$$

S-matrix and scattering

In our lattice simulations the only rigorous approach to reveal the nature of a resonance is to estimate the scattering amplitude.

For scattering states, listing allowed energies is no longer useful

Instead, physical information is in the matrix elements:

S-matrix properties

Diagonal in angular momentum S-matrix unitarity

 $S^{\dagger}(E)S(E) = \sum_{\alpha} \langle \pi\pi, \mathrm{in} | \alpha \rangle \langle \alpha | \pi\pi, \mathrm{in} \rangle = \mathbb{I}$

All above-threshold energies appear natrix elements: $S(E) = \langle \pi \pi, \text{out} | \pi \pi, \text{in} \rangle$

Relation to the scattering amplitude

real function contains the scattering information

Lüscher's method

• Finite-volume set-up

Scattering observables leave an *imprint* on finite-volume quantities •

E.g. in a weakly-interacting, two-body system with no bound states

$$\mathcal{M}_{\ell=0}(2M_{\pi}) = -32\pi M_{\pi}a$$

Information is in the scattering amplitude

• All results are contained in a generalized quantization condition

$$\det\left[\mathcal{M}_{2}^{-1}(E_{n}^{*}) + F(E_{n}, \vec{P}, L)\right] = 0$$

scattering amplitude known geometric function

Matrices in angular momentum, spin and channel space

$$E_{2}(L) \circ \text{cubic, spatial volume (extent L)}$$

$$E_{1}(L) \circ \text{periodic boundary conditions}$$

$$\vec{p} = \frac{2\pi}{L}\vec{n}, \quad \vec{n} \in \mathbb{Z}^{3}$$

$$E_{0}(L) \circ L \text{ is large enough to neglect} \quad e^{-M_{\pi}}$$

Finite-volume ground state

$$E_0(L) = 2M_{\pi} + \frac{4\pi a}{M_{\pi}L^3} + \mathcal{O}(1/L^4)$$

[Huang, Yang

Lüscher's method in s wave

In s wave life is simple. Quantisation condition for s-wave scattering:

 Z_{00} : Lüscher zeta function

Bound-state condition:

i.e. must cross the bound state condition from below for decreasing k

 $k \cot \delta_0(k) = \frac{2}{\sqrt{\pi L}} \mathcal{Z}_{00} \left(\frac{(Lk)^2}{4\pi^2} \right)$

k : relative momentum of the two GBs in the c.m.f obtained from the energy levels.

$$k \cot \delta_0(k) = -\sqrt{-k^2}$$

Simulation details:

We used the **HiRep** suite to simulate an SU(2) gauge theory with $N_f=2$. Fermions: Wilson action with tree-level O(a)-improvement clover term. Gauge: tree-level Symanzik improved action.

Ensemble	$\mid L/a$	T/a	β	$a m_0$	c_{sw}	# configs
Heavy	24	48	1.45	-0.6050	1.0	1980
Light	32	48	1.45	-0.6077	1.0	1160

Ensemble	$ aM_{\pi}$	$ aM_{ ho}$	aF_{π}^{bare}	$M_{\pi}/F_{\pi}^{\mathrm{bare}}$	$M_{\pi}L$
Heavy	0.2065(12)	0.438(27)	0.0395(9)	5.24(11)	4.95
Light	0.1597(18)	0.3864(30)	0.0357(9)	4.36(11)	5.11

Contractions

Wick contractions read :

 $C_{\sigma \to \sigma}(t) = -B(t) + 2\Sigma(t),$ $C_{\pi\pi\to\pi\pi}(t) = 2D(t) + 3X(t) - 10R(t) + 5V(t),$ $C_{\pi\pi\to\sigma}(t) = \sqrt{10} \left(T(t) - W(t) \right).$

Analysis of the correlation matrix

Constant contribution to the correlation functions removed by defining shifted-correlators:

Eigenvalues

The ensemble with the lightest fermion mass is close to threshold

Scattering amplitude

In the explored region of fermion masses the sigma is most likely a stable particle, that is, a two-pion bound state

We are able to put non-perturbative constraints on the singlet scattering amplitude.

Interestingly, we find that leading-order chiral perturbation theory does not seem to describe the amplitude correctly, and fails in predicting a bound state around the region where we observe it

 \Box In our two ensembles, we find that $\frac{M_{\sigma}}{M_{\pi}} \sim 1.5 - 1.8$. We however expect this feature to depend strongly upon the pion mass.

Conclusion

First study of the singlet channel in four-dimensional gauge theories beyond QCD

Study of scattering processes is crucial to constrain underlying dynamics of Pseudo-Nambu Goldstone Bosons Composite Higgs models

We use :

- Two ensembles below vector channel threshold at fixed lattice spacing 2x2 GEVP (including all disconnected • contributions)
- Lüscher's method •

Results are compatible with a bound state in the singlet channel.

Results complement recent calculation of the scattering amplitude in the vector channel and our prediction of its coupling to two GBs.

More chiral setup could change the picture (suggested by the discrepancy with LO ChPT)

Continuum limit ongoing