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Introduction

o past four years or so has seen a rapid rise of applications of machine learning (ML)
in lattice field theory and other areas of theoretical physics
o very much in exploratory phase: anything goes

o recent overview/forward look paper for SNOWMASS
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Applications of Machine Learning to Lattice Quantum Field Theory

Denis Boyda, Salvatore Cali, Sam Foreman, Lena Funcke, Daniel C. Hackett, Yin Lin, Gert Aarts, Andrei Alexandru, Xiao-Yong Jin, Biagio Lucini, Phiala E.
Shanahan

There is great potential to apply machine learning in the area of numerical lattice quantum field theory, but full exploitation of that potential will require new strategies. In
this white paper for the Snowmass community planning process, we discuss the unique requirements of machine learning for lattice quantum field theory research and
outline what is needed to enable exploration and deployment of this approach in the future.



Outline

in this talk: quantum field-theoretical machine learning
o new conceptual ideas to explore

o motivation
o scalar fields as Markov random fields

o some examples

v Quantum field-theoretic machine learning
Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]
Dimitrios Bachtis, GA and Biagio Lucini



ML, neural networks, deep learning

many degrees of freedom (“neurons” Deep neural network
associated with sites of a multi-layered network ™~ e entayer e

weights w;; (connecting the neurons) and
biases b; (on-site) are tunable parameters

learning: parameters are adjusted by
minimising some cost or loss function (e.g.
mean-squared error)

neural network should then reproduce training
task and generalise (predict for unseen data)



ML, neural networks, lattice field theory

many degrees of freedom (“neurons’’) * many degrees of freedom (“lattice fields’)
associated with sites of a multi-layered associated with sites of a d-dimensional lattice
nhetwork

* nearest neighbour (kinetic energy) and local

weights w;; (connecting the neurons) and : :
y i | . ) couplings (potential) are external parameters

biases b; (on-site) are tunable parameters

learning: parameters are adjusted by * configurations are generated by minimising the

minimising some cost or loss function (e.g. quantum action: Euclidean lattice field theory
mean-squared error)

neural network should then reproduce training ’ Observaples are CQmqued using (independent,
task and generalise (predict for unseen data) thermalised) configurations



Quantum field-theoretical machine learning

» superficial similarities are obvious
» can this be made more precise?

use for common advantages:
» design ML algorithms

» develop synergies with lattice field theories
» apply ML to LFT, use LFT to develop ML
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Main idea

derive machine learning algorithms from discretized Euclidean field theories

@* scalar field theory — Markov random field

(Hammersley-Clifford theorem)

machine learning algorithms



Graphs, vertices, cligues

= graph has vertices and edges, e.g. the bipartite graph or square lattice below

= cligue: a subset of points which are pairwise connected

= maximal cligue c¢: no additional point can be included such that the resulting set is
still a clique

connected by a line is a maximal clique

for both graphs: each set of two vertices !!




Probability distribution p(@)

probability distribution p(¢) defined as product

1
of nonnegative functions over maximal cliques: p(¢) ~ Z l_IC wc(gb)
cc

then p(¢) satisfies local Markov property

Theorem 1 (Hammersley-Clifford.) A strictly posi-

and set of random variables ¢ tive distribution p satisfies the local Markov property of
an undirected graph G, if and only if p can be represented

define a Markov random field as a product of monnegative potential functions 1. over
G, one per maximal clique c € C, 1i.e.,

p(@) = o T] e(8), ©)

ceC

where Z = | & [lccc ¥e(@)de is the partition function
and ¢ are all possible states of the system.



Partition function of local field theory g’g

Z=[ de exp(=S(¢)) p(@) = exp(—S(¢))/Z

o S depends on local (potential) and nearest neighbours (kinetic term)
K 2, M52, A
o explicit example: 2d scalar field Lg = §(V¢) il 7¢ Al Zd)
o discretise and introduce local couplings:  S(¢;60) = — Zwijqbiqu + Zaiqb? + Zbiqbf
(i) : i
1
o probability distribution:  p(¢@) = o 1;[C¢c(¢)
C

1
o satisfies Hammersley-Clifford theorem Y. = exp [—wij¢7;¢j+Z(ai¢?+aj¢?+bi¢§l+bj¢?)

mmm) discretized ¢* scalar field is a Markov random field



Lattice @* theory as Markov random field
S(¢;0) = — Z W;jPiPj + Z a;¢; + Z bip;
(i7) z z
= set of coupling constants/variational parameters: 8 = { w;;, a;, b;}
= search for an optimal set to complete ML tasks
= allowing them to be local/inhomogeneous increases expressivity
* from Euclidean QFT perspective: slightly strange theory

= but note: QFTs with random couplings or potentials (6:0) exp | — S(¢;6)]
PP = T exp[-5(9,0)lde




Quick recap

= variables ¢ define a Markov random field, our degrees of freedom
= tune the variational parameters 6 = { w;}, a;, b;} in distribution p(¢; 6)

= such that p(¢; 0) satisfies some conditions, i.e. completes a ML task



“Learn” target distributions q(¢)

two possibilities:

o target distribution g(¢) is known: construct p(p; 8) ~ q(¢) by tuning 6
o why? might be difficult to generate data from g(¢) but easier when using p(¢p; 6)

o target distribution g(¢) is not known, but a lot of data is available
o construct p(¢; 8) by tuning 8 ﬂ

o why? use the distribution p(¢; 8) to create “fake” images,

i
a k') ®

e.g. faces, paintings, music

x,,



Approximate target distribution

* consider target probability distribution g(¢)
* goal: approximate this distribution with p(¢; 8) by tuning 6
* use asymmetric measure of distance between two probability distributions

Kullback-Leibler (KL) divergence: KL(p||lq) = /oo p(;60) In p(?g;b)e) dp >0
A q

* minimize KL divergence with respect to 8, by sampling configurations from p(¢; 8) and
adapting 6 using gradient descent



Variational principle

= write q(@) =exp(—A(@))/Z4 with Z, = exp(—F)

= and p(@;0) =exp(=S(p;0))/Z with Z = exp(—F)

“ then F; < (A—S),+F =F (follows from KL divergence)

= upper bound on free energy of target system, RHS depends only on p(¢; 6)
distribution of Markov random field

mmm) map an arbitrary system to a @* scalar field theory by minimizing the KL distance



Variational principle, minimisation
"Fy<(A-S),+F =F

= gradient-based approach to minimize the variational free energy wrt parameters 9:

0F
9+ = g(O) — p —
T30

oo = Aaa,) (455, + (55,5,

n learning rate




Target |attice field theory
= target action:

A Z ¢’L¢] + g4 Z ¢’L¢] + Z g2 + ZQ5)Q§ =+ gg¢ ]

<Z]>nn <Z.7>nnn

nearest and next-to-nearest neighbours, complex mass parameter

= ML action:

=— ) wi¢id; + Z a; 7 + Z bid;

(i7)

= generate configurations with S(¢; 8), use to further approximate A(¢)



Example 1: @* theory with constant couplings

o target action: standard @* action with given couplings

o ML action: initialise S(¢; 8) with random couplings 0
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o evolution of (inhomogeneous) couplings to expected (homogeneous) values



Example 2: @* theory with nnn terms

o target action: next-to-nearest neighbour terms, homogeneous couplings

o ML action (S) with no nnn terms but inhomogeneous couplings

AND

o ML action (A;) with no nnn terms and only homogeneous couplings

evolution of KL divergence
towards zero for action S
(but not for A;)
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Re <A>

Example 3: from q(@) to p(p; @) and back

o after training: generate configs with ML action S, not original action A
o reweight by including corrective step ~ exp(S — A)

o reweight in (complex) parameter space, starting from g, = —1
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From data to target distribution

= what if we only have access to data, but not the underlying distribution?

q(¢) In dp >0

= minimize opposite KL divergence: > q9(9)
q|p /
dlip) = | p(¢; 6)

= apply to problem in image analysis: given an image (i.e. the “data”), search for the
optimal values of the local coupling constants in the @* theory to reproduce the

image as a configuration in the equilibrium distribution

Original ¢»* Markov Random Field




@* neural networks

* multiple layers in the neural network architecture
* bipartite graph: @* as a variant of a restricted Boltzmann machine (RBM)

* joint probability distribution p(¢, h; 8) with action
¢7h 9) szg¢z +Zrz¢z+zaz¢2 +sz¢4+233h -I-Zm]hQ—l-anh‘l.

* includes several cases:
b; = n;j = 0: Gaussian-Gaussian RBM
b; =n; =m; = 0and h; € {—1,1}: Gaussian-Bernoulli RBM
m; = n; = 0and h; € {—1,1}: @*-Bernoulli RBM (not yet studied, afawk)



Example: Olivetti faces dataset

642 visible units and 32 hidden units

are there learned features? coupling constants w;; for a fixed j

neural network has learned hidden features: abstract face shapes and characteristics

hidden units can serve as input to a new ¢@* neural network to progressively extract
more abstract features in data



Summary and outlook

v machine learning algorithms from discretized Euclidean field theories

v in principle any system can be mapped to a ¢* scalar field theory with
inhomogeneous couplings by minimizing KL divergence

v inhomogeneous couplings: perspective of spin glasses? additional averaging
over the space of couplings?

v develop a computational and mathematical framework of machine learning
within quantum field theory



