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AdS/CFT
QFT in lower D* <—  String theory in 10D

e Conformal symmetry
e Supersymmetry

e Planar integrability
AdS/dCFT

Domain wall <+—  Probe D-brane

e Conformal symmetry partially broken

e Supersymmetry partially or completely broken

* N =4 SYM in 4D, ABJM-theory in 3D



Motivation

Gain insight on the interplay between conformal symmetry,
supersymmetry and integrability

Test the AdS/CFT dictionary for set-ups with supersymmetry
partially or completely broken (all tests positive)

Exact results for novel types of observables such as one-point functions
Produce input data for the boundary conformal bootstrap program.

Interesting connections to statistical physics and QI: matrix product
states and quantum quenches

Novel examples of integrable boundary states,
novel characterization at the discrete level

Novel microscopic duality relations for correlation functions
(Strong predictive/constraining power)
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Plan of the talk

Overlaps and correlation functions in AdS/dCFT
Integrable boundary states in AdS/dCFT

Exact results for overlaps in N=4 SYM

Duality relations for overlaps

Predicting new overlap formulas for ABJM theory

Future directions



AdS/CFT and Overlaps

Conformal operators +— String states

| |

Eigenstates of integrable super spin chain: |u)

Co-dimension one defect <+— Karch-Randall probe brane
W) (integrable) boundary state describing defect / probe brane
(Uy|u) is a one-point function

Determinant operator <— (Giant graviton

Similar idea: |Wg) ~ determinant operators/giant graviton

(Uy|u) is a three-point function



Integrable boundary states
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Eigenstates: Hg|u) = Fp|u)
Integrable boundary state (Uq|: (¥glu) computable in closed form

Identified types of relevance for AdS/dCFT:

Matrix product states: |B) = |MPS) = ZTr sp---lsp)|s1--.5L)
Valence Bond States: |[VBS) = |K)®7, K = Z K, s,]5152)

Of possible relevance for AdS/CFT:
Cross cap states: |C) = |¢))®L/2 where |¢)) = | 1),] IR S ROF Y



. . . Ghoshal,
Integrable boundaries in integrable QFTs  zoiodchikov 03

e No particle production or annihilation
e Pure reflection, possibly change of internal quantum numbers

e Yang-Baxter relations fulfilled (order of reflection does not matter)

Boundary

Wick rotation

\/

Pure reflection Entangled (p,-p) pairs
+BYB for reflection matrix +BYB for initial state

Initial state




Integrable spin chain boundary states prol Porseay
ernier

Example ——
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n:1

Excited states with K excitations (and momenta): |{p;}7 ;)

Eigenstates: p; have to fulfil the Bethe equations
u; = % coth (p;/2), rapidities or Bethe roots

L conserved charges, Qn, with eigenvalues @),
Qn ({piy) = (=1)" Qn ({—pi})

Integrable initial state: CA22m+1|‘110> =0, Vm

(BYB observed to be fulfilled for all cases considered)



The defect set-up of [MPS)

N =4 SYM

1 (:E()a Xy, 332)

U(N) for x3 — o

(@) # 0




Classical Fields (simplest case)

Assume only x, -dependence and x,>0, A% =0, U=

d2 cl
i = 05 [o5h 8],

Classical e.o.m.:

(x, is distance to defect)

Constable, Myers
& Tafjord ‘99

Solution: ¢ = kS <(ti)k><k O) , 1=1,2,3

cl el el
4 — 5_¢6_O

where t; i=1,2,3, constitute a k-dimensional irreducible repr.

of SU(2). (Nahm eqns. also fulfilled.)

Set—up 5 BPS (for appropriate choice b.c. for zero-modes, Gaiotto & Witten ‘08)



AdS/dCFT — The string theory side

D3 | X X X X
D5 | X X X X X X

N -k D3 N D3

D5

Geometry of D5-brane: AdSy x S? Karch & Randall 01,

Background gauge field: k& units of magnetic flux on 52



One-point functions and |[MPSy)

) O Cardy "84
(O () = P McAvity & Osborn ’95

Due to vevs scalar operators can have non-zero 1-pt fcts at tree-level
(Oa@)) = (Te(@i, - 612) + ) |y gis

Ona(x) ~ eigenstate of integrable SO(6) spin chain gﬁiﬁlﬁg ,8;2
Tr(Piy Giy - - i) ~ [SiySin - Sip)

Matrix Product State associated with the defect: deLeeuw, C.K.

& Zarembo ‘15,
IMPS,) = Ztr it ]1Se - s,

Bethe eigenstate u = {u’i,ué,ulg}

Object to calculate. /
<MPSk |U.>

1

Ci (u) =
' (1) ?




Overlap Formulas — Experience form N =4 SYM

Selection rule

(Uplu) #0 <= {u;} = {—uw;,w;} Parity invariance

Ingredients de Leeuw, C.K. de Leeuw, C.K. de Leeuw, C.K. & de Leeuw, Gombor, C.K.,
& Zarembo ‘15 & Mori ‘16 Linardopoulos ‘18  Linardopoulos, Pozsgay ‘19

For |MPSk>:

e Superdeterminant of Gaudin matrix: D = SdetG = jgzggf;

(uju) =det G =det G; det G_

e Ratios of Baxter polynomiums (reduced): Q(u) = [[,(u* — u?)

s . . a:g
o “Transfer matrices”: Sums of ratios of Baxter polynomials: »  —*, ...
—72
For [VBS):
e No sums involved Poszgay ‘18 Gombor 21 (Analytical proof for bosonic chains)

|IVBS) more fundamental, starting point for deriving |MPS) overlaps



I'VBS) overlaps in N/ =4 SYM

SO(6):  |VBS)=(|XX)+ YY)+ |ZZ)+ |XX)+ YY) +|ZZ))®L/2

) 1
Sdetd

O O—O0—0
Gombor 21

de Leeuw, Gombor, C.K.,
Linardopoulos, Pozsgay ‘19

PSU(272’4) © @eme--- Onemans= @

Or

®------ O------ ®

_ Q1(0)Q3(0)Q4(0)Q5(0)Q7(0) ok &
~ 02(0)Qa(1)Qu( D)6 (0)Qs(3) 1 Gomoor 0

Found by ”bootstrap” (S-matrix known, BYB, unitary, crossing)
and subsequent analytical continuation

|VBS) overlap of relevance for AdS/dCFT singled out ¢y wvuere
by transforming covariantly under fermionic duality = Zarembo 20



QQ-system

Many equivalent ways of writing the Bethe equations

For N' =4 SYM, # different choices of Q-functions = 2°

Connected via dualities

e Iermionic (Change of
Dynkin diagram)

e Bosonic

Dualities = Change of variables

in the Bethe equations: Q,(u) — Q. (u) euboi 98

Kazakov ‘18
IVBS) overlap of relevance for AdS/dCFT singled out
by transforming covariantly under fermionic duality



Fermionic dualities in general

Allow one to move between any two Dynkin diagrams of a super Lie alge-
bra (of type SU(N|M))

a—1 a—+1

a
Involve a fermionic node and its neighbours only O X O

Qo — éa : Qaéa = Q;—lQ:—l—l — Q:—1Q;+1

Changes the nature of neighbouring nodes &) +— O
and the connections VARSI

Dualized node non-momentum carrying —- Dynkin labels unchanged

Dualized node momentum carrying — Dynkin labels change

0 V1 . —-®—
Vi — | =V or
0 VFl X




Transformation rule for Gaudin determinant

Fermionic duality after node a: @), — @a

~

: , D : :
Qa(0)D = Qa_1(i/2) Qus1(i/2) = Analytical proof in progress

C.K., Miller,
QQ(O) Zarembuo ’e2r0

Found numerically

OBS: Covariance of overlap formula which involves Q,(0)D or D/Qq(0)

o, <§> O 0, & O
o ]
s o

O & O O & O

S _ ES _ o —
2 1 1

Covariance of overlap formulas very constraining



Dualizing overlap formulas

Gombor &

PSU(2,2|4) overlap formula, alternating grading sajnok 20

1
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_ _ 2} 0 o _
[2) [5) — 1 0 )
1
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o o o (23 2
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Agrees with field theory result in SO(6) sector —Ck. Ml

Zarembo 20

Covariance requirement fixes the overlap formula from SO(6) result



ABJM theory
ABJM theory in 3D <— Type IIA strings on AdS, x CP?

N =6 susy

Field content: A,, A,, ¥4, Y4 A=1,234
Gauge symmetry: U(N)g X U(N)_k

Planar ’t Hooft limit: N,k — oo, A = % fixed
Integrable in the planar limit

2
3

k 2 o A

L = E tr [5:“’/)‘ (AM&/A)\ + g AMA,/AA — AM&,AA — AIU,AUA>\>
1 1

+ DYDY A + - YAYIYPYly eyl + o YAY Y BYlyCyl

1 1
-5 YAYIVBYLY Oy} + . YAYVIYVOYIvBY] + fermions] .



The defect set-up of [MPS)
ABJM theory

N (ZC(),iBl)
UN —qg+1)x UN —q) U(N)x U(N) for x5 — o0
(YA =0, A=1,2,34 (Y1%) #0




Classical fields

Classical e.o.m.: d*y® _ (Y?) :A<Y4> =0 .
/H\ dx% A,U’:AM:O?\IJ :O
dy 1

BPS eqns:

Basu-Harvey-eqns.

1
— —YeylyP - ZyByly« =1,2
dry 2 P VXYl
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Classical fields

Terashima ‘08

<ya>:L( (a—1)xq 0 ) 0—1.2
VL2 0 O —g+1)x(N—q)

(%) = () =0




One-point functions and MPS

C Cardy "84
<OA (CU)> = ’.CU |A McAvity & Osborn ’95
2

Due to vevs scalar operators can have non-zero 1-pt fcts at tree-level
<OA(ZE)> — (TI’(YOqul c e YaLYIBTL) 4+ .. ) ‘Yai_><yoz,i>

Oa(x) ~ eigenstate of integrable alternating SU(4) spin chain

Tr(YY) .Y Y] )~ |55, ... 5" 55, ) Minahan &

Zarembo '08

2L

1 1
H = )\? Z (1 — Pyo+ 5 1i+2 K141 + 5 Kl,l—|—1Pl,l+2) 7
=1



One-point functions and |[MPS)

(Oa(2)) = (Tr(Yalygl LLYey] 4 )

Y %i— NCh
C.K., Vu
Two Matrix Product States associated with the defect: & Zarembo ‘21,

MPSq_1) = > Tr[§* 8] ...5%0 8] 1|s* 55, ... 5755, ),
a8

MPS,) = Y T[Sh, 87 ... 81, %] |50, 5™ .. 54
a,B

SBL>,

L

Bethe eigenstate

—_— /

MPS, MPS
Object to calculate:  Cy (u) = < R LU . ‘:1>
(ufu)

N[

(afu)?



Connection to SU(2) reps. CK, Miller,

Zarembo ‘20
For a = 1, 2: Nastase ‘09
g - YQYBT = q)i(ai)g T <I>5§‘, (g —1) x (¢ — 1) matrix
dd’ _ Eeijk’ [(I)J (I)k} Nahm.’s d_(I) _ (I)’LCI)’L - (1)2
dx 2 ’ equation dx
Solution: P! = fB—i, ({t*'} = (¢ — 1)-dim. irrep. of SU(2))
q
b =7, _
22 17!

For ¢ =2: &3 =453, ie [MPS;)=|VBS)

Similarly for P2 — Yg Y¢, with g-dimensional rep. of SU(2)



The alternating integrable SU(4) spin chain of ABJM theory

Vacuum state: Tr(YlYJ)L

Excited states described in terms of Bethe roots {u@}, {ué‘7 )}, {uék)}

1 1
Roots of Baxter polynomials O O O
Qi(u)  Qa(u) Qs(w)

Overlaps non-vanishing for states with Zs symmetry: € : ugk) <y —uék)

SdetG Gombor 21,

(0)Q2(%) C.K., Vu

& Zarembo 21,

Result for |[VBS): C = Qz(i)\/Q
2

‘O O O
22
o1

What about the full ABJM theory 7




The full Osp(6|4) spin chain of ABJM theory

Possible Dynkin diagrams

X
5, ® :
Q Relevant for higher '

loop Bethe eqns

5

= X~ -

All connected via fermionic dualities

Idea: Determine the complete overlap formula by requiring
covariance under fermionic duality



Fixing overlap by covariance requirement

Assume factorized formula (possibly a sum of such terms)

: 2
O — H 11 @n (ZOOCaj/Q) 0 aai.\fam
\ n 11k Qn(lﬁak/Q) ﬁaz"‘ ﬁam

Compatible

Fermionic duality transformation after node a .
with all data

~ Shown numerically,

Qo(0)D=|] @l /2) _ holds semi-on-shell

C.K., Muller C.K., Vu
nei ur ( ) : '
b:ne gbO & Zarembo ‘21, & Zarembo ‘21,




Overlap formula in different gradings ¢%Vw
& Zarembo 21,

0F = Q5

L0 =
B : 05

O

Relevant for higher
loop Bethe eqns

== 22 22
o1 O 0
®z ¥z
Iz 33
I 0 — I 0
‘o o
33 23 z 1



Future directions

Bootstrap the formula to higher loop orders (has been done for
N=4 SYM)

Consider MPS with higher bond dimension

Other integrable defect set-ups ? ( Coulomb branch,
co-dimension-2 defects....)

Classification of integrable boundary states in AdS/CFT (VBS, MPS,
cross-cap states (?))

Proof of predicted ABJM overlap formula
Proof of the duality transformation formula

Derive the TBA for overlaps (Finite size effects).



Thank you



