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Motivation

General goals
® Can we observe phase transitions in an unsupervise manner?
— Using autoencoders

® Can this bring new information/tools into the game?
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Motivation

General goals

® Can we observe phase transitions in an unsupervise manner?

— Using autoencoders

® Can this bring new information/tools into the game?

Physics goals

® Conventional MCMC algorithms.

— Critical slowing down.

— Difficulty in pinpointing critical temperature T¢.

® Observables with Finite Volume effects.
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Motivation

General goals
® Can we observe phase transitions in an unsupervise manner?
— Using autoencoders
® Can this bring new information/tools into the game?
Physics goals
® Conventional MCMC algorithms.
— Critical slowing down.
— Difficulty in pinpointing critical temperature T¢.
® Observables with Finite Volume effects.
Algorithmic goals
® Understand domain of applicability of autoencoders.

® What are the limitations of autoencoders?
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Machine Learning

Supervised

119
=

(With some high probability)

learning

Unsupervised || Reinforcement
learning
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Phase transitions as patterns of structure

Magnetic - Paramagnetic transition in 2D-Ising Model:

60

Cold Hot
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Phase transitions as patterns of structure

Can we identify the different phases using ML techniques?

® Supervised

[ Carrasquilla, Melko, Lucini, Wetzel, Lombardo ... ]

® Unsupervised
[ Wetzel, Giataganas, Singh, ... ]

Can we extract thermodynamic quantities?

Can this define new observables?
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(3 Deep Learning autoencoders
o Introduction



Deep Learning Autoencoders

Objective: Learning features in a given dataset hierarchically.

Encoder

Dense Dropout

Dense Dropout

Decoder
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® Autoencoders (AE): Dimensionality reduction.

Encoder

Dense Dropout

Dense Dropout

Decoder

Athenodorou (CYI & UniPl)

Critical Temperature via Autoencoders

nae
March 2022 7129



Deep Learning Autoencoders

Objective: Learning features in a given dataset hierarchically.

® Autoencoders (AE): Dimensionality reduction.

Encoder

Dense Dropout

Dense Dropout

Decoder

® An autoencoder encodes the input data ({ X'}) from the input layer into a latent variable ({z})
® Then it uncompresses that latent variable into an approximation of the original data ({ X }).

® Learns to ignore the noise and recognize significant characteristics of the input data.
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Typical Neural Network

Input > Hidden Hidden 2 * Hidden 3 ’ Olgtfet:t

layer layer oner lcyer

Input layer
Hidden layer

Hidden layer
Hidden layer

V®NOO MWD

10. Output layer

Credits: neuralnetworksanddeeplearning.com 2016
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o Procedure
o Results



Ferromagnetic Ising Model

Observables:

* 1D Not so interesting: No phase transition * Magnetization is the order parameter:

(never magnetised)

1yn
* 2D more interesting: There is a phase m= ﬁZi:1|5i|
transition
¢ Simplest Description of Ferromagnetism The 2D Ising model has a second order phase

transition (magnetization is continuous)

* Magnetic susceptibility

X =12 (m?) — (m)?)

* Hamiltonian: ¢ Heat Capacity
_ %E)
H=-J Z .ssJ—/ths =%
i,j=nn(i) i=1

Nearest neighbors

g ==
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Ferromagnetic Ising Model

Observables (near criticality ~T,):

* 1D Not so interesting: No phase transition * Magnetization is the order parameter:

(never magnetised)

1
* 2D more interesting: There is a phase m= NZﬁvzllsJ m(T)~|T — T.|”
transition
* Simplest Description of Ferromagnetism The 2D Ising model has a second order phase

transition (magnetization is continuous)

7‘/'/ /‘/'/ * Magnetic susceptibility

- N ~
x =5 (mH=(m?)  x(M~IT = T|™
* Hamiltonian: + Heat Capacity
= o C = @ ~|T —T -a
H=-J Z 8i8j — ,“hzn = or x(T)~| cl

i,j=nn(i) i=1

Nearest neighbors

= ™ =
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Procedure

Encoder Decoder
T "

A A

Go(X)——— Z

latent
hidden
hidden
output

fo(2)——— X

The autoencoder aims to define a representation (encoding) for our assemblage of data, by
performing dimensionality reduction:

* It encodes the input data ({X}) from the input layer into a latent variable ({z})

* Then it uncompresses that latent variable into an approximation of the original data ({X})
It consists of two components, the encoder function g, and a decoder function fg and the
reconstructed input is X = fg(gy (X))
The autoencoder learns the parameters @ and 6 together
X = fg(gy(x)) can approximate an identity function.
* Criterion: Minimize the Mean Square Error (MSE):  MSE(0,¢) =

Ndata

> (X — folgs(Xi))?.

i=1

Ndata.

=} = = = E DAE
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Procedure

¢ Eight layers

* Fully connected (Dense)
* Single latent variable

¢ Through experimentation

rclu:y:maz(O,z):{g’ lizzg}
if 2 <

1epoduz

1_e2
tanh : y = ————
V= 1ye=

Dropout, reduces overfitting
G. E. Hinton et al, arXiv:1207.0580.

19pooaq

=} = = = E DAE
Athenodorou (CYI & UniPl) Critical Temperature via Autoencoders March 2022 10/29



Procedure

* Eight layers Implementation:
* Fully connected (Dense) * Using Keras (F. Chollet et al., “Keras.” https://keras.io, 2015)
* Single latent variable * Using Tensorflow (M. Abadi et al OSDI, vol. 16, pp. 265-283, 2016.)

¢ Through experimentation
* 66.66.% of data used for training

* 33.33.% of data used for validating

ot * Training is performed for 2000 iterations

Activation: Relu

¢ Example:

input_img = Input(shape=(original_dim,))

encoded = Dense(2048, activation='tanh')(input_img)
encoded = Dropout(©.4)(encoded)

encoded = Dense(512, activation='tanh')(encoded)

encoded = Dropout(©.4)(encoded)

encoded = Dense(64, activation='tanh')(encoded)

encoded = Dropout(©.4)(encoded)

encoded = Dense(latent_dim, activation='linear')(encoded)

10posu3

Oropout

Dense Layer
Neurons:64
Actiation: Relu

decoded = Dense(64, activation='tanh')(encoded)

decoded = Dropout(0.4)(decoded)

decoded = Dense(512, activation='tanh')(decoded)

decoded = Dropout(@.4)(decoded)

decoded = Dense(2048, activation='tanh')(decoded)

decoded = Dropout(@.4)(decoded)

decoded = nal_dim, activation='linear')(decoded)

Oropout

Activation: Relu

19p093q

Dropout
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Pro

cedure

Each configuration is re-expressed in the form of a vector:

LZ

In other words, each configuration is
assigned a number, the latent
variable, which includes all the

Encoder

-1, 1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,1,1,1,-1)

Input into the encoder

Decoder

physically necessary information so
that the decoder re-creates the
actual configuration

Latent Variable
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Procedure

Each configuration is re-expressed in the form of a vector:

2
L * L °
- (-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,1,1,1,-1)
A A A

L

Input into the encoder

Encoder

In other words, each configuration is assigned a number, the latent variable, which includes all the
physically necessary information so that the decoder re-creates the actual configuration

The autoencoder receives information for only one lattice volume, and thus, it "knows" nothing about
configurations produced for other volume sizes

o
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Procedure
Attempt to identify signals of the phase structure of the 2D-Ising model

Question: How the latent dimension behaves as a function of the
temperature 1" for each configuration.
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Procedure
Attempt to identify signals of the phase structure of the 2D-Ising model

Question: How the latent dimension behaves as a function of the
temperature 1" for each configuration.

® We produce in total 40000 configurations.
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Procedure
Attempt to identify signals of the phase structure of the 2D-Ising model

Question: How the latent dimension behaves as a function of the
temperature 1" for each configuration.

® We produce in total 40000 configurations.

® 200 configurations for each single temperature 7.
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Procedure
Attempt to identify signals of the phase structure of the 2D-Ising model

Question: How the latent dimension behaves as a function of the
temperature 1" for each configuration.

® We produce in total 40000 configurations.
® 200 configurations for each single temperature 7.

® For the temperature range 7' =1 — 4.5.
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Procedure
Attempt to identify signals of the phase structure of the 2D-Ising model

Question: How the latent dimension behaves as a function of the
temperature 1" for each configuration.

® We produce in total 40000 configurations.
® 200 configurations for each single temperature 7.

® For the temperature range 7' =1 — 4.5.

® We make sure that we cover the whole range of temperatures between the
two extreme cases of the ising behaviour:
® The nearly “frozen” at 7' = 1.
® The disordered at T = 4.5.
® We assume that we have no prior knowledge on what is happening
in-between.
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Procedure
Attempt to identify signals of the phase structure of the 2D-Ising model

Question: How the latent dimension behaves as a function of the
temperature 1" for each configuration.

® We produce in total 40000 configurations.

200 configurations for each single temperature 7.

For the temperature range 7' =1 — 4.5.

® We make sure that we cover the whole range of temperatures between the
two extreme cases of the ising behaviour:
® The nearly “frozen” at 7' = 1.
® The disordered at T = 4.5.
® We assume that we have no prior knowledge on what is happening
in-between.

Wait! Isn’t there a degree of supervision?
® We could have chosen different temperature ranges:
— For instance 7' = 0.01 — 1000 (Computationally more expensive).
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The latent variable per configuration

We plot the latent variable for each different configuration, as a function of the temperature
T for different L.

L=2 L=3
" 4
a0 10 40
5 5
os
% s Ziea() 5
o
2 2
20 -0 20
s ” ! i
T
w0 1o
T TS 70 @ 3o 5 w0 o T WS 70 5 30 35 0
L=50 L =150
o 0
10 - o) — »
35
05 > 05
(T) 30 Zio (T . 30
o 00
2 2
o5 s
20 20
10 d s 10— 15
T T
1 1o
T 7 75 50 % e T s 70 75 0 3 o

40, 000 configs, 2/3 training, 1/3 validation. - - - = sac
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The latent variable per configuration

We plot the latent variable for each different configuration, as a function of the temperature

T for different L.

For low temperatures we obtain two plateaus, one located at z = 1 and one at z = —1.
® Corresponds to two distinct states that are not connected through any kind of transformation.
® This reflects the spontaneously broken Z3 = {—1, 1} global symmetry group.
One can interpret these two plateaus as the two cases where all spins are up or down.
® |s this true?
® We test the correlation coefficient between the latent variable to magnetization.

(z=2m-—m)
V(=22 m —m)?)

Cz,m ==

bt

2.0 2.2 2.4 2.6 2.8
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The latent variable per configuration

We plot the latent variable for each different configuration, as a function of the temperature
T for different L.
For low temperatures we obtain two plateaus, one located at z = 1 and one at z = —1.
® Corresponds to two distinct states that are not connected through any kind of transformation.
® This reflects the spontaneously broken Z3 = —1, 1 global symmetry group.
One can interpret these two plateaus as the two cases where all spins are up or down.
® |s this true?
® We test the correlation coefficient between the latent variable to magnetization.
® The latent variable —1 and 1 corresponds to the two orientations of the spins.
® Finally, the two plateaus become more distinct as the lattice size increases.

At some temperature range AT, qns the aforementioned behaviour collapses to one state,
which is located around z = 0. This reflects the restoration of Z> symmetry.

® |n other words, it corresponds to the case where all the spins are disoriented.

Critical point: as the lattice size increases the width of this transition decreases and this step
becomes steeper and steeper. At L — oo, T (L) is localised right on the critical
temperature T¢.
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Different Temperature Windows

What happens within different “temperature windows”

What if we use a temperature window within the range 7' = 1 — 2 and apply the autoencoder

® Two ordered states are visible without the presence of a critical point.

® Since there is no visible signal for a phase transition within this range of 7" it is

reasonable to use another temperature window.
What if we choose T' = 3 — 4.5?

® No particular pattern is observed

Zicant 000 Zigong 0001

10

Next step wouldbetogotoT' =2 — 3
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Can we define macroscopic quantities?

First: Average latent variable (z) as a function of the Temperature 7.

1

0.5 ‘

T o g e
—0.5

1 1.5 2 2.5 3

For low temperatures the latent dimension is, in a good approximation, equally distributed
between the values of —1 and 1.

Safe to consider absolute value of the latent variable.
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Can we define macroscopic quantities?

Since the latent dimension per confguration is symmetric with respect to the axis, it would be
reasonable to define the average absolute latent variable

Neont

= Z | Ricont |

conf

The latent variable resembles the behaviour of the magnetization per spin configuration as a
function of the temperature:

Neont
Z [Sicont]

L =35

conf

e
To 15 20 25 30 35 40 45

T
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Latent Susceptibility & Critical Temperature

We print the average absolute latent variable as a function of the temperature

Compare with magnetization:

1
09|
08|
07}
0.6

Sos!
04
03]
02}
01}

0

[m] = = =
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Latent Susceptibility & Critical Temperature

We print the average absolute latent variable as a function of the temperature

Compare with magnetization:
| = " | =35
08¢ L=150 = « | 0.8 % L=150 = |
0.7} i
06 | §
Sosl t
0.4 § ]
03 | 2&
0.2 | + *i |
0.1+
0 — 1 1 &
1.5 p 1.5 2 2.5 3 3.5 4 4.5
T
Second order As if First order

Absolute average latent variable can be used as an order parameter to identify the critical
temperature, but cannot capture the right order of the phase transition

=} = = = 12N G4
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Latent Susceptibility & Critical Temperature

We print the average absolute latent variable as a function of the temperature

Compare with magnetization:

1 r T

L=9 —— ! L=23 ——
091 L=35 | L=35 —t
081 _ L=150 = | 081 L =150 1
07} %‘ ]
0.6 H g 0.6 Becomes 1
E 0.5+ { 1w Steeper
=
0.4 f i 1 0.4
3
0.3 i
0.2 0.2
0.1
0 - - 0 —— —
1 15 2 25 3 35 4 45 1 15 2 25 3 35 4 45

T, (L) extracted from the autoencoder data will suffer less from finite size scaling effects

=} = = E 12N G4

_ Critical Temperature via Autoencoders March 2022 18/29



Latent Susceptibility & Critical Temperature
P L* 5\2
We define the latent susceptibility as  y; = T (2% - (2)?)
12 Their peaks determine T,.(L)
Like the magnetic susceptibility X = - ((m2> _ (m)2)
1 1 1 - 1 1 1
o L=25 L =35 L =50 L =100 L =150
0.8 . 08 08 ‘ 08 ‘ 08 08
0.6 06 06 06 06 06
wy wy
0.4 0.4 0.4 0.4 04 | 04
0.2 02 02 02 ‘ 02 02
0 o 0 0
I 15 T 15 222242628 8 222242028 8 222242028 8 2 22242028 3 2 22242628
T T T T T
ittingllll
More points are required | No overfitting!l!
(Using the extracted weights)
=} =
_ Critical Temperature via Autoencoders
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Latent Susceptibility & Critical Temperature

We extract the latent susceptibility as well as the magnetic susceptibility:
1400 1400 T T T T
. L'=25
L =35+~
1200 {1200 | L =50
L =100
“ L =150 =
1000 {1000 | 1.
800 800
= =
600 - 1 600 |- 1
400 1 400 1
200 1 200 ¢ 1
0 0 .
2 2.1 2.2 2.3 24 2.5 2.6 2 2.1 22 2.3 24 2.5 2.6
T T
From the peaks we extract T.(L)
Does it extrapolate to the right value 7. = 2.269184 2
=] = = E E aAr
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Extracting the T~ using Binder cumulants

4 : (z4)

m z

Uy=1- < Uy=1-—

! 3(m?)” ! 3(22)’
—4— L=25,'=10 —4— L=150L' =25

Lo L=35L=10 —4— L=150,L =35

/

e

UL(L)/UA(L)
=

i}

0.8
1.2 : Vi
S | /1
,S 1
=1 -
= E3 L T 1 1
S » T/ﬂ\ﬂ/{ T(:E ]
924 225 226 227 228 229
T
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Extracting the T in the Thermodynamic Limit

® Noisy Binder Cumulant ratios, first indication that issues in Finite Size Scaling.

® Tc(L) from peaks of latent and magnetic susceptibility as a function of 1/L.

$  Latent
¢ Magnetic
t

Theoretical Value

0.00 0.01 0.02 0.03 0.04
1/L
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Takebacks

T.(L) — Te(L = 00) oc L~1/¥

Susceptibility ‘ T.(L = o0) v X2/ dof
Magnetic 2.265(8)  1.08(20)  0.15
Latent 2.266(4)  1.60(14)  0.41

Critical temperature can be extracted to adequate accuracy.

Observed Z5 symmetry broken.

Configurations from latent variable are from a different universaity class,
but share the same T (00).

Latent variable suffers from small finite volume effects, can help in
constructing observables with small FV effects.
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The anti-ferromagnetic Ising model
Can we use the same methodology on the 2D anti-ferromagnetic Ising model?
® We generate 6000 configurations, namely 200 configurations for every single temperature

® The configurations are for 30 different values of temperature within the range 7" = 1 — 4.5.

Expectation: Since anti-ferromagnetic is connected with ferromagnetic via a bijective map:

— The autoencoder should be able to "notice” the phase transition

Result: Latent variable for each configuration:

L =750 L =100 L =150

10
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The anti-ferromagnetic Ising model
Can we use the same methodology on the 2D anti-ferromagnetic Ising model?
® We generate 6000 configurations, namely 200 configurations for every single temperature

® The configurations are for 30 different values of temperature within the range 7" = 1 — 4.5.

Expectation: Since anti-ferromagnetic is connected with ferromagnetic via a bijective map:

— The autoencoder should be able to "notice” the phase transition

Result: Average absolute latent variable:

0.8 - 1 0.8 -

0.6 . 0.6
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(3 Further extensions
o 3D Ising
o 4D Ising
o Potts Model



3D lIsing Model

Ciritical temperature Tz = 4.511, Second order.

[Talapov & Blote 1996]

= =z - -
2 . 3
e Q
S ; H =
= >
S . I %
k= - g
2 . 3
3 3
2 7
2 )
o | =
© . o>
g \ | H
3 i I - | - il S
5 s %
E . 3
3
o = = = = 9ace

Athenodorou (CYI & UniPl) Critical Temperature via Autoencoders March 2022 24/29



4D Ising Model

Critical temperature T = 6.65.

[Lundow & Markstrom 2012]

a0 - 80 100 80

w{ o, 10| [T e o0, . =121 [ [ =
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© o 75 e H B s 075 s
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g |
= 60 00 60 000 50
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Potts Model

q < 4 second order, q > 4 first order.

[Wu 1982]

s 5
3 states 04 ) ] 4 states
0.2 }
g 5
B ’ .
2 2 . :
<] ] :
= 3 = 1. 3
g N
- - :
c s 1
2 2 o . 2
3 S b
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1 r 1
04 j
5 o 1 2 3 a 5
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Athenodorou (CYI & UniPl) Critical Temperature via Autoencoders March 2022 26/29



(©® Summary & Outlook



Summary
® We define new observables: The latent variable and latent susceptibility
® We can determine the critical temperature T~ to an adequate accuracy.
® We can extract T as a function of L with small finite scaling effects.

Z(G) ={z € G|Vg € G,zg = gz}

2D-Ising Model 2D Q=3 Potts 2D Q=4 Potts 2D XY-Model

zd|[. “g @ - @] - Wl ‘ cont/ |-
) : i
S E &

® Autoencoders detect broken center symmetry of the underlying group.

® Significant effects of the choice of activation functions on the order of
the phase transition.
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Outlook

® Need to test on theories whose order parameters are not a moment of
the field variable.
® What information more latent variables provide!?
® Looking forward to gauge theories:
7,
® Compact U(1) (infinite order phase transition.)
® SU(N) (second order for small N, first order as we increase N.)
® Supervised/unsupervised investigation of Topological field objects in
statistical systems and quantum field theories (Instantons,
Nielsen-Olesen vortices)

Thanks to all my collaborators: C. Alexandrou, C. Chrysostomou. S. Paul,
A. Apseros, C. Havadijia, S. Shiakas and D. Vadacchino.
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Thanks for your attention!!!
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