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Rational solutions of PlI

d2u(t)
dt?
Rational solution iff « = n € Z;

= 2u(t)® + tu(t) + a, (1)

d. Y,
up (t) = T log #t()t) (2)

with Y;, the Vorob'ev—Yablonski polynomials of degree n(n + 1)/2.

Y1 (8)Yno1(t) = tY,2(t) — 4[Y7’L'(t)Yn(t) - (y;(t))2], n>1,teC (VY)
with Yy (t) = 1, Yy (¢) = t. Or otherwise

(n+1)/6 [ n !
Ya(t) = (f)" ! (H (2k — 1)!!) Strn—1,....1) (—ﬁ)g £,0,1,0,0,... .
3 Pralie 4

The regularity of the pattern of zeroes
of Yy, (t) observed numerically by Clark-
son ['03], and explained (asymptoti-
cally and analytically ) by Buckingham—
Miller ['14], Bertola-Bothner ['14];
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Quartic Anharmonic Oscillators

By this we mean the spectrum of a Sturm—Liouville problem in " physical " form:

v (z) — (14 +t2? + 2Jrc) y(z) = Ay(x) 3)

y(z) —» 0 as  — oo and arg(z) = 7, £7/3, (4)

Quasi—Exactly—Solvable spectrum

If only two boundary conditions = Bender—Boettcher ['98]. Part of the spectrum (the
" Exactly—Solvable™) is explicit for J e N.

Exactly—Solvable spectrum

Three boundary conditions = All the spectrum is explicit for J € N.
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If J € N the equation has quasi—polynomial solutions

3
0t \where O(x;t) = % + %z (5)

y(z) = p(x)e

. . . 2 . .
p(z) a polynomial of degree n if and only if J =n+1and A = A — % is an eigenvalue
of the operator

= d2 5 t\ d
Lyji=—+2 Z)— —20 -1
J 122 + (z + 2) = (J =1z (6)

acting on the space of polynomials of degree up to n.

Proposition

The Exactly solvable spectrum is characterized by the above boundary value problem;
it has solutions if and only if J = n+ 1 € N and (¢, \) satisfy det(A1 — My, (t)) = 0 with

0 —2n
t 0 —2(n — 1)
2 2t 0
6 3t 0
Mnp (t) := (7)
12 —4
0 —2
n(n — 1) nt 0
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The discriminant locus

The ES eigenvalues depend on ¢: for certain values of ¢ there are coincidences.

Shapiro-Tater ~'18 (formalized in '22)

What are the (complex) values of t € C for which the spectrum is not simple?

Dy, (t) := Discy (det(Al — Mp(t))) =0

Our problem is non self-adjoint and the spectrum is complex (particularly so for ¢ € C).
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The numerics

Figure: Scaled roots of the Vorob'ev-Yablonsky polynomials Yn(n2/38) in red, and roots of the

discriminant D,, (n2/35) in black, for n = 30. This particular scaling was conjectured by
[Shapiro—Tater '22].
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n | Dn(t)
1 t

27
2 | B+ 2

8

35 5 243
3| 84 2432

) 4

215 7 89 4 4084101

4 | 104 22,7 =2 —
Tt e

255 76211 3730405 8700637815 125005275

5 | ¢15p 222412 4 £+ 6_ 5
2 32 64 4096 32

n Y (t)
1 t
2 | 3+4
3 | 5 +20t3 —80
4 | ¢19 4+ 60t7 + 11200t
5 | ¢1% 4 140t12 + 2800t° + 78400t% — 3136000t3 — 6272000

Table: The first five monic Vorob’ev—Yablonskii polynomials Y,, (t) and discriminant polynomials

Do (t) .
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Structural results: ES spectrum |

The boundary value problem

v (z) — (2t + ta® + 202 + A)y(z) = 0 (8)

y(sekm/g) —0, s— +ow, k=1,3,5. (9)

has solution if and only if J =n + 1 € N and then y(z) = p(z)ee(m;t), with

3 . . P
O(z;t) = & + %’3 with p(x) a polynomial of degree n satisfying

d? o t\ d t2
—— 49 ) ==au=1 Y A=A— —.
(de + (w + 2) e 2 )x> p(z) = Ap(z), 1
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Structural results: ES spectrum Il

Proposition

If p(x) is a polynomial as above then

@ p is a degenerate orthogonal polynomial

Q0. 0
(I{f 3 +%f 3) pn(z)zkeZQ(z;t) dz=0 k=0,1,--- ,n—1,n. (10)

01 Q5

@ The coefficients x, % are

jooo e—20(z5t) 4,
K= _—
9 p2(z2)

&

[oohy) p%(2)

J.oo4 e—26(z;t) &l

002 01
i
003 00
Y
[o.o¥} [ o)1

Figure: Directions at infinity 00, of argument kXX .
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Structural results: ES degenerate spectrum

Theorem

t € C is such that the Exactly Solvable spectrum of (8)-(9) has a repeated eigenvalue
iff there is a quasi-polynomial solution py,(z)e? @) of (8)-(9) that additionally
satisfies

0 ©
J 3 pi(z)e%(z;a) dz =0, J 5 pi(z)eze(z;a) dz =0 (11)
01 ©3

Proposition

The zeros of the degenerate orthogonal polynomial p, (2) satisfies the Fekete type

relation
0'(z;) = ,
(25) kZ_Zk_zj
#3

j=1...,n.
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Asymptotic analysis }
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From Lax pair to scalar ODE

Proposition

The point ¢ is a pole with residue —1 of the rational Pll function u(t) with parameter
a =n (i.e. a zero of Y, (t)) if and only if there is b such that the ODE
(Its-Novokshenov)

f@)" = Vyp (@3t,8) f(z) = 0

1 T
VJM(x;t,b) =g 4 s +2(n + E)m + (% + 10b>

manifests the Stokes’ phenomenon indicated below [Buckingham—Miller '14]

10 1 i
SQ*L‘ 1} SI*[O 1]

FY Nl

Figure: Stokes data for the Lax pair corresponding to rational solutions of Painlevé Il
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Proposition

The values ¢, A belong to the ES spectrum iff
" () — (:n4 +t2? + 2(n+ Dz + A)y(z) =0 (12)

corresponds to the Stokes' phenomenon below. In addition the parameter ¢ is in the
discriminant locus if and only if

f:?) y2(w) dz =0= L(;O?) yQ(w) dz

1 5 y

Figure: Stokes matrices and Stokes sectors for the Shapiro-Tater eigenvalue problem: it is
necessary s1 + ss + s5 = 0. The Stokes matrices Sp, Sa, Sy are all the identity.

13/29



Strategy

@ Scale t, A (and z) with i = (n + D lorh=(n+ %)*1 to bring the equation to
standard singularly perturbed.

v (2) — iQ(z;s, E)y(z) =0, Q(z;s,E)= s v2:4E (13)
2 4
s=h3t, E=h3A (14)

@ Use WKB to compute Stokes' data
© Match Stokes’ data with the figure.

@ For the VY case the Stokes’ parameters are completely determined and this (implicitly)
fixes the pair (s, E);

@ For the ST case we need to additionally impose the degeneracy condition, which is
equivalent to

j pie% dz = 0.
{v1:72}

These integrals must be estimated using the WKB approximation.

-
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Stokes’ complex compatible with the
conditions

Figure: Labelled regions in the WKB Riemann-Hilbert problem.
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Quantization conditions (leading order)

ST case
2(n+1) JTO A/ Q(z4;s, E)dz = 1n (ﬁ) — 2im(my + 1)
Tl )
2(n + 1) JTO A/ Q(z4;8,E)dz =1n (—1 — ﬁ) — 2im(mg + 1)
o T (s,
2(n + 1) fTO Q(z1:5, B)dz = In (r(s, E)) — 2im(mg + 1)
73

0 dz

(s, B) = ANV W, S(r(s,B)) > 0

s VQ(2435, E)

my +mgo +mg =n—1. (15)

VY case

70

(2n + l)f A/ Q245 8, B)dz = —im — 2imk;
.
J

k1 + ko + ks =n—1. (16)
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Geometry of the lattices |

e 70 dz o 7JTO dz (17)
T Q(Z-H&E)’ Q24 s, E)

Proposition

Let (sg, Eg) correspond to the first-order quantization conditions (15) or (16) in the
bulk, namely, m/n ~ c; # 0. Then the neighbour points in the s—plane form a slowly
modulated hexagonal lattice in the sense that the six closest neighbours of sq are

so + 2h (wAml - wlAmQ) (18)

where w and ' are the half periods of the holomorphic differentials in (17) and

Amj e {-1,0,1}, |Amy + Amg| < 1, |[Amq| + |Amg| = 1.
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Near the origin

If (s, E) = O(h)

The rescaled lattices of the zeroes of the VY Polynomials, and the of ST problem
coincide to within order O(h?) = O(n~2) in a O(h) neighbourhood of the origin in the
s—plane. More precisely the quantization conditions corresponding to the triples
(m1,mg,m3), mi+mo +mg=n—1and (ki,ka,k3), ki + ko +ks=n—1with
mj = kj single out values of s, E that differ by a discrepancy of order O(h?), provided
that m; — ”Tfl remain bounded as n — .
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STIELJES—FEKETE PROPERTY 3
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The zeroes of the degenerate OP satisfy the following algebraic equations;

n

/ 2 .

e(z]~):zj+77§%_z] j=1,...,n. (19)
k#j

W‘Nw

where 0(z;t) =

plT

(20)

An old result of Stieltjes

2
The roots of the n—th Hermite polynomial Hy, (z) = e” (

o
a‘c"

2
)ne*z are the “Fekete”
points, i.e. maximize the function

224
5 _J
F(@1,.. zn) = [] (&j — zg)% 2
<k
The variational equations yield
w 1
zj = _ j=1,...,n.
k=1 T — Z]
k#j

Similar results for Jacobi and Laguerre polynomials.
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Generalization

We consider a holomorphic version of the condition of criticality in the form

1 _ Alz) o
— = . d=1,...m,
ZJ — Zk QB(Zj)

k7j

where A, B are two relatively prime polynomials. These turn out to be the stationary
equations for

n n G(Zj)+9(zk)
F(z1,...,2n) = H [T (z5 —zw)e 2
=1 k=1
k#j
where
I
o) AG) + BG)

B(z)
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In the excellent review Marcellan—Martinez-Finkelshtein—Martinez-Gonzalez,

“Electrostatic models for zeros of polynomials: Old, new, and some open problems”, J. Comp. Appl. Math., 207 (2007), 258-272.

the following questions were raised, to quote verbatim from loc. cit.: "[...] Reviewing
the electrostatic models above several natural questions arise, such as:

o Are there generalizations of these models to other families of polynomials?

o Why necessarily the global minimum of the energy should be considered? Which
other types of equilibria described above could be linked to the zeros of the
polynomials?

@ What is the appropriate model for the complex zeros (when they exist)? [...]"

We address and answer precisely the above three questions

There is a one-to-one correspondence between the solutions of the algebraic system of
equations

1 A(z;
k#jzjfzk (zj)

and the maximally degenerate orthogonal polynomials of degree n for a semiclassical
moment functional of type (A, B).

22/29


https://www.sciencedirect.com/science/article/pii/S037704270600611X

Fix two polynomials, A(z), B(z) of degree a, b, respectively, and relatively prime. The
moment functional M : C[z] — C is a semiclassical moment functional of type (A, B) if

M[B(x)p' (2)] = M[A(z)p(x)],  Vp(z) € C[a].
Studied by Maroni ['87], Ismail-Masson-Rahman ['91], Marcelldn-Rocha ['98]: any
such moment functional can be represented as:
A(@) + B'(2)

d
_ 0(x) / _
Mpl = Yoo p@e @z, 0@ = -ZEE

and d = max{a,b — 1}.

e el

Figure: The contours, and dual contours, for the Freud case 6 polynomial of degree 5
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Orthogonal Polynomials satisfy

d
<Pn,zk> 1= M[Pn(z)zk] = Z Sj Pn(z)zkea dz =0,
j=1 "7

Let pup(s) = ke dz, s = S1,--5,84)
k r d

Dy, (s) := det [l‘a+b(s)]s,bio

The polynomials of degree < n that satisfy the orthogonality are determined

Ko M1 Hn
©1 B2 e Bn41
Pp(z) = det
Hn—1 - H2n—1
1 z 2™
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Degenerate orthogonality

Definition

The polynomial Py, is called /—degenerate orthogonal if,

in addition

<Pn,zk>=0, k=n,n+1,...,n+6—1.

A

Lemma

The orthogonal polynomial P, is /—degenerate if and only if
Dn,k(s) = detHn’k:O, k=0,1,...,0—1,
MO K1 Hn
M1 M2 Hn41
H'n,k = :
Hn—1 H2n—1
Hn+k Hn4+k+1 H2n+k

4

Maximal degeneracy

When ¢ = d — 1: gives d — 1 homogeneous polynomial relations on the

81,584

‘weights”

.
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Let % = {z1,...,2n} be a critical configuration satisfying the equilibrium equations
1 A(z;
— = (J)7 ji=1...,m,
KZj %0 Tk 2B(z;)

where A(z), B(z) are relatively prime arbitrary polynomials (and B monic). Then

(1) the polynomial Pp(z) = H?:ﬂz — zj) is a maximally degenerate orthogonal
polynomial for a semiclassical moment functional M of type (A, B). For fixed n
the number of critical configuration is (n + 1)%~! where d = max(b — 1, a).

1
(2) The quasi-polynomial y(z) = Pn(2)e2%3)  with

_A® +B()

0'(z) =
(2) B
satisfies the differential equation

y(2)" = V(2)y(z) = 0

where the function V is a rational function with poles only at the zeroes of B(z)
(and a polynomial of degree 2deg A if B =1)

Viceversa, if Py, is a semiclassical, maximally degenerate orthogonal polynomial of
degree n for a semiclassical moment functional M of type (A, B) then its zeroes
satisfy the equilibrium equation and the ODE as above.

v
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THANK YOU! )
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