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Integrable systems

Consider a Poisson manifold (M, {, }), such that {, } is non-degenerate.
Let x = (x1,...,xon) be coordinates on M. The evolution x(0) — x(t)
according to Hamilton equations with Hamiltonian H(x)

dxj . )
T;ZXI:{)Q’H}’J:1”2N

is integrable if there are Hy = H, H», ... Hy independent conserved quantities
(Hk = 0) that Poisson commute: {H;, Hc} = 0. (Liouville)
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Modern theory of integrable systems

Techniques to detect integrability:
1. Lax pair

2. Bi-Hamiltonian structure
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Modern theory of integrable systems

Techniques to detect integrability:
1. Lax pair
2. Bi-Hamiltonian structure

The Hamilton equations
xi={xj,H}, j=1,...,2N

admits a Lax pair formulation if there exist two matrices L = L(x) and A = A(x)
such that

L=[A L] :=LA— AL+ x = {x;,H}, j=1,...,2N

d
Then TrLK, k integer, are constant of motions: aTrLk =0
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Gibbs measure
Consider the Gibbs measure

pm LTV
Z(V)
here V is a continuous function, and ji is invariant for the dynamics, thus also
is invariant.
A classical example is the Gibbs measure for the harmonic oscillator chain:

))ﬁ’ i = m(x)dxy,...dxpn,

exp <_§ (Zszl pj? 4 rjz)) dri,...drydpr ... dpy
o=

e (<5 (SEap+12)) drs - diwdpr . dpw

here rj = gj11 — q;.

)



Gibbs measure

Consider the Gibbs measure
_ 1 —Tr(V(L(x))) ~ ~
,u——(v)e g, = m(x)dxy,...dxn,

uw—L

thus L becomes a Random Matrix.



Gibbs measure

Consider the Gibbs measure

= me—Tr(V(L(x)))'a’ ﬂ = m(X)Xm, oo dX2N >
uw—L
thus L becomes a Random Matrix.

» Does L can be reduced to a known family of random matrices? Which is
the spectrum of L when N — oo (density of states) ?

» How do the correlation functions like

S, t) = E(xj(t)x¢(0)) — E(x;(t))E(x(0)) behave when N — oo and
t — oco?



Correlation functions — Transport properties



Why:

Correlation functions — Transport properties

Specific 1D phenomenon: conductivity diverges as the length of the chain grows
(Anomalous transport).
Surprisingly, this is measured experimentally:

| Nature Na notechnoloii 2021 '



Why:
Correlation functions — Transport properties

For a general dynamical system, the computation of a general correlation
function S(j, t) as t, N — oo is “utterly out of reach” (Spohn). Rigorous
mathematical results in dimension bigger or equal to 3 (Lukkarinen-Spohn
2011).
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» Non linear integrable systems, such as Toda, AL, vy =6 =1 and
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Why:

Correlation functions — Transport properties

For a general dynamical system, the computation of a general correlation
function S(j, t) as t, N — oo is “utterly out of reach” (Spohn). Rigorous
mathematical results in dimension bigger or equal to 3 (Lukkarinen-Spohn
2011).  Numerical simulations show that:

. 1 j—vt

» Non integrable systems, such as DNLS, FPUT, etc, v =§ = % and

f= FTW-
» Non linear integrable systems, such as Toda, AL, vy =6 =1 and
f=ex

» Short range harmonic chain, we can perfectly describe the behaviour of
the correlation functions (Mazur;. . .,
M-Grava-McLaughlin-Kriecherbauer).The behaviour can be “wild", for
different position-time scales the behaviour is described by Airy, Pearcy



Recent Breakthrough

» H. Spohn was able to characterize the density of states for the GGE of the
Toda lattice with polynomial potential in terms of the equilibrium measure
of the Gaussian 3 ensemble at high temperature.
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Recent Breakthrough

» H. Spohn was able to characterize the density of states for the GGE of the
Toda lattice with polynomial potential in terms of the equilibrium measure
of the Gaussian 3 ensemble at high temperature.

Applying the theory of Generalized Hydrodynamic, he argued that the decay
of correlation functions is ballistic. (6 =~y =1)
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Recent Breakthrough
» H. Spohn was able to characterize the density of states for the GGE of the
Toda lattice with polynomial potential in terms of the equilibrium measure
of the Gaussian 3 ensemble at high temperature.
Applying the theory of Generalized Hydrodynamic, he argued that the decay
of correlation functions is ballistic. (6 =~y =1)

» A. Guionnet, and R. Memin generalized Spohn results, obtaining a Large
deviation principle for the empirical measures with continuous potential.

Toda, <egj(t)en(0) >

— t:150
— t:200
~—— GHD

o B N w




a-ensemble Integrable System
Toda lattice

Gaussian _ .
(Spohn; Guionnet-Memin)
Circular Defocusing Ablowitz-Ladik lattice
(Spohn, Grava-M.; Memin-M.)
Laguerre Exponential Toda lattice
g (Gisonni-Grava-Gubbiotti-M.)
Jacobi Defocusing Schur flow

(Spohn; Memin-M. )
Volterra lattice
(Gisonni-Grava-Gubbiotti-M.)

Antisymmetric Gaussian

The a-ensembles are related to the classical 5 ones in the high temperature
regime.
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The Ablowitz-Ladik lattice

iy = (20 — aj_1 — aji1) + P (a1 +aji1), j=1,...,N

where a; € C, and we consider periodic boundary condition, thus oy = «;.
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The Ablowitz-Ladik lattice

iy = (20 — aj_1 — aji1) + P (a1 +aji1), j=1,...,N

where a; € C, and we consider periodic boundary condition, thus oy = «;.

e The Ablowitz-Ladik (1973-74) system is the integrable discretization of the
defocussing cubic NLS:

00 (x,£) = 5 0R(x, 1) + [0 D ).

its integrability was discovered by Ablowitz and Ladik (1974) by making
spatial discretization of the Zakharov-Shabat Lax pair for NLS;
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The Ablowitz-Ladik lattice

.. 2 .
laj = (2aj — Q1 — osz) + ]aj| (Oéj,]_ + Ozj+1) , j=1,...,N
where a; € C, and we consider periodic boundary condition, thus oy = «;.

e The Ablowitz-Ladik (1973-74) system is the integrable discretization of the
defocussing cubic NLS:

00 (x,£) = 5 0R(x, 1) + [0 D ).

its integrability was discovered by Ablowitz and Ladik (1974) by making
spatial discretization of the Zakharov-Shabat Lax pair for NLS;

e For periodic boundary conditions. Finite-gap integration developed by P.
Miller, N. Ercolani, I. Krichever and D. Levermore;

8/30



The Ablowitz-Ladik lattice

.. 2 .
laj = (2aj — Q1 — osz) + ]aj| (Oéj,]_ + Ozj+1) , j=1,...,N
where a; € C, and we consider periodic boundary condition, thus oy = «;.

e The Ablowitz-Ladik (1973-74) system is the integrable discretization of the
defocussing cubic NLS:

. 1

i0(x, t) = —Eaiw(x, t) + [ (x, 1) 29 (x; t).
its integrability was discovered by Ablowitz and Ladik (1974) by making
spatial discretization of the Zakharov-Shabat Lax pair for NLS;

e For periodic boundary conditions. Finite-gap integration developed by P.
Miller, N. Ercolani, I. Krichever and D. Levermore;

e The DNLS is another discretization, but it is not integrable.
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Hamiltonian Structure
There are two conserved quantities:

N
H 1—]a| K@ Z:—Zajaj+1.
j=1 =1

Since K(%) is conserved, this implies that if |o;(0)| < 1V, then |a;(t)| < 1V ¢.
Thus we can consider DV as phase space, D = {z € C | |z| < 1}.
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Hamiltonian Structure
There are two conserved quantities:

N N
KO=T[@-leP) . KW :==> aja.

Jj=1 Jj=1

Since K(©) is conserved, this implies that if |a;(0)| < 1V, then |a;(t)| < 1Vt
Thus we can consider DV as phase space, D = {z € C | |z| < 1}.

N
. of 0g  Og Of
_ .2 _ §
{f.g}t=i E :(1 [j[) <8oz_,' OJaj  0qj 30tj>

(Ercolani, Lozano)

& = { aj, —2log (K(°)> 1 oR(KW)

‘=HaL
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Integrability (N even)

Nenciu, and Simon proved that the AL equations of motion

Lax pair:

where £ = LM, such that

—aq

=3

E=ilE,AE)

P1

are equivalent to the

=4

—-N




Structure of periodic CMV matrix

*
* X X X
R R

* X X X
* X X X
* X K K

*

> Periodic CMV (Cantero Moral Velazquez) Matrix:
* unitary \; = e'%, 0, € T
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Generalized Gibbs Ensemble

In view of the Lax pair: _
E=IilEAE)],

then
K(@:Tr<5f), (=1,...,N—1

are conserved.
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Generalized Gibbs Ensemble

In view of the Lax pair:

E=IlE,A€)],
then
K(z):Tr<8£), (=1,...,N—1

are conserved.
So we can define the Generalized Gibbs Ensemble as

HaL = Zai Vﬂ)H —0j2)? Lexp(~Tr(V(E))) 2, €D

here V(z) is a continuous function, V(z) : D — R.
The —1 comes from the Poisson bracket (volume form)
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Integrability and Random matrix

par — &

thus £ becomes a Random Matrix.
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Integrability and Random matrix

par — €

thus £ becomes a Random Matrix.
Define the empirical measure as

1 N
,U/N(g) = N Zéeief N
j=1

where e'’is are the eigenvalues of £ .

Study the weak limit of up(E), or density of states
un(E) — vy

The eigenvalues are the fundamental ingredient of the finite-gap integration.
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Circular 8 Ensemble

N
dP¢ (01, ...,0n) = (ZE(V, B)) 7 A(e?)) exp( Zv %) )del...de,\,,

where A(e'?) = [Trsj(e e'li — &), 9; € [-m,7), and ZE(V,B) is the partition
function.
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Circular 8 Ensemble

N
dPc (01.....0n) = (Z5(V. 5)HA(e?))7 exp Zv “) ) doy...dow,

where A(e'?) = [Trsj(e e'li — &), 9; € [-m,7), and ZE(V,B) is the partition
function.

Physical Interpretation: charged particles constrained on the unit circle,
subjected to an external potential V(z) at temperature 37}




Matrix Representation - Killip, and Nenciu
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Matrix Representation - Killip, and Nenciu

Definition
We said that a complex random variable X with values on the unit disk D is
©,-distributed (v > 1) if:

E[f(X)] = Vz;l/Df(z)(l—|z|2)"2_3d2z.

if v =1 let ©1 denote the uniform distribution on the unit circle.

Remark: let v € N, if u is chosen at random according to the surface measure
on the unit sphere S” in R¥*1, then uy + ius is ©,—distributed.
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Theorem (Killip, Nenciu)
Let aj ~ Oz y_jyi10 Pf = V1— |aj|, and define =; as

.:(51 Pj>.
T\p o

for 1 <j < N —1 while =g = (1) and =y = (ap) are 1 x 1 matrices. From
these define the N x N block diagonal matrices as:

L:diag(El,Eg,E5,...) and M:diag(Eo,Ez,E4,...) o

The eigenvalues of the two CMV matrices E = LM and E = ML are distributed
according to the Circular Beta Ensemble:

dPc (61,...,0n) = (ZE(0, B))2|A(e®)|Pdby .. .don, 6 € [-7,7).
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Structure of CMV matrix

* X X X
* K K X

» Pentadiagonal
> Unitary

> finite rank perturbation of £
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dPc (61, ....0n) = (ZE(0, B)) Y A(e®)Pd; .. .doy, 6 € [-m,7),
1 .
dP, (a1, ..., an) = (ZE(0, B)) 11‘[ 1oy P) PN 44 day
j=1
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dPc (61, ....0n) = (ZE(0, B)) Y A(e®)Pd; .. .doy, 6 € [-m,7),
1 .
dP, (a1, ..., an) = (ZE(0, B)) 11‘[ 1oy P) PN 44 day
j=1

N
dPc (61,...,0n) = (ZR(V, B)) M A(e")] em( > V(e )dﬂ -don
j=1

N— 1
dPu(a1, ..., an) = (ZE(V,B))? 2BN-D/2-1 (T (V(E))) daydan.
=1

—.
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dPc (01, ...,0n) = (ZE(0, B)) HA(e?)Pd0y ... A0y, 6, € [-m,7),

N—-1
N—j)/2—-1
dPu(cn, ..., an) = (Z5(0.5) 7 T (1 - loyl?) 2)B-D/271 4 day .
j=1

N
dPc (61,...,0n) = (ZR(V, B)) "} A(e") eXP( Z )d91 -don

N— 1
dPa(ay,. .., an) = (ZE(V, ) 2 V-D/271 o (CTe(V(E))) daydany.
N J
=1

—.

The last one looks similar to

N
paL = ZRH(V, B)) 1 H(1 — i) Lexp(~Tr(V(E)))d%a, a; €D,
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High temperature regime - 3 = 2

- 1—j/N)—1
IIﬁLll(l “|OU|2)6( N o
dPq(aq,...,ay) =
z5 (v,

©

(~Tr(V(E))) daydan

)

2[R

19/30



High temperature regime - 6

- B(1—j/N)—1
APy (x an) HJ'N:11 (1—1]ai?) (1=J/N) exp (—Tr(V(E))) dejday
« 1y, 0N ) = '

Theorem (Hardy, and Lambert)
Let >0, and V : T — R continuous. Then
» the sequence upn(E) = % J-NZI 9 io; satisfies a large deviation principle, and

in particular
a.s.

:LLN(E) — :U’,B >

> u‘ﬁ/ € P(T), and it is the unique minimizer of the functional

A0 = [ vOye)a0=5 [ [ togsin (e = ) p(@)p(0)a000
+ /T log (p(6)) p(6)d6 + log(2)




Recap

(1 Joy?)"  exp(~Tr(V(£)))d*

.

par = (ZRH(V,B) ™
1

J
1

dp, = (z (v 25)) llﬁ — oy 2) M ep (—Tr(V(E))) dajda
@ N N 11 j p jaAcy

.

a.s.

pn(E) 2=

u}j/ € P(T), and it is the unique minimizer of f(V+4)(p).
The structure of E, &£ is similar.
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Recap

paL = (ZRH (V. 5)) (1 = loyl?) " exp(—Tx(V(€)))dex

.

1

J
1

dp, = (z (v 25)) llﬁ — oy 2) M ep (—Tr(V(E))) dajda
@ N N 11 j p jaAcy

-,

a.s.

pn(E) = Mﬂ

u}j/ € P(T), and it is the unique minimizer of f(V+4)(p).
The structure of E, &£ is similar.

Question

Can we recover, or at least characterize, the density of states Vg/, in terms of

py?
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First result

Theorem G.M., and T. Grava

Let 8 >0,V : T — R a Laurent polynomial. Then the mean density of states
of the Ablowitz-Ladik lattice ug/ can be computed explicitly as

vy = 0s(Buy),

where N};/ is the unique minimizer of the functional

A0 = [0 =5 [ [ togsin (1€ ) p(O)p(0)a0a0

+ / log (p(6)) p(0)d6 + log(2rr).
T

> Independently, Spohn obtained the same result.
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Generalization

Theorem G.M., and R. Memin
Let >0, V : T — R a continuous and bounded function. Then the mean
density of states of the Ablowitz-Ladik lattice I/g)/ can be computed explicitly as

vy = 9s(Bpg)

where ,ug is the unique minimizer of the functional

FV:8)(p) = /T V(0)p(6)d6 — B / /T ; log sin (ye"9 - e"‘f’|) p(0)p(4)dode

4 / log (p(6)) p(6)d6 + log(2r)
T
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M-Grava M-Memin
Transfer operator technique Large deviations principles
Moment method makes use of some ideas of M-Grava
(It is not the only result of the paper)
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|deas of the proof M.-Grava

Define the free energies as

—00 N

FalVod) = fim_ V5. Fev == i g (26 (v-57) )

where

N
.- | Il eaf-Te( V)P

2 — PN —
ZE (v, WB> :/ H 1— o) M exp (—Tr(V(E))) d2ajday
N— 1><T :
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|deas of the proof M.-Grava

Define the free energies as
Far(V,B8) = — lim l|n(ZAL(v B)), Fc(V,B)=— lim Ln(zE(v. %8

’ Nevoo N0 N AT ’ N—roc N NN )
where

N
Z8v.0) = [ TI0 1oy expl-te(v(E))a
j=1

N—1 .
z£(v.2P) = / (1= oy 2) AT M ep (“Tr(V(E))) d2aydan
N DN_lXTj 1

It is rather technical to prove that

Far(V,B) = 9s(BFc(V, B))
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Far(V,B) = 0s(BFc(V,B))
Consider the case V = 0. Then, it is possible to compute explicitly
z£ (0.37) 2840, 8):

N—-1
2,5(0,%>:2 7,TVN1 L
N B j=1 1-%
N
™
Zy"(0.8) = gz
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Far(V,B) = 0s(BFc(V,B))
Consider the case V = 0. Then, it is possible to compute explicitly
z£ (0.%) . Zi(0,p)

N-1
7 (0.2} Zo. ™" L
N "N ,BN_]' 1_ i

J=1

Z{H0,8) 0

This implies that

Fc(0,8) Z/Ol'“ (%) dx,  Far(0,5) =1n (g)
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Far(V,B) = 0s(BFc(V,B))
Consider the case V = 0. Then, it is possible to compute explicitly
z£ (0.%) . Zi(0,p)

28 oNN=L N-1 j
25<°’N>:25~—1H1_'=. F(ﬂ(l‘@)
N

J:
N
m%wz%zﬂﬂm

This implies that

Fe(0,8) = /01 In (f) dx,  Fa(0.6) =In (i)

It is possible to generalize this result applying the transfer operator technique.
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]:AL(Va B) = 85(/8‘FC(v7ﬁ)) .

Moreover, it holds true that

athL(V+hzk,ﬁ)‘ = /T e* vy (0)do ahfc(V+hzk,/3), = /T e* ¥ (0)do.
h=0 h=0
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]:AL(Va B) = 85(/8‘FC(V7ﬁ)) .

Moreover, it holds true that

athL(V+hzk,ﬁ)‘ = /T e* vy (0)do ahfc(V+hzk,/3), = /T e* ¥ (0)do.
h=0 h=0

These equalities imply that

/T e*vY (0)d0 = 05 <ﬁ /T e*uy (9)d9)
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]:AL(Va B) = 85(/8‘FC(V7B)) .

Moreover, it holds true that

OFA(V+ht, ) = / HY(O000, OnFe(Vrheh ) = / &Y (6)d0 .
h=0 T h=0 T

These equalities imply that
/T e*vY (0)d0 = 05 <ﬁ /T e*uy (9)d9)

and so
vy = 9(Bug)
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|deas of the proof M.-Memin
We proved a large deviation principle for the family of empirical measures
un(€) = % J-Nzl 8 io;, implying that

) —— vy
MN( ) N—oo VB ’
and 1/[‘3/ is the unique minimizer of the functional

JVB) - P(T) = [0;00).
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|deas of the proof M.-Memin
We proved a large deviation principle for the family of empirical measures
un(€) = % J-Nzl d _is;, implying that

i
e

E) —— vy
MN( ) N—o0 B
and 1/[‘3/ is the unique minimizer of the functional

JVB) - P(T) = [0;00).

Moreover, we proved that we can rewrite the functional of Lambert, and Hardy
f(V-A) (the one that is minimized by ,u}j/) as

§—0 g—o0 Vg g vg —
3 Sivip/q€Buls =

q
FVD (i) = lim liminf inf {1ZJ(V”B/")(V;5/q)} :
)

27/30



|deas of the proof M.-Memin
We proved a large deviation principle for the family of empirical measures
un(€) = % J-Nzl d _is;, implying that

i
e

E) —— vy
MN()NHOOVB7

and 1/[‘3/ is the unique minimizer of the functional
JVB) - P(T) = [0;00).

Moreover, we proved that we can rewrite the functional of Lambert, and Hardy
f(V-A) (the one that is minimized by ,u}j/) as

§—0 g—o0 Vg g vg —
3 Sivip/q€Buls =

q
FVD (i) = lim liminf inf {1 ZJ(V”'B/")(Vm/q)} :
)
which implies that
1
/0 ng;dt = u},/ == I/};/ = 35(@”[‘9/)
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Explicit Solutions

For the case V = 0, Lambert, and Hardy proved that
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Explicit Solutions

For the case V = 0, Lambert, and Hardy proved that

1
27

o 1 G6-MMmM-M_ o
MB—E —>Vﬂ_

For the classical Gibbs ensemble V' = n}(z), in Grava-M. we proved

0= 5+ 5 (T 5o ()LL)

where v(z) is the unique analytic solution at 0 of the double confluent Heun
equation

22V"(z) + (—n+z(B+1)+ 7)22) V(z) +nB(z+ A)v(z) =0,

and X is determined as the unique solution of a transcendental equation.
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Open problems

Explicitly compute the correlations functions. Despite having explicit solutions
via finite-gap integration, and several insights for the GHD theory (Dojon,
Spohn, El), the computation remains out of reach.
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Open problems

Explicitly compute the correlations functions. Despite having explicit solutions
via finite-gap integration, and several insights for the GHD theory (Dojon,
Spohn, El), the computation remains out of reach.

a-ensemble Integrable System
Toda lattice
(Spohn; Guionnet-Memin)
Defocusing Ablowitz-Ladik lattice

Gaussian

Circular _
(Grava-M.; Memin-M.)

Laguerre Exponential Toda lattice

¢ (Gisonni-Grava-Gubbiotti-M.)

Jacobi Defocusing Schur flow

(Spohn; Memin-M. )
Volterra lattice
(Gisonni-Grava-Gubbiotti-M.)

. Focusing Ablowitz-Ladik
77
(??7)2D S ensemble at high temperature and focusing mKdV
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Thank you for the attention!
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