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Integrable simple exclusion models



Simple Exclusion Process

Most famous stochastic particle processes are: ASEP and SSEP

* Integrable

 Nearest-neighbor hopping model

+ One particle per site (exclusion)

+ Closed or open boundary conditions

l
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Hopping rates: rand land «, 3, v and ¢
SSEP: r=1=1

Some great reViews: [Derridal, [Schiitz], [Blythe,Evans], [Crampé,Ragoucy,Vanicat]y «..



Markov matrix of ASEP/SSEP

Exclusion process is generated by Markov matrix

N-1
M=5B;+ Zwi,iﬂ + By

i=1

Bulk:
O 0O O O
o -l r o
(R=
o |l -r o
O 0O O O
Boundary:

[« v [ -6 B
Bﬁ-(a -7)7 BN_(5 -5)

Stochastic process:
Sum over rows vanishes
Off-diagonal entires have opposite sign of diagonal entries



Relation to integrable spin chains

Stochastic process can be mapped to integrable spin chain

+ ASEP < XXZ spin chain
+ SSEP « XXX spin chain

Hamiltonian is related to Markov generator
M = SHS™"

Particle process can be studied using integrability tools:
Coordinate Bethe ansatz, algebraic Bethe ansatz, ...

Multi-species generalisations from higher rank spin chains



ASEP/SSEP produces traffic jams!

Lot of effort to avoid traffic jams...



Multi-particle generalisations

Put particles on top of each other

Naive observation:

« Higher spin integrable model: Hamiltonian not stochastic
« Higher spin stochastic model: Hamiltonian not integrable

— Non-compact integrable spin chains i, iardina, kurchan 9] 6



SSEP within the quantum inverse
scattering method



Quantum inverse scattering method

Starting point: Yang-Baxter equation
Ri2(21 = 22)Ru3(21 = 23)Ro3(22 = 23) = Ra3(22 = 23)Ro3(21 — 23)Rua (21 - 22)
- Fundamental relation underlying integrable systems

« Each R-matrix R; acts on the tensor product of three
spaces V; ® V, ® V3 with

Ri(2) = R(2) ®1,...

+ Fundamental R-matrix for SSEP / XXX Heisenberg spin
chain

2
R(z)=z+P with P= ) eg®epq

a,b=1

where (egp)cd = dacdpd, Z € C and P acts as a permutation



Graphical notation
« R-matrix:
Rij(zi-z) = i_l_

j

« Multiplication of R-matrices:

Ri2(z1-22)Ri3(21-23) = 1 _|_|_

2 3

« Yang-Baxter equation:



Spin chain monodromy

Spin chain monodromy

M) - R R (2)-Ran(2) - 2 —H———

1 2 N

 Multiplication of 2 x 2 matrices in auxiliary space and
tensor product in quantum space

- Satisfies RTT-relation

R(zi - z2)(M(z1) 9 I)(I®@ M(22)) = (I1® M(22))(M(z1) ® I)R(21 - 25)

adq d>
« Pictorially >< = ><
a, a,

12 N 12 N



Transfer matrix

r(o) - trane) - —H—
1 2

Markov generator / Hamiltonian

0
MgléEP = 5 log T(Z)|z:o + const

Commuting family of operators (common eigenstates)
[T(2),T(Z')] =0, [T(2),M&gp] =0
How to describe process with reservoir?
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Open spin chains

Transfer Matrix

T(z) =trKa(z) Ra1(2)Ra2(2)---Ran(2) Ka (2) Ran(2)-Ra2(2)Ra1(2)

M(2) M(2)

Graphically

T(2)
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QISM for boundary models

Boundary Yang-Baxter equation

O
O

O
O

A
I
Ay

R12(Z1 —22)161 (21)R12(Z1 +22)I€2(22) = lez(zz)R12(z1 +Zz)’€1 (21)R12(Z1 —Zz)
And analogously for other boundary involving X(z)

+ Most general K-matrices

[ pi+pa(z+1) p3(z+1) sy [ 91+ Q22 zq
’C(Z)‘( Pz +1) p1—3pz<z+1>)’ ’C(Z)‘( 3 )
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Relation to SSEP

Adjust boundary parameters
g1=1, G2=B-6, q3=28, q,=26
p1=1, p2=7v-a, P3=27, P,=2
Markov generator / Hamiltonian
0
Mssep = E log T(Z)|z:0 + const.
Commuting transfer matrices
[T(2),T(Z)] =0, [T(2), Mssep] = 0
Expansion of T(z) generates commuting charges
[Mssep, Qr] = 0
Will become handy later...
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Non-compact integrable spin chains



Non-compact spin chains

Quantum space of non-compact chains with hws
V=im)®my)®...®|my), m;=0,1,2,...
For spin s generators of sl(2) act locally as
Sim)=(m+2s)/m+1), S_|m)=mim-1) Splm)=(m+s)|m)
Nearest-neighbor Hamiltonian density rraddeev et at
H=2(¥(S) -9(29))

where ¢ (x) is Digamma function and S is related to the
two-site Casimir operator via Cp,; = S(S - 1)

« First studied in hlgh energy QCD [Lipatov;Faddeev,Korchemsky]
* Important subsector of the AV = 4 SYM spin chain! (s = J)
* Integrable models ierkachov]
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The operator S

Consider tensor product decomposition
Ds® Ds = D Dasyj
j=0

Operator S acts diagonally on the irreps on the rhs

SIDys4j) = (25 +J)|Dsj)
Eigenvalues of Hamiltonian density are harmonic numbers hg
J 1

D =2 -
H| ZS-H) ,;254‘,?_1

’D25+j>
« Can't tell if process is stochastic from eigenvalues
« A priory not known how # acts on the lhs...

~ Clebsch Gordan decomposition
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Harmonic action as stochastic process

Nearest neighbor hopping model for s = 3

[Beisert; Braun,Derkachov,Manashov; Lipatov; Faddeev,Korchemsky]
/ / / LN /
H|m) ® [m’) = (h(m) + h(m ))|m)®|m)—ZE|m—k)®|m +R)
k=1
m’ 1
- ~Im+k)®|m’ -R)
k=1 k

with the harmonic numbers h(m) = ¥, 1.

Hamiltonian density # is generator of Markov process!

[Giardina, Kurchan, RF '19]

Eg. m+m'=2: 3 q -2
Ho=1 -1 2 1

1 3

-2 1 3
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Harmonic action as stochastic process

Hamiltonian defined on N sites as

N-1
H= 3 Hijw

i=1

Symmetric stochastic process without exclusion!

— k particles jump with the rate (k) = ¢

(k)
NN TN TN TN TN TN
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Harmonic action as stochastic process

Hopping rates generalise to arbitrary spin s > O martinsveto ‘os]

1T(m+1)r(m-k+2s)

#s(M,K) = B T (m =R+ 1)r(m+2s)

Again we find a symmetric particle process!
— Rates depend on number of particles at departing site

Up to now only reinterpreting results of others...
Add a particle current (non-equilibrium models):

+ g-analog/XXZ-analog — asymmetric (drift) process
- Rational case with boundary reservoirs

18



Non-compact XXZ spin chain as
stochastic particle process




Non-compact invariant XXZ chain

Commutation relations Uy (sl,)

[S+,5-]=-[250], [So0,S:] = £S5,
with g-number [x] = %.

Generators of Ug(sl,) act locally as
Sim)=[m+2s]im+1), S_|m)=[m]im-1) So|m)=(m+s)|m)
Hamiltonian density of XXZ chain with |g| < 1 syskol

_ Pq(S) —1q(25)
= gsiog(a)

with g-Digamma function 4 and S is related to the
co-product of the Casimir operator via A(C) = [S][S - 1].

19



Co-product and special functions

Some definitions and special functions...

Co-product

A(So)=So®1+18So,  A(S5.)=5.9G % +q%®S.
q-Gamma function

2. 42
rq(x) = q%x(1—x)(q—1 _ q)'l—x (q ' q )oo

(00%) e
with (a; q)n = TTp-0(1 - ag®)
q-Digamma function
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Harmonic action for XXZ chain

Use Clebsch-Gordan decomposition to obtain nearest
neighbor hopping action on two sites rs)

H|m) ® |m’) = (a,(m) + a_(m"))|m) & |m’) - ;Zf: p(m,R)Im —R) & |m’ + k)

=Y. p(m',R)im + k) ® |m’ - k)
k=1
with diagonal entries
g (M +2S) — g (25) £ mlog(q)
-2 log(q)

az(m) =

and off-diagonal entries
(9% 9)m(@%:9)mk
55 (1- g2%) (6%, 62)m-£ (% G*)m

p(m. k) =
q
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Relation to stochastic g-Hahn process

As in ASEP, Hamiltonian density # is not a Markov matrix!

Similarity transformation yields Markov matrix

ai(n) +a_(0) -6-(1,1) -6-(2,2) -B-(n,n)
-B4+(n,1) ap(n=1)+a_(1) -B-(2,1) o =Bo(nn =)
M = ~B+(n,2) -B+(n-1,1) ar(n-2)+a_(2) -~  —f-(nn-2)
~B+(n,n) —Be(n=1,n-1)  —fi(n-2,n-2) =  as(0)+a_(n)

with ;
2O (s ) (1557 mt
p(1=9%) (V) mor (i V)m

where v = g% and p = g

B(M,R) =

Coincides with rates of g-Hahn process introduced by
[Povolotsky;Barraquand-Corwin;Sasamoto-Wadati] without reference to XXZ chain!
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Summary

Non-compact spin chains and stochastic particle processes

non-compact

g-Hahn process

non-compact
XXZ spin s XXX spin s

w—= § =

non-compact non-compact

XXZ spin % XXX spin %

Harmonic processes

23



Non-compact XXX chain with
boundaries




Stochastic process with boundary reservoirs

Add stochastic boundary conditions to rational process

N-1
H:B1+ ZHi,i+1+BN'

i=1

Guess boundary terms for 0 < 8 <1and s = 3 (s, Giardina, kurchan ]
Biimj) = [ h(m;) + > == |Img) = 3" ~|m;i = R) = >~ —=Im; + k)
k=1 R k:1k k=1 k
Introduces reservoirs at left and right end of the chain:
(k)
PR Wb WA WAl WAk Wk Wk NN
A2 2

Is this process integrable?
24



Quantum Inverse Scattering Method

Construct the fundamental transfer matrix
T(X) = tr K(X) M (X)K(x) M(x)
with the monodromies
M(x) = Ra(X)-Ru(x), (%) = Ru(x)-Ra(X)
where
F(2s-x)r(s+x)
r(2s+x)r(S-x)

Hamiltonian is logarithmic derivative of T(x) at permutation
point

R(x) = (-1)°

H = 8)( |Og T(X)|X:O
But: Closed expression of K-matrix unknown!

25



Quantum Inverse Scattering Method

Derive the universal K-matrix from BYBE Iz, ciardina, kurchan "10]

A
I
At

Lx=y)KE)Lx+YK(y) = K(y)Lx+)K)L(X - y)

Lax matrix and K-matrix in fundamental representation

1 - .
E(X):(x+2+50 S_SO )’ K(X):(q1+xq2 Xqs3 )

SH X+31- Xq,  G1—XQy

Solve for K(x)...

26



Universal solution to BYBE

1. Introduce useful parametrisation of boundary variables

1
gi=9, qz=5(1+2aﬂ)% a;=-(1+ap)By, q, =y

2. Make the ansatz
K(x) = €73 e7% Ko (So; x) ™~ e P+
Yields difference equation for I@o(So;x) which can be solved
B 1 B
re +5+25 -X) F(5 +So +25 +x)

M(+s+22+x) r(%+so+2§—x)

Ko(S0;X) =

Other boundary obtained via

K(X) = —

K(x+1)

27



Relation to stochastic boundary

To derive stochastic boundary conditions for Hamiltonian fix

29 3 L
¥ 2’ 1-4
and compute the logarithmic derivative of the transfer matrix
_ traKg(0) Lo fraKa(0)Has Ky(0) . =)

0
~InT = b =
o " T0lo ™ o Ka(0) "2 e Ka(0)  Ru(o) 2am Bx e Do

Full Hamiltonian
N-1
H=D8;+ Z Hi,i+1 + By
i=1

with algebraic expression for boundaries

[ ol ; Sl ol .
Bj = e - eli+ (w(sg]+s)—w(2s))e‘pls+ e>- forie{1,N}.
where p; = 1%‘ 28



Relation to stochastic boundary

A longer computation shows that we obtain the spin s version
of desired boundary terms!

B JeH 1 (m;+1)F(m; - R +2s)
Bilmi) = (h( (m)+ > k) Zkr(m, R+ 1) (m; +25)

k=1

Im; - k)

- —i|mi+k)7
e

* Process is integrable!

- Derived stochastic boundaries for arbitrary spin s

29



Steady state of harmonic process
with boundaries




Derrida solution

SSEP solved in 1993 using matrix product ansatz erridaetall

Representation of steady state H|u) =0

(WI|E---EEE|V)
(W|E---EED|V)
(

1 W|E---EDE|V)

1) = WE+ D))
(W|D---DDD|V)
DEHP algebra

* Bulk relation: DE-ED =D +E
- Boundary relations:
(W|(aE-~D)=(W|,  (BD-GE)|V)=V)

MPA difficult as there are not only two operators E and D
30



Steady state

Follow alternative route applied for SSEP in (rr1o; RF, Giardina, Kurchan 20],

inspired by [Alcaraz,Droz,Henkel,Rittenberg], [Melo,Ribeiro,Martins], [Essler,de Gier], [Crampé,Ragoucy,Vanicat]

1. SSEP generator can be brought to a block triangular form
—a-v A =y -B-6 0
Ha=GHG=| "¢ 7 o
A ( o 0 )1 + ; Wi T ( 0 0 )N

with A = (°‘+7)5(+5'75) and G only depends on S,
Ha is isospectral to diagonal Hamiltonian H®° = Ha_o with A =0
3. Determine non-local transformation Wa s.t.

H® = W' HaWa

. Obtain closed-form of steady state from pseudovacuum
W) = GWa|Q)

Same logic works for non-compact boundary model (rrassek Giardina 1] 3



Transformations for the non-compact model

Local transformation that block triangularises H:

N sl sl
G=[]e™ e+
i=1

Non-local transformation that block diagonalises Ha:

oo kR tot
_ S ARQ T(2(S6" +9))
Wa = 2, BT F(k+2(5% +5))

k=0

with
N . N
Q. =55+ Y sl (sg] 2 ) sg])
i=1 j=i+1
Q. is obtained from the transfer matrix at leading order in
spectral parameter

32



Evaluation of the steady state




Factorial moments

Steady state

(mlu) = (MIGWAlQ) = 3" F(n)| I (o (:1) M(2s+ n,-)]

D=1 i=1 n;! r(2s)

with factorial moments
F(n) = Z A (o1 = o) (R)

where

ey = () [ 20 DT Bt

|w|=R i=1 j=1 2s(N+1) - j+ZkIWk

33



Steady state for length N=1

N=1ands=1/2

(BL=1)(Br-1)
BL— Br

with 8, = 3, and g = By and

(Malu) = (va, (M1 +1) = 7g,(My +1)) .

oo k
vp(n) = Z?

34



Steady state for length N=2

N=2ands=1/2

(BL-1)*(Br—1)?

(mq, my|pu) =2 (¢p. (M1, my) = K(My, M) + g, (My,My))

(BL—-Br)?
where
1 5 M2 1 L
¢6(m17m2):*'}/5(1+m1)— Z 7’}/’3(m1+k+1)+ Z *75(m1+k+1)
2 R=m;+1 R R=m,+1 k
and

’i(m17m2) = 75L(1 + m1)7,3R(1 + m2) o

35



Eigenstates and mapping to equilibrium

« Other eigenstates of H can be obtained from standard
Bethe ansatz for H°:

W) = GWA[V®)

+ Process can be mapped to equilibrium H®9 with p = p; = pn
such that
-1 —1~—1
H = G, Wa G,"H®G, W,A'G,)
—_———
HO
Observed macroscopically in rraiteur, kurchan, Lecomte 'o7)

36



Conclusion & Outlook




Conclusion & Outlook

Conclusion
- Interesting connections between high energy physics, quantum
groups, statistical mechanics and probability theory

+ QISM is powerful tool to study integrable stochastic processes
Work in progress

+ Boundary K-matrices for non-compact XXZ
« Wx for ASEP? Interesting works by [nicholsRittenbere,de Gier]
* Role of Baxter Q-operator and relation to [tazarescu, Pasquier]

+ Generalisation to su,(n,1) and relation to stochastic R-matrix

[Kuniba,Mangazeev,Maruyama,Okado]

Implications for AdS/CFT? (otivuccivieira 21
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Thank you!
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