Integrable Domain Walls in N=4 SYM and ABJM theory

Charlotte Kristjansen Niels Bohr Institute

Based on:

- C.K, D.L. Vu & K. Zarembo, arXiv:2112.10438[hept-th], JHEP 02 (2022) 070
- C.K., D. Müller & K. Zarembo, arXiv:2106.08116[hep-th], JHEP 09 (2021) 004, arXiv:2011.12192, JHEP 03 (2021) 100

GGI Workshop on Randomness, Integrability and Probability April 19th, 2022

AdS/CFT

QFT in lower $D^* \longleftrightarrow String theory in 10D$

- Conformal symmetry
- Supersymmetry
- Planar integrability

AdS/dCFT

Domain wall \longleftrightarrow Probe D-brane

- Conformal symmetry partially broken
- Supersymmetry partially or completely broken

^{*} $\mathcal{N} = 4$ SYM in 4D, ABJM-theory in 3D

Motivation

- Gain insight on the interplay between conformal symmetry, supersymmetry and integrability
- Test the AdS/CFT dictionary for set-ups with supersymmetry partially or completely broken (all tests positive)
- Exact results for novel types of observables such as one-point functions
- Produce input data for the boundary conformal bootstrap program.
- Interesting connections to statistical physics and QI: matrix product states and quantum quenches
- Novel examples of integrable boundary states, novel characterization at the discrete level
- Novel microscopic duality relations for correlation functions (Strong predictive/constraining power)

Plan of the talk

- I. Overlaps and correlation functions in AdS/dCFT
- II. Integrable boundary states in AdS/dCFT
- III. Exact results for overlaps in N=4 SYM
- IV. Duality relations for overlaps
- V. Predicting new overlap formulas for ABJM theory
- VI. Future directions

AdS/CFT and Overlaps

Conformal operators \longleftrightarrow String states

Eigenstates of integrable super spin chain: $|\mathbf{u}\rangle$

Minahan. Zarembo '02 Beisert,

Staudacher '03

Randall '01 Co-dimension one defect \longleftrightarrow Karch-Randall probe brane

 $|\Psi_0\rangle$ (integrable) boundary state describing defect / probe brane

 $\langle \Psi_0 | \mathbf{u} \rangle$ is a one-point function

De Leeuw, C.K. Zarembo '15

Karch.

Determinant operator \longleftrightarrow Giant graviton

Similar idea: $|\Psi_0
angle \sim {
m determinant\ operators/giant\ graviton}$ Jiang, Komatsu

Vescovi '19

 $\langle \Psi_0 | \mathbf{u} \rangle$ is a three-point function

Integrable boundary states

$$s_1 s_2 s_3$$
 s_L $s_{L+m} = s_m$ $|\Psi\rangle = |s_1 s_2 s_3 \dots s_L\rangle$

Eigenstates: $H_0|\mathbf{u}\rangle = E_0|\mathbf{u}\rangle$

Integrable boundary state $\langle \Psi_0 | : \langle \Psi_0 | \mathbf{u} \rangle$ computable in closed form

Identified types of relevance for AdS/dCFT:

Matrix product states:
$$|B\rangle=|{
m MPS}\rangle=\sum_{\{s_i\}}{
m Tr}(t_{s_1}\dots t_{s_L})|s_1\dots s_L\rangle$$
 De Leeuw, C.K., Zarembo '15

Valence Bond States:
$$|VBS\rangle = |K\rangle^{\otimes \frac{L}{2}}, \qquad K = \sum_{s_1, s_2} K_{s_1, s_2} |s_1 s_2\rangle$$

Of possible relevance for AdS/CFT:

Cross cap states:
$$|C\rangle = |c\rangle\rangle^{\otimes L/2}$$
, where $|c\rangle\rangle = |\uparrow\rangle_j|\uparrow\rangle_{\frac{L}{2}+j} + |\downarrow\rangle_j|\downarrow\rangle_{\frac{L}{2}+j}$

Caetano, Komatsu '21

Integrable boundaries in integrable QFTs

- No particle production or annihilation
- Pure reflection, possibly change of internal quantum numbers
- Yang-Baxter relations fulfilled (order of reflection does not matter)

Pure reflection +BYB for reflection matrix

Entangled (p,-p) pairs +BYB for initial state

Example

$$H = \sum_{n=1}^{L} (1 - P_{n,n+1})$$

Excited states with K excitations (and momenta): $|\{p_i\}_{i=1}^K\rangle$

Eigenstates: p_i have to fulfil the Bethe equations $u_i = \frac{1}{2} \coth{(p_i/2)}$, rapidities or Bethe roots

L conserved charges, \hat{Q}_n , with eigenvalues Q_n

$$Q_n(\{p_i\}) = (-1)^n Q_n(\{-p_i\})$$

Integrable initial state: $\widehat{Q}_{2m+1}|\Psi_0\rangle = 0$, $\forall m$

(BYB observed to be fulfilled for all cases considered)

The defect set-up of $|MPS\rangle$

$$\mathcal{N} = 4$$
 SYM

$$U(N-k)$$

$$\langle \phi \rangle = 0$$

$$(x_0, x_1, x_2)$$

$$U(N)$$
 for $x_3 \to \infty$

$$\langle \phi \rangle \neq 0$$

 x_3

Classical Fields (simplest case)

Assume only x_3 -dependence and $x_3 > 0$, $A_{\mu}^{cl} = 0$, $\Psi_A^{cl} = 0$

$$\frac{d^2\phi_i^{\rm cl}}{dx_3^2} = \left[\phi_j^{\rm cl}, \left[\phi_j^{\rm cl}, \phi_i^{\rm cl}\right]\right].$$

$$\phi_i^{\text{cl}} = \frac{1}{x_3} \begin{pmatrix} (t_i)_{k \times k} & 0 \\ 0 & 0 \end{pmatrix}, i = 1, 2, 3$$

Constable, Myers & Tafjord '99

$$\phi_4^{\rm cl} = \phi_5^{\rm cl} = \phi_6^{\rm cl} = 0$$

where $t_{i, i=1,2,3}$, constitute a k-dimensional irreducible repr. of SU(2). (Nahm eqns. also fulfilled.)

AdS/dCFT — The string theory side

	x^0	x^1	x^2	x^3	x^4	x^5	x^6	x^7	x^8	x^9
D3	×	×	×	×						
D5	×	×	×		X	×	X			

Geometry of D5-brane: $AdS_4 \times S^2$

Karch & Randall '01,

Background gauge field: k units of magnetic flux on S^2

One-point functions and $|MPS_k\rangle$

$$\langle \mathcal{O}_{\Delta}^{\text{bulk}}(x) \rangle = \frac{C}{|x_3|^{\Delta}}$$

Cardy '84 McAvity & Osborn '95

Due to vevs scalar operators can have non-zero 1-pt fcts at tree-level

$$\langle \mathcal{O}_{\Delta}(x) \rangle = (\operatorname{Tr}(\phi_{i_1} \dots \phi_{i_{\Delta}}) + \dots) |_{\phi_i \to \phi_i^{\text{cl}} = \frac{t_i}{x_3}}$$

 $\mathcal{O}_{\Delta}(x) \sim \text{eigenstate of integrable } SO(6) \text{ spin chain } \frac{\text{Minahan \& Zarembo'o2}}{\text{Zarembo'o2}}$

$$\operatorname{Tr}(\phi_{i_1}\phi_{i_2}\ldots\phi_{i_L})\sim|s_{i_1}s_{i_2}\ldots s_{i_L}\rangle$$

Matrix Product State associated with the defect:

deLeeuw, C.K. & Zarembo '15,

$$|\mathrm{MPS_k}\rangle = \sum_{\vec{i}} \mathrm{tr}[t_{i_i} \dots t_{i_L}] |s_{i_1} \dots s_{i_L}\rangle,$$

Bethe eigenstate $\mathbf{u} = \{u_1^i, u_2^j, u_3^k\}$

Object to calculate:

$$C_k\left(\mathbf{u}\right) = \frac{\langle \text{MPS}_k | \mathbf{u} \rangle}{\langle \mathbf{u} | \mathbf{u} \rangle^{\frac{1}{2}}}$$

Overlap Formulas — Experience form $\mathcal{N}=4$ SYM

Selection rule

$$\langle \Psi_0 | \mathbf{u} \rangle \neq \mathbf{0} \iff \{\mathbf{u_j}\} = \{-\mathbf{u_i}, \mathbf{u_i}\}$$
 Parity invariance

Ingredients: de Leeuw, C.K. & Zarembo '15 de Leeuw, C.K. & Mori '16 Linardopoulos '18 de Leeuw, Gombor, C.K., Linardopoulos, Pozsgay '19 For $|\text{MPS}_k\rangle$:

- Superdeterminant of Gaudin matrix: $\mathbb{D} = S \det G = \frac{\det(G_+)}{\det(G_-)}$ $\langle \mathbf{u} | \mathbf{u} \rangle = \det G = \det G_+ \det G_-$
- Ratios of Baxter polynomiums (reduced): $Q(u) = \prod_i (u^2 u_i^2)$
- "Transfer matrices": Sums of ratios of Baxter polynomials: $\sum_{a=-\frac{q}{2}}^{a=\frac{q}{2}} \dots$

For $|VBS\rangle$:

No sums involved
 Poszgay '18
 Gombor '21 (Analytical proof for bosonic chains)

|VBS| more fundamental, starting point for deriving |MPS| overlaps

$$|VBS\rangle$$
 overlaps in $\mathcal{N}=4$ SYM

$$SO(6)$$
: $|VBS\rangle = (|XX\rangle + |YY\rangle + |ZZ\rangle + |\bar{X}\bar{X}\rangle + |\bar{Y}\bar{Y}\rangle + |\bar{Z}\bar{Z}\rangle)^{\otimes L/2}$

$$C = \frac{Q_1(0)Q_2(0)Q_3(0)}{Q_1\left(\frac{i}{2}\right)Q_2\left(\frac{i}{2}\right)Q_3\left(\frac{i}{2}\right)}S \text{det}G \qquad \qquad \underbrace{\bigcirc \qquad \qquad }_{\text{Gombor '21}} \\ \text{de Leeuw, Gombor, C.K.,} \\ \text{Linardopoulos, Pozsgay '19}$$

$$PSU(2,2|4): \otimes \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc$$

$$C = \frac{Q_1(0)Q_3(0)Q_4(0)Q_5(0)Q_7(0)}{Q_2(0)Q_2(\frac{i}{2})Q_4(\frac{i}{2})Q_6(0)Q_6(\frac{i}{2})} S \det G \qquad \text{Bajnok \& Gombor '20}$$

Found by "bootstrap" (S-matrix known, BYB, unitary, crossing) and subsequent analytical continuation

QQ-system

Many equivalent ways of writing the Bethe equations

For $\mathcal{N}=4$ SYM, # different choices of Q-functions = 2^8

Connected via dualities

- Fermionic (Change of Dynkin diagram)
- Bosonic

Dualities = Change of variables in the Bethe equations: $Q_a(u) \to \widetilde{Q}_a(u)$

Tsuboi '98 Kazakov '18

|VBS| overlap of relevance for AdS/dCFT singled out by transforming covariantly under fermionic duality

Fermionic dualities in general

- \bullet Allow one to move between any two Dynkin diagrams of a super Lie algebra (of type SU(N|M))
- Involve a fermionic node and its neighbours only a-1 a + 1

$$Q_a \to \widetilde{Q}_a : Q_a \widetilde{Q}_a = Q_{a-1}^- Q_{a+1}^+ - Q_{a-1}^+ Q_{a+1}^-$$

- Changes the nature of neighbouring nodes ⊗ ← → and the connections ← → - -
- Dualized node non-momentum carrying \implies Dynkin labels unchanged
- Dualized node momentum carrying \implies Dynkin labels change

$$\begin{bmatrix} 0 \\ V \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} V \pm 1 \\ -V \\ V \mp 1 \end{bmatrix} \quad \text{for} \quad \boxed{---}$$

Transformation rule for Gaudin determinant

Fermionic duality after node $a: Q_a \to \widetilde{Q}_a$

$$Q_a(0)\mathbb{D} = Q_{a-1}(i/2) Q_{a+1}(i/2) \frac{\widetilde{\mathbb{D}}}{\widetilde{Q}_a(0)}$$

Found numerically
Analytical proof in progress
C.K., Müller,
Zarembo '20

OBS: Covariance of overlap formula which involves $Q_a(0)\mathbb{D}$ or $\widetilde{\mathbb{D}}/\widetilde{Q}_a(0)$

Covariance of overlap formulas very constraining

Dualizing overlap formulas

PSU(2,2|4) overlap formula, alternating grading Bajnok 20

Agrees with field theory result in SO(6) sector

C.K., Müller, Zarembo '20

Covariance requirement fixes the overlap formula from SO(6) result

ABJM theory

ABJM theory in 3D \longleftrightarrow Type IIA strings on $AdS_4 \times CP^3$ $\mathcal{N}=6$ susy

Field content:
$$A_{\mu}$$
, \hat{A}_{μ} , Ψ_A , Y^A , $A = 1, 2, 3, 4$

Gauge symmetry: $U(N)_k \times \hat{U}(N)_{-k}$

Planar 't Hooft limit: $N, k \to \infty, \lambda = \frac{N}{k}$ fixed

Integrable in the planar limit

$$\mathcal{L} = \frac{k}{4\pi} \operatorname{tr} \left[\varepsilon^{\mu\nu\lambda} \left(A_{\mu} \partial_{\nu} A_{\lambda} + \frac{2}{3} A_{\mu} A_{\nu} A_{\lambda} - \hat{A}_{\mu} \partial_{\nu} \hat{A}_{\lambda} - \frac{2}{3} \hat{A}_{\mu} \hat{A}_{\nu} \hat{A}_{\lambda} \right) + D_{\mu} Y_{A}^{\dagger} D^{\mu} Y^{A} + \frac{1}{12} Y^{A} Y_{A}^{\dagger} Y^{B} Y_{B}^{\dagger} Y^{C} Y_{C}^{\dagger} + \frac{1}{12} Y^{A} Y_{B}^{\dagger} Y^{B} Y_{C}^{\dagger} Y^{C} Y_{A}^{\dagger} - \frac{1}{2} Y^{A} Y_{A}^{\dagger} Y^{B} Y_{C}^{\dagger} Y^{C} Y_{A}^{\dagger} + \frac{1}{3} Y^{A} Y_{B}^{\dagger} Y^{C} Y_{A}^{\dagger} Y^{B} Y_{C}^{\dagger} + \operatorname{fermions} \right].$$

The defect set-up of $|MPS\rangle$ ABJM theory

$$U(N-q+1) \times U(N-q)$$

$$\langle Y^A \rangle = 0, \quad A = 1, 2, 3, 4$$

$$(x_0,x_1)$$

$$U(N) \times U(N)$$
 for $x_2 \to \infty$

$$\langle Y^{1,2} \rangle \neq 0$$

 x_2

Classical fields

Classical e.o.m.:

$$\frac{d^2Y^{\alpha}}{dx_2^2} = \dots$$

$$\langle Y^3 \rangle = \langle Y^4 \rangle = 0$$

 $A_{\mu} = \hat{A}_{\mu} = 0, \ \Psi^A = 0$

BPS eqns:
Basu-Harvey eqns.

$$\frac{dY^{\alpha}}{dx_2} = \frac{1}{2}Y^{\alpha}Y^{\dagger}_{\beta}Y^{\beta} - \frac{1}{2}Y^{\beta}Y^{\dagger}_{\beta}Y^{\alpha}, \qquad \alpha, \beta = 1, 2$$

$$\mathcal{L} = \begin{pmatrix} \frac{k}{4\pi} \operatorname{tr} \left[\varepsilon^{\mu\nu\lambda} \left(A_{\mu}\partial_{\nu}A_{\lambda} + \frac{2}{3} A_{\mu}A_{\nu}A_{\lambda} - \hat{A}_{\mu}\partial_{\nu}\hat{A}_{\lambda} - \frac{2}{3}\hat{A}_{\mu}\hat{A}_{\nu}\hat{A}_{\lambda} \right) \right. \\ + \left. D_{\mu}Y_{A}^{\dagger}D^{\mu}Y^{A} + \frac{1}{12} Y^{A}Y_{A}^{\dagger}Y^{B}Y_{B}^{\dagger}Y^{C}Y_{C}^{\dagger} + \frac{1}{12} Y^{A}Y_{B}^{\dagger}Y^{B}Y_{C}^{\dagger}Y^{C}Y_{A}^{\dagger} \right. \\ \left. - \frac{1}{2} Y^{A}Y_{A}^{\dagger}Y^{B}Y_{C}^{\dagger}Y^{C}Y_{B}^{\dagger} + \frac{1}{3} Y^{A}Y_{B}^{\dagger}Y^{C}Y_{A}^{\dagger}Y^{B}Y_{C}^{\dagger} + \operatorname{fermions} \right].$$

$$\langle Y^{\alpha} \rangle = \frac{1}{\sqrt{x_2}} \begin{pmatrix} S^{\alpha}_{(q-1)\times q} & 0 \\ 0 & 0_{(N-q+1)\times(N-q)} \end{pmatrix}, \quad \alpha = 1, 2$$

$$\langle Y^3 \rangle = \langle Y^4 \rangle = 0$$

$$S_{ij}^1 = \delta_{i,j-1}\sqrt{i}, \quad S_{ij}^2 = \delta_{ij}\sqrt{q-i}, \quad i = 1, \dots, q-1, \ j = 1, \dots, q$$

One-point functions and MPS

$$\langle \mathcal{O}_{\Delta}(x) \rangle = \frac{C}{|x_2|^{\Delta}}$$

Cardy '84

McAvity & Osborn '95

Due to vevs scalar operators can have non-zero 1-pt fcts at tree-level

$$\langle \mathcal{O}_{\Delta}(x) \rangle = \left(\operatorname{Tr}(Y^{\alpha_1} Y_{\beta_1}^{\dagger} \dots Y^{\alpha_L} Y_{\beta_L}^{\dagger}) + \dots \right) |_{Y^{\alpha_i} \to \langle Y^{\alpha_i} \rangle}$$

 $\mathcal{O}_{\Delta}(x) \sim \text{eigenstate of integrable alternating } SU(4) \text{ spin chain}$

$$\operatorname{Tr}(Y^{\alpha_1}Y_{\beta_2}^{\dagger}\dots Y^{\alpha_L}Y_{\beta_L}^{\dagger}) \sim |s^{\alpha_1}\bar{s}_{\beta_2}\dots s^{\alpha_L}\bar{s}_{\beta_L}\rangle$$

Minahan & Zarembo '08

$$H = \lambda^2 \sum_{l=1}^{2L} \left(1 - P_{l,l+2} + \frac{1}{2} P_{l,l+2} K_{l,l+1} + \frac{1}{2} K_{l,l+1} P_{l,l+2} \right),$$

One-point functions and |MPS>

$$\langle \mathcal{O}_{\Delta}(x) \rangle = \left(\operatorname{Tr}(Y^{\alpha_1} Y_{\beta_1}^{\dagger} \dots Y^{\alpha_1} Y_{\beta_1}^{\dagger} + \dots \right) |_{Y^{\alpha_i} \to \frac{S^{\alpha_i}}{\sqrt{x_2}}}$$

Two Matrix Product States associated with the defect:

$$|\mathrm{MPS}_{\mathrm{q}-1}\rangle = \sum_{\vec{\alpha},\vec{\beta}} \mathrm{Tr}[S^{\alpha_1}S^{\dagger}_{\beta_1} \dots S^{\alpha_L}S^{\dagger}_{\beta_L}] |s^{\alpha_1}\bar{s}_{\beta_1} \dots s^{\alpha_L}\bar{s}_{\beta_L}\rangle,$$

$$|\widehat{\mathrm{MPS}}_{q}\rangle = \sum_{\vec{\alpha},\vec{\beta}} \mathrm{Tr}[S_{\alpha_{1}}^{\dagger} S^{\beta_{1}} \dots S_{\alpha_{L}}^{\dagger} S^{\beta_{L}}] |\bar{s}_{\alpha_{1}} s^{\beta_{1}} \dots \bar{s}_{\alpha_{L}} s^{\beta_{L}}\rangle,$$

Bethe eigenstate

Object to calculate:
$$C_q(\mathbf{u}) = \frac{\langle \text{MPS}_{q-1} | \mathbf{u} \rangle}{\langle \mathbf{u} | \mathbf{u} \rangle^{\frac{1}{2}}} = \frac{\langle \widehat{\text{MPS}}_q | \mathbf{u} \rangle}{\langle \mathbf{u} | \mathbf{u} \rangle^{\frac{1}{2}}}$$

Nastase '09

For $\alpha = 1, 2$:

$$\Phi_{\beta}^{\alpha} = Y^{\alpha} Y_{\beta}^{\dagger} \equiv \Phi^{i}(\sigma_{i})_{\beta}^{\alpha} + \Phi \delta_{\beta}^{\alpha}, \qquad (q-1) \times (q-1) \text{ matrix}$$

$$\frac{d\Phi^{i}}{dx} = \frac{i}{2} \,\epsilon^{ijk} \, \left[\Phi^{j}, \Phi^{k}\right] \quad \text{Nahm's} \quad \frac{d\Phi}{dx} = \Phi^{i} \Phi^{i} - \Phi^{2}$$

Solution:
$$\Phi^i = \frac{t^i}{x}, \qquad (\{t^i\} = (q-1)\text{-dim. irrep. of SU(2)})$$

$$\Phi = \frac{q}{2x}I_{q-1}$$

For
$$q = 2$$
: $\Phi^{\alpha}_{\beta} = \delta^{\alpha}_{\beta}$, i.e. $|MPS_1\rangle = |VBS\rangle$

Similarly for $\widehat{\Phi}^{\alpha}_{\beta} = Y^{\dagger}_{\beta} Y^{\alpha}$, with q-dimensional rep. of SU(2)

The alternating integrable SU(4) spin chain of ABJM theory

Vacuum state: $\text{Tr}(Y^1Y_2^{\dagger})^L$

Excited states described in terms of Bethe roots $\{u_1^{(i)}\}, \{u_2^{(j)}\}, \{u_3^{(k)}\}$

Roots of Baxter polynomials

$$\begin{array}{cccc}
1 & & 1 \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

Overlaps non-vanishing for states with Z_2 symmetry: $\Omega: u_1^{(k)} \leftrightarrow -u_3^{(k)}$

What about the full ABJM theory?

The full Osp(6|4) spin chain of ABJM theory

Possible Dynkin diagrams

All connected via fermionic dualities

Idea: Determine the complete overlap formula by requiring covariance under fermionic duality

Fixing overlap by covariance requirement

Assume factorized formula (possibly a sum of such terms)

$$C = \sqrt{\prod_{n} \frac{\prod_{j} Q_{n}(i\alpha_{aj}/2)}{\prod_{k} Q_{n}(i\beta_{ak}/2)}} \mathbb{D} \qquad \frac{\underline{\alpha_{ai} \dots \alpha_{an}}}{\underline{\beta_{ai} \dots \beta_{am}}}$$

Fermionic duality transformation after node a Compatible with all data

$$Q_a(0) \; \mathbb{D} = \prod_{\substack{\text{b:neigbour}}} Q_b(i/2) \; \frac{\widetilde{\mathbb{D}}}{\widetilde{Q}_a(0)} \; \begin{array}{c} \text{Shown numerically,} \\ \text{holds semi-on-shell} \\ \text{C.K., Müller C.K., Vu} \\ \text{\& Zarembo '21, \& Zarembo '21,} \end{array}$$

Overlap formula in different gradings

C.K., Vu

Future directions

- Bootstrap the formula to higher loop orders (has been done for N=4 SYM)
- Consider MPS with higher bond dimension
- Other integrable defect set-ups? (Coulomb branch, co-dimension-2 defects....)
- Classification of integrable boundary states in AdS/CFT (VBS, MPS, cross-cap states (?))
- Proof of predicted ABJM overlap formula
- Proof of the duality transformation formula
- Derive the TBA for overlaps (Finite size effects).

Thank you