Minimal dimer models
& maximal Riemann surfaces

Cédric Boutillier (Sorbonne Université)
David Cimasoni (Genève)
Béatrice de Tilière (Paris Dauphine)

Florence - April 2022
Dimers on planar bipartite graphs

\[G = (V, E) \text{ finite graph} \]

\[V = B \cup W \]
Dimers on planar bipartite graphs

- $G = (V, E)$ finite graph
- $V = B \cup W$
- dimer configuration = perfect matching \mathcal{C}
- positive edge weights $(\nu_e)_{e \in E}$
- partition function

$$Z = \sum_{\mathcal{C} \text{ dimer config.}} \left(\prod_{e \in \mathcal{C}} \nu_e \right)$$
Dimers on planar bipartite graphs

- \[Z = \sum_{\text{dimer config.}} \prod_{e \in e} \nu_e \]

- Theorem (Kasteleyn, Temperley-Fisher)
 - Twisted bipartite adjacency matrix
 - Rows/columns indexed by 0/1
 - \[|K_{w,b}| = \nu_e \text{ for } e = (w,b) \]
 - Alternating product around faces have fixed signs

Then: \[Z = \det K \]
Dimers on planar bipartite graphs

Boltzmann measure:

- if $Z \neq 0$:

 $$P_v(E) = \frac{1}{Z} \prod_{e \in E} \varphi_e$$

- if $e_1 = (w_1, b_1), \ldots, e_k = (w_k, b_k)$ distinct

 $$P_v(e_1, \ldots, e_k \text{ dimers}) = \left(\prod_{j=1}^{k} \varphi_{w_j, b_j} \right) \det K_{b_i, w_j}^{-1}$$

- determinantal point process on edges E

What about infinite graphs?
Dimers on \mathbb{Z}^2-periodic planar bipartite graphs

Kenyon - Okounkov - Sheffield

G, D, K periodic

- $K(z, w)$: Fourier transform $(z, w) e^{iC\cdot C}$
- characteristic polynomial
 \[P(z, w) = \det K(z, w) \]
- spectral curve
 \[C = \{(z, w) \mid P(z, w) = 0\} \] (Harnack curve)

Newton polygon $N(P)$

Amoeba

\{ slopes for height function \}
Planar graphs and train-tracks (zig-zags)

G: infinite with bounded faces
Planar graphs and train-tracks (zig-zags)

G: infinite with bounded faces

- Minimal graphs (Thurston)
 - forbidden:
 - [Diagram of forbidden patterns]

- Isoradial graphs (Mercat, Kenyon)
 - forbidden:
 - [Diagram of forbidden patterns]

well defined partial cyclic order
for non parallel triplets of train-tracks.
Critical isoradial dimer models (Kenyon 2002)
Critical isoradial dimer models (Kenyon 2002)

Explicit inverse:

$$K_{b,w}^{-1} = \frac{1}{4i\pi^2} \int \prod (\lambda - e^{i\theta})^{\pm 1} \log \lambda \, d\lambda$$

- Locality: depends only on the geometry of a path from b to w

$$K_{w,b} = e^{i\beta} e^{i\alpha}$$

satisfies Kasteleyn condition.

- Can be used to define probabilities (de Tilière)
Critical isoradial dimer models

- Why does it work?
 - more general weights?
 - integrability?

- isoradial \& periodic
 1. inverse vs. 2-param. family?
Critical isoradial dimer models

- Why does it work?
 - more general weight?
 - integrability?
- isoradial / periodic
 - inverse vs. 2-param. family?

Spectral curve of genus 0

Partial answers

- trigonometric weights:
 - critical Laplacian (Kenyon)
 - critical Ising (B-de Tilière)
- elliptic weights:
 - massive Laplacian
 - non-critical Ising (B-de Tilière-Raschel)
 - elliptic dimers on minimal graphs, (B-Cimasoni-de Tilière)

Now: genus > 1, minimal graphs.
Our setting

- work with all minimal graphs simultaneously
- replace \(\hat{C} \) by higher genus Riemann surface \(\Sigma \)
 - “maximal curve”
 - plays the role of spectral curve, given a priori
- extra data (real point on \(\text{Jac}(\Sigma) \))

\(\widetilde{\omega} \) - Kasteleyn operators (Fock)

- \(\epsilon \)-parameter families of inverses
- probabilistic quantities read on \(\Sigma \)
Maximal curve Σ

- Abstract compact Riemann surface of genus $g \geq 1$
- Anti-holomorphic involution σ
- "Real locus" = fixed points of σ
 $g+1$ topological circles A_0, \ldots, A_g
Maximal curve Σ

- Abstract compact Riemann surface of genus $g \geq 1$

- Anti-holomorphic involution σ

- "Real locus" = fixed points of σ
 - $g+1$ topological circles A_0, \ldots, A_g

- Complete $A_1, A_2, \ldots A_g, B_1, \ldots B_g$: symplectic basis for homology

- Adapted basis of holomorphic 1-forms $\omega_1, \ldots, \omega_g$
 - $\int_{A_i} \omega_j = \delta_{ij}$

- Riemann matrix $\Omega = (\Omega_{ij}) = \left(\int_{B_i} \omega_j \right)$
 - Pure imaginary, $\text{Im } \Omega$ symmetric, positive definite
• construction of $\text{Jac}(\Sigma)$

from formal linear combination of points of Σ

$$\sum_i u_i - \nu_i \sim \left(\sum_i \omega_i^u, \ldots, \sum_i \omega_i^\nu \right) \in \mathbb{C}^g \bigg/ \mathbb{Z}^g + \Omega \mathbb{Z}^g = \text{Jac}(\Sigma)$$

• Riemann Theta function

$$\Theta(z) = \sum_{n \in \mathbb{Z}^g} \exp \left(i \pi \left(n \cdot \Omega n + z \cdot n \right) \right) \quad z \in \mathbb{C}^g$$

quasi-periodic function on $\text{Jac}(\Sigma)$

• Prime form on Σ

$$E(u,v) : \text{basic bloc to construct meromorphic functions}$$

with prescribed zero/poles on Σ

$$E(u,v) = 0 \iff u = v \quad \text{(higher genus analogue of } u - v \text{)}$$
Parameters on minimal graphs

- partial cyclic order on train-tracks

\[\{\alpha\}: \{\text{train-tracks}\} \rightarrow A_0 \]

\[T \rightarrow \alpha_T \]

preserving the order
Parameters on minimal graphs

- Partial cyclic order on train-tracks

\{ \alpha \} : \{ train-tracks \} \rightarrow A_0

\[T \rightarrow \alpha_T \]

preserving the order

- Discrete Abel map
 - Defined on faces/white/black
 - Linear comb. of points of \(A_0 \)

\[\eta(b) = \eta(f) + \beta \]
\[\eta(w) = \eta(f) - \alpha \]
\[\eta(f) = \eta(b) - \alpha = \eta(w) + \beta \]

\eta : discrete antiderivative of \(\{ \alpha \} \)
Fock's Kasteleyn operator

- \(\Sigma \) maximal curve
- \(t \) real point of \(\text{Jac}(\Sigma) \) (think \(\in \mathbb{R}^g \))
- \(G \) minimal graph, \(\{a\}, \eta \)

\[
K_{w,b} = \frac{E(\alpha, \beta)}{\Theta(t+\eta(f))\Theta(t+\eta(f'))}
\]
Fock's Kasteleyn operator

- Σ maximal curve
- t real point of $\text{Jac}(\Sigma)$ (think $t \in \mathbb{R}^g$)
- G minimal graph, $\{a\}, \eta$

\[
K_{w, b} = \frac{E(\alpha, \beta)}{\Theta(t + \eta(f)) \Theta(t + \eta(f'))}
\]

Lemma: Under the geometric hypotheses above

K satisfies the Kasteleyn condition

(sign of alternating products around faces)
Special functions in $\text{Ker } K$

$$g_b(u) = \frac{\theta(-t+(u-\eta(b)))}{E(\beta,u)} = g_b^{-1}(u)$$

$$g_{f,b}(u) = \frac{\theta(t+u+\eta(b))}{E(\alpha,u)} = g_{f,b}^{-1}(u)$$

$$b = x_0, x_1, \ldots, x_n = w$$

Path alternating between vertices of G/G^*

$$g_b,w(u) = \prod_{j=1}^{n} g_{x_{j-1},x_j}(u)$$
Special functions in $\ker K$

\[g_{b,f}(u) = \frac{\theta(-t+(u-\eta(b)))}{E(\beta,u)} = g^{-1}_{f,b}(u) \]

\[g_{f,w}(u) = \frac{\theta(t+u+\eta(w))}{E(\alpha,u)} = g^{-1}_{w,f}(u) \]

$b = x_0, x_1, \ldots, x_n = w$

path alternating between vertices of G/G^*

\[g_{b,w}(u) = \prod_{j=1}^{n} g_{x_{j-1},x_j}(u) \]

Proposition:

$\mu \mapsto g_{b,w}(\mu)$ meromorphic 1-form on Σ

- $\forall b, b', \forall \mu \in \Sigma$
 \[\sum_{w} g_{bw}(u) K_{wb'} = 0 \]

- $\forall w, w'$
 \[\sum_{b} K_{wb} g_{bw}(u) = 0 \]

Proof: Fay's identity
Divisor of a white vertex

Definition:

For \(w \) a white vertex, \(\text{div}(w) \) is the divisor of \(u \rightarrow \Theta(t + u + \eta(w)) \) (2.666).

- By properties of theta functions: \(g \) points on \(\Sigma \).
- \(\Sigma \) maximal and \(t \) real: one point on each \(A_1, \ldots, A_g \).
- \(\forall j \in \{1, \ldots, g\} \): \(\forall b \) black vertex

\[g_{bw}(u_j) = 0 \]
Theorem

1. Let $u_0 \in \Sigma^+$
2. $A_{b,w}^{u_0} = \frac{1}{2 \pi i} \int_{C_{b,w}} g_{b,w}(u) \mathrm{d}u$ is an inverse of K
3. Locality property (modulo η)
Theorem

- Let \(\mu_0 \in \Sigma^+ \)

\[
A_{b,w}^{\mu_0} = \frac{1}{\det \Pi} \int g_b(w) \text{ is an inverse of } K
\]

- Locality property (modulo \(\eta \))

- Under assumption \((\mathcal{A})\), the formula

\[
\left(\prod_{j=1}^{k} K_{w_j b_j} \right) \det \left(A_{b,w}^{\mu_0} \right)
\]

defines a prob. measure on dimers

- if \(\mu_0 \in A_0 \): solid
- if \(\mu_0 \in A_j \): smooth
- otherwise: rough \(\rightarrow \Sigma^+ \): phase diagram
The periodic case

- \(G \) minimal \(\mathbb{Z}^2 \)-periodic graph
- train-track \(T \) of \(G_1 \) loop on the torus with hom. class \((h_T, v_T) \in \mathbb{Z}^2 \)
- \(\mathcal{N}(G) \) convex polygon with boundary vectors \(\{(h_T, v_T)\} \)
- \(\{\alpha\} \) periodic
 \(\Rightarrow \) not enough for \(\eta, \kappa \) to be periodic
- Forcing periodicity + non-degeneracy:
 \(\Leftrightarrow \) picking \(g \) distinct points in the interior of \(\mathcal{N}(G) \)
\[\psi: \mu \in \Sigma \mapsto \left(\frac{g_{b'b}(u)}{z(u)}, \frac{g_{bb'}(u)}{w(u)} \right) \]

explicit parametrization of spectral curve

\[P(z,w) = 0 \]
\[\psi : \mu \in \Sigma \mapsto \left(\frac{g_{b,b'}(w)}{z(w)}, \frac{g_{b,b'}(w)}{w(w)} \right) \]

Explicit parametrization of spectral curve

\[P(z,w) = 0 \]

More: (spectral theorem, Kenyon-Okounkov)

weights on G \[\sim \]
gauge transform \[\sim \]
Harnack curves with $N(P) = N(G)$ + standard divisor

Theorem: Fix a Harnack curve C with standard divisor D

There exist Σ, G, \(\{ \alpha \} \), t such that

- C is the spectral curve
- D divisor of a fixed white vertex

Moreover, $t \mapsto D$ is a bijection
Conclusion and perspectives

- Many other probabilistic quantities have an expression on Σ
 - average slope of the height function
 - free energy
 - surface tension

- Better understanding of Kenyon's critical case (geometric degenerates)

- Integrability: Fay's identity / spider move

- Special cases:
 - G double of isoradial graph G: relation $K \leftrightarrow \Delta G$
 (in relation with spectral theorem for periodic networks (Georgi))