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� space of states: H = ⊗N
n=1Hn with Hn ' C2

� σx,y,z
m ∈ End(Hn) : local spin-1/2 operators (Pauli matrices) at site m

� anisotropy parameter ∆ = cosh η

� boundary fields hx,y,z
± parametrised in terms of 6 boundary parameters

ς±, κ±, τ±, or alternatively ϕ±, ψ±, τ±:

hx
± = 2κ± sinh η

cosh τ±
sinh ς±

, hy
± = 2iκ± sinh η

sinh τ±
sinh ς±

, hz
± = sinh η coth ς±

sinhϕ± coshψ± =
sinh ς±

2κ±
, coshϕ± sinhψ± =

cosh ς±
2κ±
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Remark: Invariance of the Hamiltonian under the changes

� {η, ς±} → {−η,−ς±}

�

{
n→ N − n + 1, 1 ≤ n ≤ N,

{ς±, κ±, τ±} → {ς∓, κ∓, τ∓}.
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Question: Correlation functions 〈
∏m

j=1 σ
αj

j 〉 = 〈G .S . |
∏m

j=1 σ
αj

j |G .S . 〉 at zero
temperature ?

 ∃ exact formulas for hx,y
− = hx,y

+ = 0 [Jimbo et al. 95; Kitanine et al. 07]

(multiple integral representations in the half-infinite chain limit)

 generalize these formulas to a special case of unparallel boundary fields
[Niccoli, VT 22] :

� hx,y,z
− arbitrary

� hx,y
+ = 0 and hz

+ fixed to a specific value



A reminder of the periodic case (1)

The periodic XXZ chain is solvable in the framework of the Quantum Inverse
Scattering Method (QISM) [Faddeev, Sklyanin, Takhtajan, 1979]

 solution based on the representation theory of the Yang-Baxter algebra:

◦ generators: elements of the monodromy matrix T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
◦ commutation relations given by the R-matrix of the model:

R(λ− µ)
(
T (λ)⊗ 1

)(
1⊗ T (µ)

)
=
(
1⊗ T (µ)

)(
T (λ)⊗ 1

)
R(λ− µ)

◦ abelian subalgebra generated by the transfer matrix t(λ) = trT (λ)
such that [H, t(λ)] = 0

The eigenstates of the transfer matrix t(λ) (and of the Hamiltonian) are
constructed by means of ABA as Bethe states:

| {λ} 〉 =
n∏

k=1

B(λk)| 0 〉 ∈ H, 〈 {λ} | = 〈 0 |
n∏

k=1

C(λk) ∈ H∗

on a reference state | 0 〉 ≡ | ↑↑ . . . ↑ 〉 such that

C(λ) | 0 〉 = 0, A(λ) | 0 〉 = a(λ)| 0 〉, D(λ) | 0 〉 = d(λ)| 0 〉

→ eigenstates (“on-shell” Bethe states) if {λ} solution of the Bethe
equations

→ “off-shell” Bethe states otherwise



A reminder of the periodic case (2)

Correlation functions can be computed in the ABA framework

→ numerical results [Caux et al. 2005. . . ]

→ analytical derivation of the large distance asymptotic behavior at the
thermodynamic limit. . . [Kitanine, Kozlowski, Maillet, Slavnov, VT 2008,

2011. . . ]

Both approaches are based

◦ on the form factor decomposition of the correlation functions:

〈ψg |σαn σβn′ |ψg 〉 =
∑

eigenstates
|ψi 〉

〈ψg |σαn |ψi 〉 · 〈ψi |σβn′ |ψg 〉

◦ on the exact determinant representations for the form factors 〈ψi |σαn |ψj〉 in
finite volume [Kitanine, Maillet, VT 1999] , obtained from

� the action of local operators on Bethe states (using the solution of the
quantum inverse problem, e.g. σ−n = t(0)n−1 B(0) t(0)−n)

� the use of Slavnov’s determinant representation for the scalar products
of Bethe states [Slavnov 89]

〈{µ}off-shell|{λ}on-shell〉 ∝ det1≤j,k≤n

[
∂τ(µj |{λ})

∂λk

]
where t(µj) |{λ}〉 = τ(µj |{λ}) |{λ}〉



The reflection algebra for the XXZ open spin chain

The open spin chains are solvable in the framework of the representation theory of
the reflection algebra (or boundary Yang-Baxter algebra) [Sklyanin 88]

◦ generators Uij(λ), 1 ≤ i , j ≤ n ← elements of the
boundary monodromy matrix U(λ)

◦ commutation relations given by the reflection equation:

R12(λ− µ)U1(λ)R12(λ+ µ− η)U2(µ) = U2(µ)R12(λ+ µ− η)U1(λ)R12(λ− µ)

↪→ most general 2× 2 solution of the refl. eq [de Vega, Gonzalez-Ruiz; Ghoshal,

Zamolodchikov 93] :

K(λ; ς, κ, τ) =
1

sinh ς

(
sinh(λ− η

2
+ ς) κ eτ sinh(2λ− η)

κ e−τ sinh(2λ− η) sinh(ς − λ+ η
2

)

)
 boundary matrices K−(λ) ≡ K(λ; ς+, κ+, τ+) and K+(λ) ≡ K(λ+ η; ς−, κ−, τ−)
describing most general boundary fields in left/right boundaries:

hx
± = 2κ± sinh η

cosh τ±
sinh ς±

, hy
± = 2iκ± sinh η

sinh τ±
sinh ς±

, hz
± = sinh η coth ς±

 U(λ) = T (λ)K−(λ) T̂ (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
with T̂ (λ) ∝ σy T t(−λ)σy

 transfer matrix: t(λ) = tr{K+(λ)U(λ)} [t(λ), t(µ)] = 0

Hopen
XXZ ∝

d

dλ
t(λ)∣∣

λ=η/2



Solution by ABA in the diagonal case
When both boundary matrices K± are diagonal (κ± = 0, i.e. boundary fields
along σz

1 and σz
N only):

the state | 0 〉 can still be used as a reference state to construct the
eigenstates as Bethe states in the ABA framework [Sklyanin 88]

| {λ} 〉B =
n∏

k=1

B(λk)| 0 〉 ∈ H, B〈 {λ} | = 〈 0 |
n∏

k=1

C(λk) ∈ H∗

∃ generalization of Slavnov’s determinant representation for the scalar
products of Bethe states 〈{µ}off-shell|{λ}on-shell〉 [Tsuchiya 98; Wang 02]

but a simple generalization of the quantum inverse problem to the
boundary case (i.e. expressions of σαn in terms of elements of the
boundary monodromy matrix dressed by the boundary transfer matrix) is
missing (except at site 1)

 no simple closed formula for the form factors

correlation functions for the half-infinite chain can be computed as
multiple integrals [Kitanine et al. 07] (recovering the results of [Jimbo et

al. 95] from q-vertex operators):

� decompose boundary Bethe states into bulk Bethe states
� use the bulk inverse problem to compute the action of local operators
� reconstruct the result in terms of boundary Bethe states
 multiple sums over scalar products. . .



The non-diagonal case ?

It is possible to generalize usual Bethe ansatz equations to the case of
non-longitudinal boundary fields with one constraint on the boundary
parameters ϕ±, ψ±, τ± [Nepomechie 03] :

cosh(τ+ − τ−)

= εϕ+εϕ− cosh(εϕ+ϕ+ + εϕ−ϕ− + εψ+ψ+ − εψ−ψ− + (N − 1− 2M)η)

with M ∈ N (numbers of Bethe roots), εϕ± , εψ± ∈ {+,−}
 incomplete in general (except for M = N)

+ construction of the Bethe states by means of a Vertex-IRF transformation
[Cao et al 03; Yang, Zhang 07; Filali, Kitanine 11] (cf. the solution of the
8-vertex model by [Baxter 73; Faddeev, Takhtajan 79] ) but problems in the
ABA construction of a complete set of Bethe states both in H and H∗

 scalar products and correlation functions could not be computed

most general boundaries ? a usual ABA solution is missing. . .

Alternative proposals:

� Off-diagonal Bethe Ansatz [Cao et al 13. . . ]

� Modified Bethe Ansatz [Belliard et al 13. . . ]

� Separation of Variables [Frahm et al 10, Niccoli 12, Faldella et al 13. . . ]



Solution by SOV in the general case
Goal: identity a basis of the space of state which ”separates the variables” for
the transfer matrix spectral problem

Sklyanin’s method [Sklyanin 85,90] : construct this basis by means of the
”operator roots” Xj of a one-parameter family of commuting operators X(λ)

X(λ) should be diagonalizable with simple spectrum

 the N commuting ”operators roots” Xj (with Sj ∩ Sk = ∅ if j 6= k,
Sj ≡ Spec(Xj)) can be used to define a basis of the space of states H:

Xn | x1, . . . , xN 〉 = xn | x1, . . . , xN 〉, (x1, . . . , xN) ∈ S1 × · · · × SN

such that the transfer matrix t(λ) at λ = Xn acts as simple shifts on the
basis elements:

t(Xn) | x1, . . . , xn, . . . , xN 〉 = ∆+(xn) | x1, . . . , xn + η, . . . , xN 〉
+ ∆−(xn) | x1, . . . , xn − η, . . . , xN 〉

 For the XXZ chain with non-diagonal b.c., such an operator X(λ) can be
obtained as an entry of the monodromy matrix of a generalized gauge
transformed model with inhomogeneities ξ1, . . . , ξN

Generalized method [Maillet, Niccoli 19] : use the multiple action of the
transfer matrix t(λ) itself, evaluated in distinguished points related to the
inhomogeneities ξn, on a generically chosen vector



Solution by Sklyanin’s SOV approach: more details

1 simplify the expression of t(λ) = tr{K+(λ)U(λ)}: use (a trigonometric
version of) Baxter’s Vertex-IRF tranformation to diagonalize K+

R12(λ−µ)S1(λ|α, β)S2(µ|α, β+σz
1) = S2(µ|α, β) S1(λ|α, β+σz

2)RSOS
12 (λ−µ|β)

with S(λ|α, β) =

(
eλ−η(β+α) eλ+η(β−α)

1 1

) {
β : dynamical parameter

α : arbitrary shift

 gauged transformed boundary/bulk monodromy matrices and
boundary K± matrices:

U(λ|α, β) = S−1(η/2− λ|α, β)U(λ) S(λ− η/2|α, β)

= T (λ|(α, β), (γ, δ))K−(λ|(γ, δ), (γ′, δ′)) T̂ (λ|(γ′, δ′), (α, β))

=

(
A(λ|α, β) B(λ|α, β)
C(λ|α, β) D(λ|α, β)

)

 choice of α, β such that

t(λ) = ā+(λ)A(λ|α, β − 1) + ā+(−λ)A(−λ|α, β − 1)



2 construct a SOV basis which quasi-diagonalises B(λ|α, β):

| h, α, β + 1 〉Sk ∝
N∏
j=1

D(ξj + η/2|α, β + 1)hjS1...N({ξ}|α, β) | 0 〉

Sk〈α, β − 1, h | ∝ 〈 0 | S1...N({ξ}|α, β)−1
N∏
j=1

A(η/2− ξj |α, β − 1)1−hj

for h ≡ (h1, . . . , hN) ∈ {0, 1}N , 〈 0 | = ⊗N
n=1 (1, 0)n, | 0 〉 = ⊗N

n=1

(
0
1

)
n

and

S1...N({ξ}|α, β) =
∏

n=1→N

Sn

(
− ξn

∣∣∣α, β +
n−1∑
j=1

σz
j

)
such that

B(λ|α, β − 1) | h, α, β − 1 〉Sk = bR(λ|α, β) ah(λ) ah(−λ) | h, α, β + 1 〉Sk,
Sk〈α, β + 1, h | B(λ|α, β + 1) = bL(λ|α, β) ah(λ) ah(−λ) Sk〈α, β − 1, h |,

where ah(λ) =
∏N

n=1 sinh(λ− ξ(hn)
n ) with ξ

(hn)
n = ξn + η/2− hnη



2 construct a SOV basis which quasi-diagonalises B(λ|α, β):

| h, α, β + 1 〉Sk and Sk〈α, β − 1, h | for h ≡ (h1, . . . , hN) ∈ {0, 1}N

such that

B(λ|α, β − 1) | h, α, β − 1 〉Sk = bR(λ|α, β) ah(λ) ah(−λ) | h, α, β + 1 〉Sk,
Sk〈α, β + 1, h | B(λ|α, β + 1) = bL(λ|α, β) ah(λ) ah(−λ) Sk〈α, β − 1, h |,

where ah(λ) =
∏N

n=1 sinh(λ− ξ(hn)
n ) with ξ

(hn)
n = ξn + η/2− hnη

+ orthogonality conditions:

Sk〈α, β − 1, h | k,α, β + 1 〉Sk ∝ δh,k
e

2
∑N

j=1 hjξj

Vh(ξ)

with Vh(ξ) = V (ξ
(h1)
1 , . . . , ξ

(hN )
N ) = detN

[
sinh2(j−1)(ξ

(hi )
i )

]
Remarks: This construction

→ works only on an inhomogeneous deformation of the model:

T (λ) −→ T (λ; ξ1, . . . , ξN)

such that ξi 6= ξk ± η mod iπ if i 6= k

→ needs [K−(λ|α, β)]12 6= 0



The new SOV approach [Maillet, Niccoli 19]

Under the hypothesis that

� ξi 6= ξk ± η mod iπ if i 6= k

� the two boundary matrices K± are not both proportional to the identity

one can construct, for almost any choice of the co-vector 〈 S |, the following
SOV basis:

S〈 h | ∝ 〈S |
N∏

n=1

t(ξn − η/2)1−hn , h ≡ (h1, . . . , hN) ∈ {0, 1}N

| h 〉S ∝
N∏

n=1

t(ξn + η/2)hn |R 〉, h ∈ {0, 1}N

where |R 〉 is uniquely fixed by adequate orthogonality conditions:

S〈 h |R 〉 = N({ξ}) δh,0

They satisfy the following orthogonality conditions (same as previous basis):

S〈 h | h′ 〉S ∝ δh,h′
e2

∑N
j=1 hjξj

Vh(ξ)



Spectrum and eigenstates by SOV
In both types of SOV basis (| h 〉 ≡ | h, α, β + 1 〉Sk or | h 〉S):

the multi-dimensional spectral problem for the transfer matrix t(λ) can be
reduced to a set of N one-dimensional ones:

t(λ) |Ψτ 〉 = τ(λ) |Ψτ 〉 with |Ψτ 〉 =
∑

h∈{0,1}N
ψτ (h) | h 〉,

is solved by

ψτ (h) =
N∏

n=1

Qτ (ξ
(hn)
n ) · Vh(ξ)

where Qτ and τ are solution of a discrete version of Baxter’s T-Q
equation:

τ(x)Qτ (x) = A(x)Q(x + η) + A(−x)Qτ (x − η), x ∈ ∪N
n=1{ξ

(0)
n , ξ

(1)
n }

The scalar products of separate states can be expressed as determinants:

〈P | =
∑

h

N∏
n=1

[vhn
n P(ξ(hn)

n )]V1−h(ξ)〈 h |, |Q 〉 =
∑

h

N∏
n=1

Q(ξ(hn)
n )Vh(ξ)| h 〉

where P and Q are arbitrary and

〈h | k〉 ∝ δh,k

Vh(ξ)
with Vh(ξ) = detN

[
sinh2(j−1)(ξ

(hi )
i )

]
 〈P |Q 〉 = det1≤i,j≤N

[ ∑
h∈{0,1}

f (ξ
(hi )
i )P(ξ

(hi )
i )Q(ξ

(hi )
i ) sinh2(j−1)(ξ

(1−hi )
i )

]
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From discrete to continuous T-Q equations

Question: Can we characterize a class of (entire ?) functions ΣQ such that

τ(λ) eigenvalue of t(λ) (+ simple conditions on τ(λ) ?)
m

∃!Q ∈ ΣQ s.t. τ(λ)Q(λ) = A(λ)Q(λ+ η) + A(−λ)Qτ (λ− η)

→ not known in general

but this SOV characterisation of the spectrum can be equivalently reformulated
in terms of polynomials (in cosh(2λ)) Q-solutions of a functional T-Q equation
with an inhomogeneous term [Kitanine et al 13] , (see also [Cao et al. 13;

Belliard, Crampé 13. . . ] ):

An entire function τ(λ) is an eigenvalue of the antiperiodic transfer matrix
iff there exists a unique function Q(λ) ∈ ΣQ such that

τ(λ)Q(λ) = A(λ)Q(λ− η) + A(−λ)Q(λ+ η) + F(λ),

where A(λ) ≡ Aζ±,κ±(λ) and F(λ) ≡ Fζ±,κ±,τ±(λ) depend on the boundary

parameters, with F(ξ
(0)
n ) = F(ξ

(1)
n ) = 0, n = 1, . . . ,N.

F = 0 identically ⇐⇒ constraint on the boundary param. (cf [Nepomechie 03] )



More precisions on the spectrum

Fε(λ) =
2κ+κ−

sinh ς+ sinh ς−
g

(N)
ε a(λ) a(−λ) d(λ) d(−λ) [cosh2(2λ)− cosh2 η]

with, for M ∈ N and ε ∈ {+,−}4,

g
(M)
ε ≡ g

(M)
ε,τ±,ϕ±,ψ±

= cosh(τ+ − τ−)

−εϕ+εϕ− cosh(εϕ+ϕ+ + εϕ−ϕ− + εψ+ψ+ − εψ−ψ− + (N − 1− 2M)η)

and set

ΣM
Q =

{
Q(λ) =

M∏
j=1

cosh(2λ)−cosh(2λj )

2

∣∣∣ cosh(2λj) 6= cosh(2ξ
(h)
n ), ∀ (j , n, h)

}

1 complete description of the spectrum in terms of Q(λ) ∈ ΣN
Q solution of

τ(λ)Q(λ) = Aε(λ)Q(λ− η) + Aε(−λ)Q(λ+ η) + Fε(λ),

if
2κ+κ−

sinh ς+ sinh ς−
6= 0 and g

(M)
ε 6= 0 ∀M ∈ {0, . . . ,N − 1}

2 incomplete description of the spectrum in terms of Q(λ) ∈ ΣM
Q solution of

τ(λ)Q(λ) = Aε(λ)Q(λ− η) + Aε(−λ)Q(λ+ η) (1)

if
2κ+κ−

sinh ς+ sinh ς−
6= 0 and g

(M)
ε = 0 for some M ∈ {0, . . . ,N − 1}

3 complete description of the spectrum in terms of Q(λ) ∈ ΣQ = ∪N
M=0ΣM

Q

solution of (1) if
2κ+κ−

sinh ς+ sinh ς−
= 0. This is the case for our special boundary

conditions which can be reached as ς+ → +∞
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and set

ΣM
Q =

{
Q(λ) =

M∏
j=1

cosh(2λ)−cosh(2λj )

2

∣∣∣ cosh(2λj) 6= cosh(2ξ
(h)
n ), ∀ (j , n, h)

}

1 complete description of the spectrum in terms of Q(λ) ∈ ΣN
Q solution of

τ(λ)Q(λ) = Aε(λ)Q(λ− η) + Aε(−λ)Q(λ+ η) + Fε(λ),
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2κ+κ−
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6= 0 and g

(M)
ε 6= 0 ∀M ∈ {0, . . . ,N − 1}
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Q solution of

τ(λ)Q(λ) = Aε(λ)Q(λ− η) + Aε(−λ)Q(λ+ η) (1)

if
2κ+κ−

sinh ς+ sinh ς−
6= 0 and g

(M)
ε = 0 for some M ∈ {0, . . . ,N − 1}

(Nepomechie’s constraint)

3 complete description of the spectrum in terms of Q(λ) ∈ ΣQ = ∪N
M=0ΣM

Q

solution of (1) if
2κ+κ−

sinh ς+ sinh ς−
= 0. This is the case for our special boundary

conditions which can be reached as ς+ → +∞



More precisions on the spectrum
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g
(M)
ε ≡ g

(M)
ε,τ±,ϕ±,ψ±
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if
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sinh ς+ sinh ς−
6= 0 and g
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ε 6= 0 ∀M ∈ {0, . . . ,N − 1}

2 incomplete description of the spectrum in terms of Q(λ) ∈ ΣM
Q solution of

τ(λ)Q(λ) = Aε(λ)Q(λ− η) + Aε(−λ)Q(λ+ η) (1)

if
2κ+κ−

sinh ς+ sinh ς−
6= 0 and g

(M)
ε = 0 for some M ∈ {0, . . . ,N − 1}

3 complete description of the spectrum in terms of Q(λ) ∈ ΣQ = ∪N
M=0ΣM

Q

solution of (1) if
2κ+κ−

sinh ς+ sinh ς−
= 0. This is the case for our special boundary

conditions which can be reached as ς+ → +∞



Eigenstates as generalised Bethe states

In the range of Sklyanin’s approach, separate states can be reformulated
as generalised Bethe states:

|Q 〉Sk ∝
∏

j=1→M

B(λj |α, β − 2j + 1) |Ωα,β+1−2M 〉Sk

Sk〈Q | ∝ Sk〈Ωα,β−1+2M |
∏

j=1→M

B(λj |α, β + 2M − 2j + 1)

for any Q(λ) =
M∏
j=1

cosh(2λ)−cosh(2λj )

2

with |Ωα,β+1−2M 〉Sk and Sk〈Ωα,β−1+2M | special separate states

Remark: if |Q 〉 and 〈Q | are eigenstates obtained via the new SOV
approach, we have also |Q 〉Sk = cSkQ |Q 〉, Sk〈Q | = 〈Q |/cSkQ

With the special choice of α, β diagonalising K+, and under the constraint

[K−(λ|(α, β + N − 1− 2M), (α, β + N − 1− 2M)]21 = 0

(which implies Nepomechie’s constraint g
(M)
ε = 0), the reference state

|Ωα,β+1−2M 〉 can be identified as (cf. [Cao et al 03] )

| η, α + β + N − 1− 2M 〉 ≡
N∏

n=1

Sn(−ξn|α, β + n − 1− 2M) | 0 〉

up to a proportionality coefficient which only depends on M



Spectrum and eigenstates in the limit ς+ → +∞
K−(λ; ς+ = −∞, κ+, τ+) = e(η/2−λ)σz

out of the range of Sklyanin’s SOV approach but still in the range of the
new SOV approach

 the transfer matrix is diagonalizable with simple spectrum and the
complete set of eigenstates is given by the separate states |Q 〉 and 〈Q |
with

Q(λ) =
M∏
j=1

cosh(2λ)−cosh(2λj )

2
(1 ≤ M ≤ N)

solution with the corresponding eigenvalue τ(λ) of the homogeneous
TQ-equation

with the special choice of α, β diagonalizing K+, it can be shown by direct
computation that the Bethe state∏

j=1→M

B(λj |α, β − 2j + 1) | η, α + β + N − 1− 2M 〉

is an eigenstate of t(λ) with eigenvalue τ(λ) (cf. [Cao et al 03] ), and
hence should be proportional to |Q 〉
the transfer matrix is isospectral to the transfer matrix of an open spin
chain with diagonal boundary conditions with boundary parameters ς

(D)
± :

ς(D)
ε = εϕ−ϕ−, ς

(D)
−ε = −εϕ−ψ− + iπ/2, for εϕ− = 1 or −1.



Computation of the scalar products [Kitanine, Maillet, Niccoli, VT 18]

〈P |Q 〉 ∝ det1≤i,j≤N

[∑
ε=±

f{a}(εξi )P
(
ξi − ε

η

2

)
Q
(
ξi − ε

η

2

)
coshj−1(2ξi + εη)

]

with arbitrary P(λ) =

p∏
j=1

(cosh 2λ− cosh 2pj), Q(λ) =

q∏
j=1

(cosh 2λ− cosh 2qj),

where f{a}(λ) depends on combinations {a} of the ± boundary parameters ζ±, κ±

 not convenient for the consideration of the homogeneous/thermodynamic limit

When p + q = N, can be transformed into a new determinant in which the
role of the set of variables {ξj} and {γj} ≡ {pj} ∪ {qj} has been exchanged at
the price of modifying the last column:

〈P |Q 〉 ∝ det
1≤i,j≤p+q

[∑
ε=±

f{ η
2
−a}(εγi )

L∏
`=1

(
cosh(2γi − εη)− cosh 2ξ`

)
coshj−1(2γi + εη)

+ δj,L g
(p+q)
{a} (γi )

]
Generalization to p + q 6= N by considering limits of the previous result

In its turn, this new determinant can be transformed into a generalized (and
much more complicated !) version of Slavnov’s determinant

In the case with a constraint, the determinant simplifies drastically if one of
the state is an eigenstate thanks to Bethe equations

 usual Slavnov formula if p = q !



Generalized Slavnov determinant for open XXZ

Example: the case p = q

〈P |Q 〉 ∝ detp S

Si,k =
∑

ε∈{+,−}

f (εqi ) P(qi+εη)

[
f (−pk)

ς(qi + ε η
2

)− ς(pk + η
2

)
− f (pk)ϕ(pk)

ς(qi + ε η
2

)− ς(pk − η
2

)

+
f (−pk)− f (pk)ϕ(pk)

1 +
∑p
`=1 P

g
f ,`

p∑
j=1

Pg
f ,j

ς(qi + ε η
2

)− ς(pj − η
2

)

]
+
g(qi )

P(qi )

f (−pk)− f (pk)ϕ(pk)

1 +
∑p
`=1 P

g
f ,`

.

with ς(λ) =
cosh(2λ)

2

and Pg
f ,k =

g(pk) sinh(2pk − η)

f (−αk)P ′(pk)P(pk − η)
, ϕ(λ) =

sinh(2λ− η)

sinh(2λ+ η)

P(λ+ η)

P(λ− η)
.

The functions f and g depend on the boundary parameters.



Generalized Slavnov determinant for open XXZ

Example: the case p = q

〈P |Q 〉 ∝ detp S

Si,k =
∑

ε∈{+,−}

f (εqi ) P(qi+εη)

[
f (−pk)

ς(qi + ε η
2

)− ς(pk + η
2

)
− f (pk)ϕ(pk)

ς(qi + ε η
2

)− ς(pk − η
2

)

+
f (−pk)− f (pk)ϕ(pk)

1 +
∑p
`=1 P

g
f ,`

p∑
j=1

Pg
f ,j

ς(qi + ε η
2

)− ς(pj − η
2

)

]
+
g(qi )

P(qi )

f (−pk)− f (pk)ϕ(pk)

1 +
∑p
`=1 P

g
f ,`

.

In the case with a constraint, the Bethe equations are

f (−pk)− f (pk)ϕ(pk) = 0, k = 1, . . . p

 if |P 〉 is an eigenstate the determinant simplifies into

Si,k =
∑

ε∈{+,−}

f (εqi ) P(qi + εη)

[
f (−pk)

ς(qi + ε η
2

)− ς(pk + η
2

)
− f (qk)ϕ(qk)

ς(pi + ε η
2

)− ς(pk − η
2

)

]

∝ ∂τ(qj |{p})
∂pk



Computation of correlation functions: general strategy

Compute 〈O1→m〉 ≡
〈Q |O1→m|Q 〉
〈Q |Q〉 for |Q 〉 = ground state and

O1→m ∈ End(⊗m
n=1Hn) acts on sites 1 to m?

1 rewrite |Q 〉 as a generalized Bethe state∏
j=1→M

B(λj |α, β − 2j + 1) | η, α + β + N − 1− 2M 〉

2 use a similar strategy as in the diagonal case [Kitanine et al. 07] to act
with O1→m on this Bethe state, i.e.

� decompose the boundary Bethe state as a sum of bulk Bethe states
� use the solution of the bulk inverse problem to act with local

operators on bulk Bethe states
� reconstruct the result of this action as sums over boundary Bethe

states, and hence as a sum over separate states

3 compute the resulting scalar products using the determinant
representation for the scalar products of separate states issued from SOV

but difficulties due to the use in all the steps of 2 of a gauged transformed
boundary/bulk YB algebra !



Difficulties due to use of the gauged algebra

the action of the usual basis of local operators given by E i,j
n ∈ End(Hn)

(such that (E i,j)k,` = δi,k δj,`) is very intricate on the gauged bulk Bethe
states

 identification of a basis of End(⊗m
n=1Hn) whose action is simpler to

compute:

Em(α, β) =

{
m∏

n=1

E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) | ε, ε′ ∈ {1, 2}m

}
,

where E
ε′n,εn
n (λ|(an, bn), (ān, b̄n))) = Sn(−λ|ān, b̄n)E

ε′n,εn
n S−1

n (−λ|an, bn)
and the gauge parameters an, ān, bn, b̄n, 1 ≤ n ≤ m, are fixed in terms of
α, β and of the m-tuples ε ≡ (ε1, . . . , εm) and ε′ ≡ (ε′1, . . . , ε

′
m) as

an = α + 1, bn = β −
n∑

r=1

(−1)εr ,

ān = α− 1, b̄n = β +
m∑

r=n+1

(−1)ε
′
r −

m∑
r=1

(−1)εr = bn + 2m̃n+1,

with m̃n =
∑m

r=n(ε′r − εr ).

 compute ”elementary building blocks” 〈
∏m

n=1 E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n))〉



the action of
∏m

n=1 E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) for

m∑
r=1

(ε′r − εr ) 6= 0

on the Bethe state∏
j=1→M

B(λj |α, β − 2j + 1) | η, α + β + N − 1− 2M 〉

produces a state written on a SOV basis with shifted gauge parameters β

 the expression of the resulting scalar product is not known in that case

 we had to restrict our study to the computation of ”elementary

blocks” 〈
∏m

n=1 E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n))〉 for which

m∑
r=1

(ε′r − εr ) = 0



Result

As in the diagonal case, the result is given as a multiple sum over scalar
products, which turn in the half-infinite chain limit into multiple integrals over
the Fermi zone [−Λ,Λ] on which the Bethe roots condensate with density ρ(λ)
+ possible contribution of two (instead of one in the diagonal case) isolated

complex roots (the boundary roots λ̌± converging towards η/2− ς(D)
± ):

〈
m∏

n=1

E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n))〉 =

m∏
n=1

eη

sinh(ηbn)

(−1)s∏
j<i

sinh(ξi − ξj)
∏
i≤j

sinh(ξi + ξj)

×
∫
C

s∏
j=1

dλj

∫
Cξ

m∏
j=s+1

dλj Hm({λj}Mj=1; {ξk}mk=1)︸ ︷︷ ︸
similar to the diagonal case

except that it depends on both parameters ς̄
(D)
±

det1≤j,k≤m

[
Φ(λj , ξk)

]︸ ︷︷ ︸
determinant of densities

,

The contours C and Cξ are defined as

C =

{
[−Λ,Λ] if the GS has no boundary roots

[−Λ,Λ] ∪ Γ(ς̄
(D)
σ − η/2) if the GS contains the b.r. λ̌σ

Cξ = C ∪ Γ({ξ(1)
k }

m
k=1)

where Γ(ς̄
(D)
σ − η/2) (respectively Γ({ξ(1)

k }
m
k=1)) surrounds the point ς̄

(D)
σ − η/2

(respectively the points ξ
(1)
1 , . . . , ξ

(1)
m ) with index 1, all other poles being outside.



Perspectives and open problems

generalize this study to a general boundary field on site N (case with a
constraint)

generalize this study to (some particular case of) the open XYZ chain ?

compute more general matrix elements with
m∑
r=1

(ε′r − εr ) 6= 0 ?

case without constraint ?

form of the (homogeneous) functional T-Q equation for the general
open chain (  Q not a polynomial) ?
transformation of the determinant of the scalar product in the
non-polynomial case (cf antiperiodic XXZ  difficult) ?

Form factor of a local operator at distance m from the boundary (even in the
diagonal case) ?

Temperature case ?


