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1) Interpretation of machine learning functions as physical observables:

a) How to construct effective order parameters with machine learning.

b) How to reweight machine learning functions in parameter space.

c) How to discover unknown phase transitions with machine learning.

d) How to include machine learning functions within Hamiltonians to induce phase transitions.

e) How to utilize the renormalization group to obtain critical exponents using machine learning 

functions.
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1) Interpretation of machine learning functions as physical observables:

a) How to construct effective order parameters with machine learning.

b) How to reweight machine learning functions in parameter space.

c) How to discover unknown phase transitions with machine learning.

d) How to include machine learning functions within Hamiltonians to induce phase transitions.

e) How to utilize the renormalization group to obtain critical exponents using machine learning 

functions.

2) Inverse renormalization group with machine learning:

a) How to generate configurations of systems with larger lattice size without having to simulate 

these systems and without critical slowing down effect.

b) How do inverse renormalization group flows emerge.

c) How to calculate multiple critical exponents with the inverse renormalization group.
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Supervised machine learning for phase identification

We require:
1. A set of configurations from distinct phases. Each configuration has been labeled 

accordingly to the phase it belongs to.
2. A machine learning algorithm (different algorithms provide different benefits or have 

different limitations).

Neural Networks as Physical Observables

In a supervised framework we can train a machine learning algorithm on a set of training 
data, to learn a function f(·) that separates the symmetric and the broken-symmetry 

phases of a system.

Machine learning phases of matter, J. Carrasquilla, R. Melko, Nature Phys 13, 431–434 (2017)

Machine learning and the physical sciences, Carleo et al., Rev. Mod. Phys. 91, 045002 (2019)
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Training of a neural network on the Ising model:

Labeled as 1.

Labeled as 0. Labeled as 0.

Labeled as 1.

f(·)

Neural Networks as Physical Observables

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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f(·)

Neural Networks as Physical Observables

Probability that a 
configuration is in the 

broken-symmetry 
phase

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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f(·)

Neural Networks as Physical Observables

Probability that a 
configuration is in the 

broken-symmetry 
phase

The configuration is drawn from an 
equilibrium distribution and therefore 
has an associated Boltzmann weight.

The output is calculated on the 
configuration so it must have the 

same Boltzmann weight.

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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The neural network function f is an observable in the system:

Neural Networks as Physical Observables

: configuration of the system

: Boltzmann probability distribution

: inverse temperature

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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Neural Networks as Physical Observables

Expectation value of an arbitrary observable <O> as calculated during a Monte Carlo simulation: 

: probabilities used to sample from the equilibrium distribution

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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Neural Networks as Physical Observables

: probabilities used to sample from the equilibrium distribution

(Some) possible choices for 

Importance sampling Reweighting

Expectation value of an arbitrary observable <O> as calculated during a Monte Carlo simulation: 

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 



11

Neural Networks as Physical Observables

Reweighting equation:

Given configurations sampled at inverse temperature β
0
 we can calculate 

the expectation value of observables at inverse temperature β.

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 



12

Neural Networks as Physical Observables

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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Neural Networks as Physical Observables

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 

Does it look like an effective order parameter?
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Results obtained by quantities derived entirely from the neural network

Neural Networks as Physical Observables

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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Neural Networks as Physical Observables

➔ How to construct effective order parameters with machine learning.

➔ How to reweight machine learning functions in parameter space.

We have answered these questions:

Summary:
1. No knowledge about the symmetries or the Hamiltonian was explicitly introduced  

during the training of the machine learning algorithm.
2. Neural network functions are statistical-mechanical observables: they are associated 

to a Boltzmann weight and can hence be reweighted in parameter space.
3. Using only the neural network function f and its susceptibility χ we were able to 

obtain multiple critical exponents and the critical inverse temperature of the 2D Ising 
model.

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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We saw that the neural network function f is (for all practical 
reasons) an observable in the system.

What else can we achieve with f?

Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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The function f(·) was learned on configurations of the Ising model and f(x) can 
successfully predict the phase of Ising configurations x.

 But what happens if we give configurations x’ of a different system as input to 
the Ising-learned function f(·)?

 Can we accurately separate phases in different systems?
 Can we discover a phase transition through f(x’)?

Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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f(·)

?

Learned on Ising configurations

Equivalently:

Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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Results obtained through a function f learned exclusively on the Ising model.

Potts models:

Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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φ4 scalar field theory:

Fixed dimensionless λ=0.7 and varied the 
dimensionless mass μ2

Results obtained through a function f learned exclusively on the Ising model.

Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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Insights on the results:

Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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Disordered

Ordered

Number of variables in the sliced layer

Similar variables get spiked for configurations in disordered phase (top) and ordered phase 
(bottom), irrespective of the system.

Insights on the results:

Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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We didn’t include any knowledge about the presence of a phase transition in the system so 
we have now obtained the knowledge of its critical region. We can therefore study it by 

calculating its critical exponents.

Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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Neural Networks as Physical Observables

➔ How to discover unknown phase transitions with machine learning.

We have answered this question:

Summary:
1. Using an Ising-trained neural network we were able to predict the phase diagrams for 

the q-state Potts models and the φ4 scalar field theory.
2. Having obtained the knowledge of the critical region for the φ4 theory we then 

calculated the critical exponents and the critical squared mass for the 2d φ4 theory.

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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How can we explain that the neural network function is a 
statistical-mechanical observable?

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Parameters, constraints or fields that interact with a system have conjugate 
variables which represent the response of the system to the perturbation of the 

corresponding parameter. 

Can we make the same statement about the neural network function f? 

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Parameters, constraints or fields that interact with a system have conjugate 
variables which represent the response of the system to the perturbation of the 

corresponding parameter. 

Can we make the same statement about the neural network function f? 

Conjugate variables are expressed as derivatives of the free energy in terms of the 
associated field. To be able to make the same statement we should start by expressing the 

neural network function f in terms of the free energy/partition function.

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).



29

The neural network function f is an intensive property. It is interpreted as a probability 
and is bound between [0,1]. It therefore doesn’t have the proper dependence on the size 

of the system.

 

This can be very easily solved by multiplying f  with the volume V of the system and recast it 
as an extensive property:

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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If Y=0, we have the original Hamiltonian of the Ising model. 

The (extensive) neural network function Vf can then be included as a term within the 
Hamiltonian. We consider that Vf couples to an arbitrary external field Y and define a 

modified Hamiltonian for the Ising model: 

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).



31

 If we take a derivative of the logarithm of the partition function in terms of the 
external field Y we arrive at the expectation value of the neural network 

function f:

If Y=0, we have the original expression of the expectation value. 

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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The derivative of the expectation value of the neural network function gives:

χ is a susceptibility. It measures the response of the neural network function f to 
changes in the associated external field Y.

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).



33

The derivative of the expectation value of the neural network function gives:

χ is a susceptibility. It measures the response of the neural network function f to 
changes in the associated external field Y.

What happens if Y ≠0?

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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To investigate what happens when Y ≠0, we could do Monte Carlo sampling on 
the modified Hamiltonian to obtain configurations:

An alternative option is to use reweighting to calculate expectation values of the 
modified system by using configurations of the original.

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Expectation value of an arbitrary observable <O> during a Monte Carlo simulation in the 
modified system: 

By choosing equal to the probabilities of the original system:

This form of reweighting is Hamiltonian-agnostic.

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Recall that:
β=0.43-> symmetric phase
β

c
≅0.440687 -> inverse critical temperature

β=0.45-> broken-symmetry phase

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).



37

Recall that the inverse critical temperature is β
c
≅0.440687.

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Can we study the phase transition induced by the neural 
network field Y based on a renormalization group approach?

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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L
Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Spin blocking transformation with a rescaling factor of b=2 and the majority rule

L

L’=L/2

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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L
L’=L/2

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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L, ξ
L’=L/2, ξ’=ξ/2

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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L, ξ, β
L’=L/2, ξ’=ξ/2, β’

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Correlation 
length 

Inverse temperature β

β
c

Altered figure from (Newman, Barkema) book (Fig 4.1)

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Correlation 
length 

Inverse temperature β

β
c

Start

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).

Altered figure from (Newman, Barkema) book (Fig 4.1)
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Correlation 
length 

Inverse temperature β

β
c

Start

RG

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).

Altered figure from (Newman, Barkema) book (Fig 4.1)
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Correlation 
length 

Inverse temperature β

β
c

Start

RG

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).

Altered figure from (Newman, Barkema) book (Fig 4.1)
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There is one inverse temperature where the original and the 
rescaled systems have the same correlation length: the inverse 

critical temperature β
c
=0.440687.

At the inverse critical temperature β
c
the correlation length diverges, it becomes infinite, 

and intensive observable quantities of the two systems will become equal.

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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At the inverse critical temperature β
c
the correlation length diverges, it becomes infinite, 

and intensive observable quantities of the two systems will become equal.

We can use the neural network function f as an 
observable to locate the critical point.

There is one inverse temperature where the original and the 
rescaled systems have the same correlation length: the inverse 

critical temperature β
c
=0.440687.

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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At the intersection point:

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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More generally:

We can form a mapping between the rescaled and the original inverse temperature:

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).



53

This distance can be measured by defining the reduced inverse 
temperature for the original and the rescaled system:

Original Rescaled

The original and the rescaled systems have a different distance from the 
critical point.

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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The original and the rescaled systems have different correlation lengths. 

They should therefore diverge to the thermodynamic limit according to different relations:

Original Rescaled

The correlation length exponent is the same because both the original and the rescaled 
systems are Ising models.

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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By dividing the two relations of the correlation lengths we obtain:

We then substitute and linearize the renormalization group transformation based on a 
Taylor expansion to leading order, to obtain:

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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The neural network field Y induces a phase transition.

 Then Y affects the correlation length. Another exponent can be defined that governs the 
divergence of the correlation length precisely at the critical point:

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Similarly to the inverse temperatures a mapping can be formed that relates the 
original and the rescaled neural network field:

A new expression can be obtained that allows numerical calculation of the exponent θ
y 

at 
the vicinity of the phase transition:

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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θ=0.5333...

The Ising model has two relevant operators that govern the divergence of the 
correlation length, ν and θ.

ν=1.01(2)

ν=1

Estimated:

Exact:

Neural Networks as Physical Observables

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Neural Networks as Physical Observables

➔ How to include machine learning functions within Hamiltonians to induce phase transitions.

➔ How to utilize the renormalization group to obtain critical exponents using machine learning 

functions.

We have answered these questions:

Summary:
1. We introduced neural network functions as physical terms within Hamiltonians by 

coupling them to a fictitious field and expressing them in terms of the system’s 
partition function/free energy.

2. We observed that the neural network field Y induces an order-disorder phase 
transition, in contrast to the field of the conventional order parameter which always 
breaks the symmetry explicitly by favoring an ordered state, irrespective of its sign.

3. We utilized the renormalization group to extract the two relevant operators of the 2d 
Ising model using the neural network function f and its fictitious field Y.

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Can we devise an inverse renormalization group approach that can be 

applied for an arbitrary number of steps to iteratively increase the lattice 

size of the system?

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)

Inverse renormalization group
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Can we devise an inverse renormalization group approach that can be 

applied for an arbitrary number of steps to iteratively increase the lattice 

size of the system?

If yes, then we can obtain configurations of systems with larger lattice size 

without simulating them, hence evading the critical slowing down effect.

Inverse renormalization group

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

In the inverse renormalization group new degrees of freedom will be 

introduced within the system.

IRG

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

+1

Original degree of freedom

Possible rescaled degrees of freedom

Inversion of a majority rule in the Ising model

+1 +1

+1 -1

-1 +1

+1 +1

-1 +1

+1 -1

-1 +1

+1 -1
…

Inverse Monte Carlo Renormalization Group Transformations for Critical Phenomena, D. Ron, R. Swendsen, A. Brandt, Phys. Rev. Lett. 89, 275701 (2002)

For the inverse renormalization group in the Ising model, see:
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Inverse renormalization group

Original degree of freedom

Possible rescaled degrees of freedom

Inversion of a summation in the φ4 model

0.01 0.36

0.02 0.01

…

0.40

-421.1 90.1

0.5 330.9

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

Original degree of freedom

Possible rescaled degrees of freedom

Inversion of a summation in the φ4 model

0.01 0.36

0.02 0.01

…

0.40

-421.1 90.1

0.5 330.9

Too complicated!

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

We can learn a set of transformations that can mimic the inversion of a 

standard renormalization group transformation.

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)

*
w11 w12

w21 w22
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Inverse renormalization group

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)

*
w11 w12

w21 w22

Example

* =

=
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Inverse renormalization group

The benefit:
Once learned, we can apply this set of inverse transformations iteratively to 

arbitrarily increase the size of the system.

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

The set of transformations can be applied iteratively to arbitrarily increase the lattice size:

However the increase in the lattice size will induce an analogous increase in the correlation 
length of the system:

What are the implications?

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Correlation 
length 

Inverse temperature β

β
c

Start

RG

Inverse renormalization group

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Correlation 
length 

Inverse temperature β

β
c

Start

IRG

Inverse renormalization group

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

First, we verify that the standard MC renormalization group method works in the φ4 
theory:

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)

Then we invert the standard transformation that we verified as being successful. 
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Inverse renormalization group

Now, we start from a lattice size L0=32 in each dimension 
and apply the inverse transformations to obtain systems 

of lattice sizes L1=64, L2=128, L3=256, L4=512.

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

Can we now use the inverse renormalization group approach to calculate critical 
exponents?

The relations that govern the divergence of the magnetization for an original (i) and 
a rescaled (j) system are

They can be equivalently expressed in terms of the correlation length as

where ν is the correlation length exponent

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

By dividing the magnetizations (or magnetic susceptibilities), taking the natural 
logarithm, and applying L'Hôpital's rule, we obtain

We can use the expressions above to calculate the critical exponents without ever 
experiencing a critical slowing down effect.

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

Ising universality class: γ/ν=1.75, β/ν=0.125.
Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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➔ How to generate configurations of systems with larger lattice size without having to 

simulate these systems and without critical slowing down effect.

➔ How do inverse renormalization group flows emerge.

➔ How to calculate multiple critical exponents with the inverse renormalization group.

We have answered these questions:

Summary:
1. We demonstrated that inverse renormalization group transformations can iteratively 

increase the lattice size of a system, hence obtaining configurations of larger lattice 
size, without critical slowing down.

2. We demonstrated that inverse renormalization group flows emerge that drive the 
system towards its critical point.

3. We demonstrated that multiple critical exponents can be calculated for the φ4 theory 
with the inverse renormalization group.

Inverse renormalization group

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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1) Interpretation of machine learning functions as physical observables:

a) How to construct effective order parameters with machine learning.

b) How to reweight machine learning functions in parameter space.

c) How to discover unknown phase transitions with machine learning.

d) How to include machine learning functions within Hamiltonians to induce phase transitions.

e) How to utilize the renormalization group to obtain critical exponents using machine learning 

functions.

2) Inverse renormalization group with machine learning:

a) How to generate configurations of systems with larger lattice size without having to simulate 

these systems and without critical slowing down effect.

b) How do inverse renormalization group flows emerge.

c) How to calculate multiple critical exponents with the inverse renormalization group.

Thank you for your attention!
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Inverse renormalization group

2d φ4 theory

The system undergoes a second-order phase transition for a critical value of the mass when

We will apply a standard renormalization group transformation, in the vicinity of the phase 
transition of the φ4 theory, and calculate the original and renormalized magnetization of the 

system.

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)


