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Introduction

o past four years or so has seen a rapid rise of applications of machine learning (ML)
in lattice field theory and other areas of theoretical physics

o very much in exploratory phase: anything goes
o recent overview/forward look paper for SNOWMASS



Outline

in this talk: quantum field-theoretical machine learning

o new conceptual ideas to explore

o motivation
o scalar fields as Markov random fields
o some examples 

ü Quantum field-theoretic machine learning
Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]
Dimitrios Bachtis, GA and Biagio Lucini



ML, neural networks, deep learning
• many degrees of freedom (“neurons’’) 

associated with sites of a multi-layered network

• weights 𝑤!" (connecting the neurons) and 
biases 𝑏! (on-site) are tunable parameters

• learning: parameters are adjusted by 
minimising some cost or loss function (e.g. 
mean-squared error)

• neural network should then reproduce training 
task and generalise (predict for unseen data)



ML, neural networks, lattice field theory
• many degrees of freedom (“neurons’’) 

associated with sites of a multi-layered 
network

• weights 𝑤!" (connecting the neurons) and 
biases 𝑏! (on-site) are tunable parameters

• learning: parameters are adjusted by 
minimising some cost or loss function (e.g. 
mean-squared error)

• neural network should then reproduce training 
task and generalise (predict for unseen data)

• many degrees of freedom (“lattice fields’’) 
associated with sites of a d-dimensional lattice

• nearest neighbour (kinetic energy) and local 
couplings (potential) are external parameters

• configurations are generated by minimising the 
quantum action: Euclidean lattice field theory

• observables are computed using (independent, 
thermalised) configurations



Quantum field-theoretical machine learning  

Ø superficial similarities are obvious
Ø can this be made more precise?

use for common advantages:

Ø design ML algorithms
Ø develop synergies with lattice field theories
Ø apply ML to LFT, use LFT to develop ML



Main idea

derive machine learning algorithms from discretized Euclidean field theories

𝜑# scalar field theory Markov random field
(Hammersley-Clifford theorem) 

machine learning algorithms



Graphs, vertices, cliques

§ graph has vertices and edges, e.g. the bipartite graph or square lattice below

§ clique: a subset of points which are pairwise connected

§ maximal clique c: no additional point can be included such that the resulting set is 
still a clique

for both graphs: each set of two vertices 
connected by a line is a maximal clique 



Probability distribution p 𝜑

probability distribution p 𝜑 defined as product 
of nonnegative functions over maximal cliques:

then p 𝜑 satisfies local Markov property

and set of random variables 𝜑
define a Markov random field 



Partition function of local field theory

Z =∫𝑑𝜑 exp(−S(𝜑)) p 𝜑 = exp(−S(𝜑))/Z

o 𝑆 depends on local (potential) and nearest neighbours (kinetic term)

o explicit example: 2d scalar field

o discretise and introduce local couplings: 

o probability distribution:

o satisfies Hammersley-Clifford theorem

discretized 𝜑! scalar field is a Markov random field 



Lattice 𝜑! theory as Markov random field

§ set of coupling constants/variational parameters: 𝜃 = { 𝑤!", 𝑎!, 𝑏!}

§ search for an optimal set to complete ML tasks

§ allowing them to be local/inhomogeneous increases expressivity

§ from Euclidean QFT perspective: slightly strange theory

§ but note: QFTs with random couplings or potentials  



Quick recap

§ variables 𝜑 define a Markov random field, our degrees of freedom

§ tune the variational parameters 𝜃 = { 𝑤!", 𝑎!, 𝑏!} in distribution 𝑝 𝜑; 𝜃

§ such that 𝑝 𝜑; 𝜃 satisfies some conditions, i.e. completes a ML task 



“Learn” target distributions 𝑞 𝜑
two possibilities:

o target distribution 𝑞 𝜑 is known: construct 𝑝 𝜑; 𝜃 ~ 𝑞 𝜑 by tuning 𝜃
o why? might be difficult to generate data from 𝑞 𝜑 but easier when using 𝑝 𝜑; 𝜃

o target distribution 𝑞 𝜑 is not known, but a lot of data is available
o construct 𝑝 𝜑; 𝜃 by tuning 𝜃
o why? use the distribution 𝑝 𝜑; 𝜃 to create “fake” images, 

e.g. faces, paintings, music
deepfake

https://www.wired.com/story/deepfakes-getting-better-theyre-easy-spot/



Approximate target distribution

• consider target probability distribution 𝑞 𝜑
• goal: approximate this distribution with 𝑝 𝜑; 𝜃 by tuning 𝜃
• use asymmetric measure of distance between two probability distributions  

Kullback-Leibler (KL) divergence: 

• minimize KL divergence with respect to 𝜃, by sampling configurations from 𝑝 𝜑; 𝜃 and 
adapting 𝜃 using gradient descent



Variational principle

§ write 𝑞 𝜑 = exp(−𝐴(𝜑))/𝑍# with  𝑍# = exp(−𝐹#)

§ and 𝑝(𝜑; 𝜃) = exp(−𝑆(𝜑; 𝜃))/𝑍 with  𝑍 = exp(−𝐹)

§ then 𝐹# ≤ 𝐴 − 𝑆 $ + 𝐹 ≡ ℱ (follows from KL divergence)

§ upper bound on free energy of target system, RHS depends only on 𝑝 𝜑; 𝜃
distribution of Markov random field

map an arbitrary system to a 𝜑% scalar field theory by minimizing the KL distance



Variational principle, minimisation

§ 𝐹# ≤ 𝐴 − 𝑆 $ + 𝐹 ≡ ℱ

§ gradient-based approach to minimize the variational free energy wrt parameters 𝜃:

𝜃('()) = 𝜃(') − 𝜂
𝜕ℱ
𝜕𝜃

𝜂 learning rate



Target lattice field theory

§ target action:

nearest and next-to-nearest neighbours, complex mass parameter

§ ML action:

§ generate configurations with 𝑆(𝜑; 𝜃), use to further approximate A(𝜑)



Example 1: 𝜑! theory with constant couplings

o target action: standard 𝜑% action with given couplings
o ML action: initialise 𝑆(𝜑; 𝜃) with random couplings 𝜃

o evolution of (inhomogeneous) couplings to expected (homogeneous) values



Example 2: 𝜑! theory with nnn terms 

o target action: next-to-nearest neighbour terms, homogeneous couplings
o ML action (S) with no nnn terms but inhomogeneous couplings  

AND
o ML action (A3) with no nnn terms and only homogeneous couplings

evolution of KL divergence 
towards zero for action S
(but not for A3)



Example 3: from q 𝜑 to 𝑝 𝜑; 𝜃 and back

o after training: generate configs with ML action 𝑆, not original action 𝐴
o reweight by including corrective step ~ exp(𝑆 − 𝐴)
o reweight in (complex) parameter space, starting from 𝑔4 = −1



From data to target distribution

§ what if we only have access to data, but not the underlying distribution?
§ minimize opposite KL divergence:

§ apply to problem in image analysis: given an image (i.e. the “data”), search for the 
optimal values of the local coupling constants in the 𝜑% theory to reproduce the 
image as a configuration in the equilibrium distribution 



𝜑! neural networks

• multiple layers in the neural network architecture 
• bipartite graph: 𝜑% as a variant of a restricted Boltzmann machine (RBM) 
• joint probability distribution 𝑝(𝜑, ℎ; 𝜃) with action

• includes several cases:
𝑏! = 𝑛" = 0: Gaussian-Gaussian RBM

𝑏! = 𝑛" = 𝑚" = 0 and ℎ" ∈ {−1,1}: Gaussian-Bernoulli RBM
𝑚" = 𝑛" = 0 and ℎ" ∈ {−1, 1}: 𝜑%-Bernoulli RBM (not yet studied, afawk)



Example: Olivetti faces dataset

• 642 visible units and 32 hidden units
• are there learned features? coupling constants 𝑤!" for a fixed 𝑗

• neural network has learned hidden features: abstract face shapes and characteristics
• hidden units can serve as input to a new 𝜑% neural network to progressively extract 

more abstract features in data 



Summary and outlook

ü machine learning algorithms from discretized Euclidean field theories

ü in principle any system can be mapped to a 𝜑% scalar field theory with 
inhomogeneous couplings by minimizing KL divergence

ü inhomogeneous couplings: perspective of spin glasses? additional averaging 
over the space of couplings?

ü develop a computational and mathematical framework of machine learning 
within quantum field theory


