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Overview

● Some history on Alternating Sign Matrices/6 vertex model with
domain wall boundary conditions

● Random Domino Tilings on the Aztec diamond,

● F1 and F2 Tracy Widom Distributions

● Large ASMs, formulation of theorem

● Sketch of the proof of the main theorem



Some linear algebra

● Let M be an n × n matrix (of integers, say).

● For I , J ⊂ {1, . . . ,n} with ∣I ∣ = ∣J ∣, let M I
J be the matrix with the

rows in I removed and the columns in J removed.

● Dodgson’s algorithm for computing a determinant is then

detM = detM1
1 detMn

n − detM1
n detMn

1

detM1,n
1,n

where det∅ = 1.

● A generalization of this:

det
λ

M = detM1
1 detMn

n + λdetM1
n detMn

1

detM1,n
1,n

where detλ∅ = 1 and detλ(x) = x .

● Is there a formula for detλM?
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Alternating Sign Matrices

An alternating sign matrix (ASM) of size n is an n × n matrix with entries
in {0,1,−1} such that

● the sum of the entries in each row and column equals 1,

● non-zero entries in each row and column alternate in sign.

Let ASM(n) be the set of ASMs of size n.

● The dictionary between ASMs and six-vertex configurations is given
by

0 0 0 0 1 -1

● The BC to the n by n grid are incoming arrows on the left and
rightmost columns, outgoing arrows on top and bottom rows.
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in {0,1,−1} such that

● the sum of the entries in each row and column equals 1,

● non-zero entries in each row and column alternate in sign.

Let ASM(n) be the set of ASMs of size n.
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● The dictionary between ASMs and six-vertex configurations is given
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● The BC to the n by n grid are incoming arrows on the left and
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An alternating sign matrix (ASM) of size n is an n × n matrix with entries
in {0,1,−1} such that

● the sum of the entries in each row and column equals 1,

● non-zero entries in each row and column alternate in sign.

Let ASM(n) be the set of ASMs of size n.

For A in ASM(n), let n−(A) be the number of −1’s in A and
inv(A) = ∑i<k,j>l Ai,jAk,l be the number of inversions of A.
Robbins-Rumsey (1986) showed that for M = (mi,j)ni,j=1
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M = ∑
A∈ASM(n)

λinv(A)−n−(A)(1 + λ)n−(A)∏
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Question: how many ASMs of size n are there?

● The dictionary between ASMs and six-vertex configurations is given
by

0 0 0 0 1 -1

● The BC to the n by n grid are incoming arrows on the left and
rightmost columns, outgoing arrows on top and bottom rows.
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Brief digression on the six-vertex model

● Ice-model was introduced by Pauling in 1935 and has a rich history
in statistical mechanics, e.g. Baxter’s book.

● Introduce weights

a a b b c c

and assign the Boltzmann measure, that is, the probability of each
configuration is proportional to the product of the vertex weights.

● Let ∆ = a2+b2−c2
2ab

.

● The model is parameterized by ∆ as opposed to the individual
weights.

● We are interested in uniformly random ASMs, i.e. ∆ = 1/2, or
a = b = c = 1.

● In this case, Lieb in 1967 computed the free energy.
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Some History on ASMs: Combinatorics

● Mills-Robbins-Rumsey (1986) conjectured the number of ASMs is

∏n−1
i=0

(3i+1)!
(n+i)! = 1,2,7,42,429, ...

● This conjecture was settled independently first by Zeilberger (1996)
and then by Kuperberg (1996).

● Zeilberger’s proof showed that ASMs are equinumerous with Totally
Symmetric Self-Complementary Plane Partitions (TSSCPPs) whose
partition function was computed by Andrews (1994).

● Kuperberg’s proof exploited the link between ASMs and the
six-vertex model with domain wall boundary conditions. The
partition function for the six-vertex model was given by Izergin
based on recurrence relations introduced by Korepin.

● There is no bijective proof between TSSCPPs and ASMs that
preserve statistics!

● However, Fischer-Konvalinka (2019-20) gave a complicated bijective
proof between ASMs and Descending plane partitions. This is highly
nontrivial.
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Random tilings
Random domino tilings of the Aztec diamond provide a good source for
intuition for large uniformly random ASMs.

● Johansson (2005) showed that the edge fluctuations at the
frozen-rough interface are given by the Airy-2-process (away from
the tangency points) after suitable rescaling.

● At the tangency points Johansson-Nordenstam (2006) showed that
the GUE corner process appears at the tangency points.

● General results on limit shapes due to Cohn-Kenyon-Propp (2000),
Kenyon-Okounkov (2007), and Astala-Duse-Prause-Zhong (2020+).
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Consider N independent Brownian motions, starting from the origin and
ending after time N that are conditioned not to intersect.

0.2 0.4 0.6 0.8 1.0

-5

5



Airy process, F1 and F2

Consider N independent Brownian motions, starting from the origin and
ending after time N that are conditioned not to intersect.

0.2 0.4 0.6 0.8 1.0

-5

5

Rescale (in time and space) away from 0 < t < N, top path converges to
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has Tracy-Widom GUE Fluctuations, F2.
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Airy process, F1 and F2

Consider N independent Brownian motions, starting from the origin and
ending after time N that are conditioned not to intersect.

0.2 0.4 0.6 0.8 1.0

-5

5

At t = N, after suitable centering and rescaling, the top path has Tracy
Widom GOE fluctuations, F1.
In fact, Johansson (2003) showed that maxA(t)− t2 has distribution F1.



Universality?

These random matrix theory limit laws appear in many other models
analyzed by using determinantal point processes. Some examples include

● ∆ = 0 six-vertex model with domain wall boundary conditions
(equivalent to uniformly random domino tilings of the Aztec
diamond)

● Directed last passage percolation in 2D with geometric weights

● Polynuclear Growth Models

● TASEP with parallel and sequential updates.

Recent progress has been made for some models that are not
determinantal by exploiting the underlying the algebraic structure. In
particular, Borodin-Corwin-Gorin (2016) found the edge fluctuations for
stochastic six vertex model with a certain boundary are given by the GUE
Tracy Widom distribution, F2.
Huge amount of progress on understanding the algebraic structure by
Aggarwal, Borodin, Bufetov, Corwin, Gorin, Petrov, Wheeler,....
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Back to ASMs

● Rescale the ASMs of size n by n/2 so that it fits into [0,2]2. Expect
to see four frozen corners of 0’s with a disordered region, similar to
the Aztec diamond.

0

0

0

0

?

Colomo-Pronko (2010) and Colomo-Sportiello (2016) predicted the
limit shape using two different methods.

The latter was made
rigorous by Aggarwal (2020) confirming the limit shape curves for
the ASMs.

● Gorin (2014) showed the GUE Corner process at the tangency
points.



Back to ASMs

● Rescale the ASMs of size n by n/2 so that it fits into [0,2]2. Expect
to see four frozen corners of 0’s with a disordered region, similar to
the Aztec diamond.

0

0

0

0

Disordered Region with 0,1,-1

Colomo-Pronko (2010) and Colomo-Sportiello (2016) predicted the
limit shape using two different methods. The latter was made
rigorous by Aggarwal (2020) confirming the limit shape curves for
the ASMs.

● Gorin (2014) showed the GUE Corner process at the tangency
points.



Back to ASMs

● Rescale the ASMs of size n by n/2 so that it fits into [0,2]2. Expect
to see four frozen corners of 0’s with a disordered region, similar to
the Aztec diamond.

0

0

0

0

Disordered Region with 0,1,-1

GUE Corner Process

Colomo-Pronko (2010) and Colomo-Sportiello (2016) predicted the
limit shape using two different methods. The latter was made
rigorous by Aggarwal (2020) confirming the limit shape curves for
the ASMs.

● Gorin (2014) showed the GUE Corner process at the tangency
points.



Heights from ASMs

We want to give a good description of the boundary.

● For each ASM of size n + 1, A = (ai,j)1≤i,j≤n+1 construct a new
matrix C = (ci,j)1≤i,j≤n by

ci,j = n − ∑
1≤r≤i

1≤s≤n+1−j

ar ,s , 1 ≤ i , j ≤ n.

● The matrices of size 2 are
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Maximum of the Top Path
Consider the level lines of the heights.

8 8 8 8 8 9 9 9 9

7 7 7 7 7 8 9 9 9

6 6 6 7 7 8 8 8 9

5 5 5 6 7 7 8 8 9

5 5 5 6 7 7 8 8 8

4 4 4 5 6 6 7 8 8

3 3 4 5 5 5 6 7 8

2 3 3 4 5 5 6 7 8

1 2 3 4 4 5 6 7 8

Remove the entries of the matrix and rotate by π/4 counterclockwise.
The x-coordinate marks time and the y -coordinate marks the height,
with the highest leftmost and rightmost vertices having coordinates
(−n,0) and (n,0). Introduce

Tn = (Tn(−n), . . . ,Tn(−1),Tn(0),Tn(1), . . . ,Tn(n)).

Our theorem concerns fluctuations of maxTn.
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Simulation



Main Theorem

Introduce the constants α = 2 −
√

3
and c0 = 1

2⋅31/6 . Let F1 and F2 be the
GOE and GUE Tracy-Widom
distributions.

Theorem (Ayyer-C.-Johansson (2021+))

lim
n→∞

P [maxTn − (1 − α)n
c0n

1
3

≤ s] = F1(s).

Conjecture (Ayyer-C.-Johansson (2021+))
After rescaling, Tn converges to the Airy-2-process. In particular

lim
n→∞

P [Tn(0) − (1 − α)n
4

1
3 c0n

1
3

≤ s] = F2(s).
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GOE kernel

● Let Ai(x) denote the Airy function, that is,

Ai(x) = 1

π
∫

∞

0
dt cos( t

3

3
+ xt) ,

which converges for all real x .

● Introduce the following 2 by 2 block kernel

KGOE(x , y) = ( K 11
GOE(x , y) K 12

GOE(x , y)
K 21
GOE(x , y) K 22

GOE(x , y)
)
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GOE block kernel

K 11
GOE(x , y) =

1

4 ∫
∞

0
dλ (Ai(x + λ)Ai′(y + λ) −Ai′(x + λ)Ai(y + λ)) ,

K 12
GOE(x , y) = ∫

∞

0
dλ Ai(x + λ)Ai(y + λ) + 1

2
Ai(x)∫

∞

0
dλ Ai(y − λ)

K 21
GOE(x , y) = −K 12

GOE(y , x),

K 22
GOE(x , y) =∫

∞

0
dλ∫

∞

λ
dµ Ai(x + λ)Ai(y + µ) −Ai(x + µ)Ai(y + λ)

− ∫
∞

0
dµ Ai(x + µ) + ∫

∞

0
dµ Ai(y + µ) − sgn(x − y).



Fredholm Pfaffian

● The Pfaffian of a 2k × 2k anti-symmetric matrix A is given by

Pf(A) = 1

2kk!
∑
σ∈S2k

sgn(σ)Aσ(1),σ(2)⋯Aσ(2k−1),σ(2k),

where S2k is the set of permutations of {1, . . . ,2k}.

● The GOE Tracy–Widom distribution is defined through a Fredholm
Pfaffian by

F1(s) =Pf(J −KGOE)L2(s,∞)

=1 +
∞
∑
k=1

(−1)k

k! ∫
∞

s
dx1⋯∫

∞

s
dxk Pf(KGOE(xi , xj))1≤i,j≤k ,

where

J(x , y) = ( 0 1
−1 0

) Ix=y .



Overview of the proof

Unfortunately, there are no amenable formulas for ASMs. Colomo-Pronko
had a series of works (including those with Di Giulio (2021), Cantini
(2019), Noferini(2010), Zinn-Justin(2010)) on the ”emptiness
formulation probability” but these formulas are difficult to analyze.
Fischer (2018) also has similar formulas.

● Use Zeilberger’s results to relate statistics of ASMs to statistics of
TSSCPPs.

● Use formulas in Ayyer-C. (2021) to analyze the relevant events in
TSSCPPs.

● Perform an asymptotic analysis to obtain the result.
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TSSCPPs

A totally symmetric self complementary plane partition is a boxed plane
partition with maximum symmetry.

Credit: Bressoud’s book Andrews (1994) computed the number of
TSSCPPs of size n.



TSSCPPs to dimers
Since TSSCPPs, we only need a twelfth of the hexagon.

On the dual graph, we can map the tiles to edges (dimers). The right
boundary is free. For dimers, this turns out to be equivalent to adding a
triangle.



Dimers
The dimer graph is now

for size 3 and 4. Each TSSCPP configuration is equivalent to a dimer
covering on the dimer-graph, that is subset of edges so that each vertex
is covered exactly once by a dimer on the dimer graph.

For example, here
is a dimer covering on a TSSCPP graph of size 3.

Another interpretation: non-intersecting paths with a free boundary.
Mapping between dimers to paths drawn in blue.
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Zeilberger’s result in our language

Zeilberger found that the number of triangles in bijection with ASMs
(Gogs) is equal to the number of triangles in TSSCPPs (Magogs).

In
fact, he proved more: removing triangular regions from the corners in
both gogs and magogs are the same.
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We can relate the maximum of the top path to the position of the
leftmost vertical edge not covered by a dimer.



Fluctuations of the leftmost non-vertical dimer

From the previous slide, the number of ASMs where the maximum of the
top path is k from the top is the same as the number of the leftmost
non-vertical dimer on the bottom row being at site k in the TSSCPPs.

Therefore, these two objects have the same distribution.

We then proceed in analyzing this dimer event using dimer theory and
formulas from Ayyer-C. (2021), where we had previously found formulas
for the inverse Kasteleyn matrix for the nonbipartite graph. Note, it is
the position of the leftmost path in a non-intersecting path ensemble at
its free-boundary, so intuitively, one expects GOE fluctuations, e.g.
Betea-Bouttier-Nejjar-Vuletic (2017).
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Some dimer theory

● For the TSSCPP dimer graph, we introduce a matrix K called the
Kasteleyn matrix. This is a type of signed-adjacency matrix.

● Kasteleyn’s theorem gives that ∣Pf(K)∣ is equal to the number of
TSSCPP configurations.

● Kenyon’s theorem (1997) gives that local statistics can be
computed using entries of the inverse of the Kasteleyn matrix

● In Ayyer-C. (2021), we found formulas for the entries of the inverse
of the Kasteleyn matrix for TSSCPPs.
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Summary

● We introduced a well-defined set of lattice paths for the six-vertex
model with domain wall boundary conditions

● The limit shape curve of ASMs is given by the boundary of this top
path.

● We showed the fluctuations of the maximum of this top path are
given by TW GOE fluctuations by relating to TSSCPPs using
Zeilberger’s result.

● We gave a conjecture about the fluctuations of this top path.
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Thanks for your attention!


