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Two-periodic Aztec diamond



Aztec diamond

A domino tiling of an Aztec diamond shape corresponds to a
dimer configuration on the Aztec graph.



Probability measure

Let ν(e) > 0 be the weight of the edge e in the graph G. The
probability of a certain dimer cover C , i.e. each vertex is covered
exactly once, is

1

Z

∏
e∈C

ν(e).

Z is the partition function.



Two Periodic Weighting

The two-periodic weighting of the Aztec diamond is defined in
the following way. For a two-colouring of the faces, the edge
weights around a particular coloured face alternate between a and
b, we have a-edges and b-edges. E.g. for a size 4 Aztec diamond
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Aztec diamond height function
To each tiling of an Aztec diamond we can associate a height
function. The heights sit on the faces of the Aztec graph. The
height differences between two faces are given by

• +3 if we cross a dimer with a white vertex to the right

• −1 if we do not cross a dimer and have a white vertex to the
right
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Two-periodic Aztec diamond height function



Two-periodic Aztec diamond height function

Picture by B. Young



Variational principle for the limit height shape

The limiting height function solves

inf
h

∫
Ω
σ(∇h) dx ,

where σ is the surface tension. (Cohn-Kenyon-Propp).

Properties investigated by Kenyon and Okounkov.

Recent breakthrough work by Astala-Duse-Prause-Zhong, Dimer
models and Conformal structures. Investigate possible geometries
and prove regularity results. Pokrovsky-Talapov law: height
function ∼ d3/2 at typical boundary point of the rough region.



Phases

Smooth
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Frozen
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The curve in the picture is a degree 8 curve with two real
components. We get three regions which are called frozen, rough
and smooth.



Phases

Kenyon, Okounkov and Sheffield have characterized the different
limiting translation invariant Gibbs measures that are possible
for bipartite dimer models on the plane.

There are three classes of Gibbs measures, frozen, rough and
smooth.

Correlations between dominos decay polynomially with distance in
the rough region, and exponentially in the smooth region.



Frozen-Rough boundary



Frozen-Rough boundary



Airy kernel point process

Figure: The Airy line ensemble. The top path is the Airy process.



Airy kernel point process

The extended Airy point process is a determinantal point
process on parallel lines {τq} ×R, 1 ≤ q ≤ L1 in R2. We can think
of it as a random measure µAi defined via a Laplace transform.
Let Ap, 1 ≤ p ≤ L2, be disjoint intervals in R, wp,q ∈ C,

E
[

exp

( L2∑
p=1

L1∑
q=1

wp,qµAi ({τq} × Ap)

)]
= det

(
I + (eΨ − 1)KextAi

)
L2({τ1,...,τq}×R)

,

where

Ψ(x) =

L1∑
q=1

L2∑
p=1

wp,qI{τq}×Ap
(x).



Airy kernel point process

E
[

exp

( L2∑
p=1

L1∑
q=1

wp,qµAi ({τq} × Ap)

)]
= det

(
I + (eΨ − 1)KextAi

)
L2({τ1,...,τq}×R)

,

where

Ψ(x) =

L1∑
q=1

L2∑
p=1

wp,qI{τq}×Ap
(x).

Recall that the extended Airy kernel is given by

KextAi(τ1, ξ1; τ2, ξ2) = −φτ1,τ2(ξ1, ξ2) + K̃extAi(τ1, ξ1; τ2, ξ2),

where

K̃extAi(τ1, ξ1; τ2, ξ2) =

∫ ∞
0

e−λ(τ1−τ2)Ai (ξ1 + λ)Ai (ξ2 + λ) dλ.
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The rough-smooth boundary

To the left part of frozen-rough boundary, to the right part of
rough-smooth boundary.



The rough-smooth boundary

Particles in the two-periodic Aztec diamond.



The rough-smooth boundary

What are the ”long paths” that we see in the picture? Can we
define a boundary that converges to the Airy process?



The Kasteleyn method

For the Aztec diamond graph we define the Kasteleyn matrix by

K(b,w) =


ν(b,w) if e = (b,w) is horizontal
iν(b,w) if e = (b,w) is vertical
0 otherwise (i.e. no edge between b and w)

Theorem (Montroll-Potts-Ward, Kenyon)

If ei = (bi ,wi ), then the probability that e1, . . . , em belong to a
dimer cover is

P(e1, . . . , em) = det
(
K(bi ,wi )K−1(wi , bj)

)
1≤i ,j≤m

This means that the dimers form a determinantal point process
with correlation kernel K (ei , ej) = K(bi ,wi )K−1(wi , bj),
ei = (bi ,wi ).



Dimer-dimer correlations at the rough-smooth boundary

(Based on joint work with S. Mason, Dimer-dimer correlations at
the rough-smooth boundary, arXiv:2110.14505; formula for the
inverse Kasteleyn matrix from J., Chhita.)

Consider a size n two-periodic Aztec diamond with n very large.
Formula for the inverse Kasteleyn matrix

K−1
a,1 (x , y) = K−1

1,1(x , y)− Cωc (x , y) + R(x , y) + B∗(x , y).
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Dimer-dimer correlations at the rough-smooth boundary

Smooth

Rough

Frozen

B∗ is exponentially small in n. Write

x = n(1+ξ)(1, 1)+(2a1−1, 2a2), y = n(1+ξ)(1, 1)+(2b1, 2b2−1).

ξ = ξc = −1
2

√
1− 2c, c = a

1+a2 , gives asymptotic boundary.



Dimer-dimer correlations at the rough-smooth boundary

We are close to the boundary: ξc − ξ → 0 as n→∞.
Let G (w) = 1√

2c
(w −

√
w2 + 2c) and

gξ(w) = logw − ξ logG (w) + ξ logG (w−1).

Then g ′ξ(w) has roots at ±ωc , ±ω̄c , where ωc is in the first
quadrant. ωc = i iff ξ = ξc . R is an error term for our purposes.

|R(x , y)| ≤ C |G (ωc)|b1−b2+a2−a1 min(
1

n1/3
,

1√
n
√
ξc − ξ

),

for |ai |, |bi | ≤ max(n1/3,
√

n
√
ξc − ξ).



Dimer-dimer correlations at the rough-smooth boundary

In the region we are investigating,

K−1
a,1 (x , y) = K−1

1,1(x , y)− Cωc (x , y) + negligible

= K−1
s1,s2

(x , y) + negligible,

where K−1
s1,s2

gives a rough Gibbs measure in the whole plane. K−1
1,1

can be expressed in terms of the integrals

Ek,` =
i−k−`

4(1 + a2)πi

∫
|w |=1

G (w)`G (1/w)k√
w2 + 2c

√
1/w2 + 2c

dw

w
.

Cωc (x , y) can be expressed in terms of the integral the same
integral but integrated over Γωc which consists of two short arcs on
the unit circle around i and −i of length c

√
ξc − ξ.

k ≈ (x2 − y2)/2 and ` ≈ (x1 − y1)/2.



The rough-smooth boundary. Correlation asymptotics

Consider two dimers along the main diagonal oriented orthogonally
to the diagonal. Think of n as very large but fixed and consider
growing r .

Assume n−2/3 << ξc − ξ (not right at the boundary) and
ξc − ξ < δn → 0 (not fully in the rough region).

• rmin < r < c1 log 1√
ξc−ξ

: corr ∼ ce−r/α (exponential decay)

• c1 log 1√
ξc−ξ

< r < c2
1√
ξc−ξ

: corr ∼ c(ξc − ξ) (constant)

• c2
1√
ξc−ξ

< r <<
√
n
√
ξc − ξ and r ∼ d√

ξc−ξ
:

corr ∼ (ξc − ξ) sin2 d
d2 (power law and oscillatory)



The rough-smooth boundary. Correlation asymptotics

Two length scales

1) the lattice spacing
2) the distance 1√

ξc−ξ

The results can be thought of as the decay of correlations for
infinite volume Gibbs measures in the rough phase close to the
smooth phase.



The rough-smooth boundary

What are the ”long paths” that we see in the picture? Can we
define a boundary that converges to the Airy process?



Squishing
(Based on joint work with Beffara and Chhita.)

An a-dimer is a dimer that covers an a-edge. They are oriented
from white to black.

Figure: The red dimers are a-dimers, and the black b-dimers.



Squishing

We let the b-faces become smaller, go to zero in size.



Squishing

We get double edges, loops and paths.
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Paths and Loops

To get a unique split between paths and loops and get well-defined
loops we need a convention. We use mirrors.
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Paths

The paths go between the boundaries.
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Figure: After squishing.



Paths
The paths go between the boundaries.

Figure: After squishing, n = 300, a = 0.5.



What we would like to prove
With high probability, if we go along the main diagonal there is a
last path in the third quadrant close to the asymptotic
rough-smooth boundary and this path converges to the Airy
process.



What we can prove
Let h(f ) be the height at the face f in the Aztec diamond. Then
we can split it into two parts:

h(f ) = h`(f ) + hc(f )

where h`(f ) is the loop height and hc(f ) is the corridor height.
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What we can prove

Assume that a < 1/3. Imbed the interval A as a discrete interval
of length ∼ m1/3 in the Aztec diamond at the rough-smooth
boundary. Define the random signed measure

κm({β} × A) =
1

4
(hc(F+)− hc(F−)),

where F+ and F− are the end-faces of the discrete imbedded
interval. Then κm({β} × A) converges in terms of Laplace
transforms to µAi ({β} × A) as m→∞, where µAi is the Airy
kernel point process.

We expect that with high probability κm is actually a positive
measure. We should think of κm as counting the number of paths
between the two faces.



Thank you for your attention!


