Non-compact spin chains and integrable particle systems

Rouven Frassek
University of Modena and Reggio Emilia, Italy

GGI Workshop, 28. April 2022
Based on collaborations with C. Giardinà (Unimore) and J. Kurchan (Ens Paris)
Content

1. Review: Integrable simple exclusion models (ASEP/SSEP)
2. Quantum inverse scattering method
3. Non-compact spin chains as stochastic particle process
 - Non-compact XXX chain
 - Non-compact XXZ chain
 - Non-compact XXX chain with open boundaries
4. Construction of steady state
5. Outlook
Integrable simple exclusion models
Most famous stochastic particle processes are: **ASEP** and **SSEP**

- Integrable
- Nearest-neighbor hopping model
- One particle per site (exclusion)
- Closed or open boundary conditions

Hopping rates: r and l and α, β, γ and δ

SSEP: $r = l = 1$

Some great reviews: [Derrida], [Schütz], [Blythe,Evans], [Crampé,Ragoucy,Vanicat], ...
Exclusion process is generated by Markov matrix

\[M = B_1 + \sum_{i=1}^{N-1} \omega_{i,i+1} + B_N \]

Bulk:

\[\omega = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & -l & r & 0 & 0 \\
0 & l & -r & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix} \]

Boundary:

\[B_1 = \begin{pmatrix}
-\alpha & \gamma \\
\alpha & -\gamma
\end{pmatrix}, \quad B_N = \begin{pmatrix}
-\delta & \beta \\
\delta & -\beta
\end{pmatrix} \]

Stochastic process:

Sum over rows vanishes

Off-diagonal entries have opposite sign of diagonal entries
Stochastic process can be mapped to integrable spin chain

- ASEP ↔ XXZ spin chain
- SSEP ↔ XXX spin chain

Hamiltonian is related to Markov generator

\[M = SHS^{-1} \]

Particle process can be studied using integrability tools: Coordinate Bethe ansatz, algebraic Bethe ansatz, ...

Multi-species generalisations from higher rank spin chains
ASEP/SSEP produces traffic jams!

Lot of effort to avoid traffic jams...
Multi-particle generalisations

Put particles on top of each other

Naïve observation:

- Higher spin integrable model: Hamiltonian not stochastic
- Higher spin stochastic model: Hamiltonian not integrable

→ Non-compact integrable spin chains [RF, Giardinà, Kurchan ’19]
SSEP within the quantum inverse scattering method
Quantum inverse scattering method

Starting point: Yang-Baxter equation

\[R_{12}(z_1 - z_2)R_{13}(z_1 - z_3)R_{23}(z_2 - z_3) = R_{23}(z_2 - z_3)R_{13}(z_1 - z_3)R_{12}(z_1 - z_2) \]

- Fundamental relation underlying integrable systems
- Each R-matrix \(R_{ij} \) acts on the tensor product of three spaces \(V_1 \otimes V_2 \otimes V_3 \) with

\[R_{12}(z) = R(z) \otimes I, \ldots \]

- Fundamental R-matrix for SSEP / XXX Heisenberg spin chain

\[R(z) = z + P \quad \text{with} \quad P = \sum_{a,b=1}^{2} e_{ab} \otimes e_{ba} \]

where \((e_{ab})_{cd} = \delta_{ac}\delta_{bd} \), \(z \in \mathbb{C} \) and \(P \) acts as a permutation
Graphical notation

- **R-matrix:**

\[R_{ij}(z_i - z_j) = \]

- **Multiplication of R-matrices:**

\[R_{12}(z_1 - z_2)R_{13}(z_1 - z_3) = \]

- **Yang-Baxter equation:**

\[\]
Spin chain monodromy

\[\mathcal{M}(z) = R_{a,1}(z)R_{a,2}(z)\cdots R_{a,N}(z) = \begin{array}{cccc}
1 & 2 & \cdots & N \\
a & \cdots & & \\
\end{array} \]

- Multiplication of 2×2 matrices in auxiliary space and tensor product in quantum space
- Satisfies RTT-relation

\[R(z_1 - z_2)(\mathcal{M}(z_1) \otimes \mathbb{I})(\mathbb{I} \otimes \mathcal{M}(z_2)) = (\mathbb{I} \otimes \mathcal{M}(z_2)) (\mathcal{M}(z_1) \otimes \mathbb{I}) R(z_1 - z_2) \]

- Pictorially
Transfer matrix

\[T(z) = \text{tr}_a M(z) = \ldots \]

1 \hspace{1cm} 2 \hspace{1cm} \ldots \hspace{1cm} N

Markov generator / Hamiltonian

\[M_{SSEP}^{\text{cl.}} = \frac{\partial}{\partial z} \log T(z)|_{z=0} + \text{const} \]

Commuting family of operators (common eigenstates)

\[[T(z), T(z')] = 0, \hspace{1cm} [T(z), M_{SSEP}^{\text{cl.}}] = 0 \]

How to describe process with reservoir?
Open spin chains [Sklyanin]

Transfer Matrix

\[
T(z) = tr \, \mathcal{K}_a(z) \, R_{a,1}(z) R_{a,2}(z) \cdots R_{a,N}(z) \hat{\mathcal{K}}_a(z) \, R_{a,N}(z) \cdots R_{a,2}(z) R_{a,1}(z)
\]

Graphically

\[
T(z) = \begin{array}{c}
1 \quad 2 \quad \cdots \quad N \\
\end{array}
\]

K-matrices

\[
\mathcal{K}(z) = \begin{array}{c}
\langle \quad \rangle \\
\end{array} \quad \hat{\mathcal{K}}(z) = \begin{array}{c}
\rangle \quad \langle \\
\end{array}
\]
Boundary Yang-Baxter equation

\[R_{12}(z_1 - z_2) \hat{K}_1(z_1) R_{12}(z_1 + z_2) \hat{K}_2(z_2) = \hat{K}_2(z_2) R_{12}(z_1 + z_2) \hat{K}_1(z_1) R_{12}(z_1 - z_2) \]

And analogously for other boundary involving \(\mathcal{K}(z) \)

- Most general K-matrices

\[
\mathcal{K}(z) = \begin{pmatrix}
p_1 + p_2(z + 1) & p_3(z + 1) \\
p_4(z + 1) & p_1 - p_2(z + 1)
\end{pmatrix}, \quad \hat{\mathcal{K}}(z) = \begin{pmatrix}
q_1 + q_2z & zq_3 \\
zq_4 & q_1 - q_2z
\end{pmatrix}
\]
Relation to SSEP

Adjust boundary parameters

\[q_1 = 1, \quad q_2 = \beta - \delta, \quad q_3 = 2\beta, \quad q_4 = 2\delta \]
\[p_1 = 1, \quad p_2 = \gamma - \alpha, \quad p_3 = 2\gamma, \quad p_4 = 2\alpha \]

Markov generator / Hamiltonian

\[M_{SSEP} = \frac{\partial}{\partial z} \log T(z)|_{z=0} + \text{const.} \]

Commuting transfer matrices

\[[T(z), T(z')] = 0, \quad [T(z), M_{SSEP}] = 0 \]

Expansion of \(T(z) \) generates commuting charges

\[[M_{SSEP}, Q_k] = 0 \]

Will become handy later...
Non-compact integrable spin chains
Quantum space of non-compact chains with hws

\[V = |m_1\rangle \otimes |m_2\rangle \otimes \ldots \otimes |m_N\rangle, \quad m_i = 0, 1, 2, \ldots \]

For spin \(s \) generators of \(\mathfrak{sl}(2) \) act locally as

\[S_+|m\rangle = (m + 2s)|m + 1\rangle, \quad S_-|m\rangle = m|m - 1\rangle \quad S_0|m\rangle = (m + s)|m\rangle \]

Nearest-neighbor Hamiltonian density [Faddeev et al.]

\[\mathcal{H} = 2 \left(\psi(S) - \psi(2s) \right) \]

where \(\psi(x) \) is Digamma function and \(S \) is related to the two-site Casimir operator via \(C_{[2]} = S(S - 1) \)

- First studied in high energy QCD [Lipatov; Faddeev, Korchemsky]
- Important subsector of the \(\mathcal{N} = 4 \) SYM spin chain! (\(s = \frac{1}{2} \))
- Integrable models [Derkachov]
The operator S

Consider tensor product decomposition

$$D_S \otimes D_S = \bigoplus_{j=0}^{\infty} D_{2s+j}$$

Operator S acts diagonally on the irreps on the rhs

$$S|D_{2s+j}\rangle = (2s + j)|D_{2s+j}\rangle$$

Eigenvalues of Hamiltonian density are harmonic numbers h_s

$$\mathcal{H}|D_{2s+j}\rangle = 2 \sum_{k=1}^{j} \frac{1}{2s + k - 1}|D_{2s+j}\rangle$$

- Can’t tell if process is stochastic from eigenvalues
- A priory not known how \mathcal{H} acts on the lhs...

\leadsto Clebsch Gordan decomposition
Harmonic action as stochastic process

Nearest neighbor hopping model for $s = \frac{1}{2}$

[Beisert; Braun, Derkachov, Manashov; Lipatov; Faddeev, Korchemsky]

$$\mathcal{H}|m\rangle \otimes |m'\rangle = (h(m) + h(m')) |m\rangle \otimes |m'\rangle - \sum_{k=1}^{m} \frac{1}{k} |m - k\rangle \otimes |m' + k\rangle$$

$$- \sum_{k=1}^{m'} \frac{1}{k} |m + k\rangle \otimes |m' - k\rangle$$

with the harmonic numbers $h(m) = \sum_{k=1}^{m} \frac{1}{k}$.

Hamiltonian density \mathcal{H} is generator of Markov process!

[Giardinà, Kurchan, RF '19]

E.g. $m + m' = 2$:

$$\mathcal{H}_2 = \begin{pmatrix}
\frac{3}{2} & -1 & -\frac{1}{2} \\
-1 & 2 & -1 \\
-\frac{1}{2} & -1 & \frac{3}{2}
\end{pmatrix}$$
Harmonic action as stochastic process

Hamiltonian defined on N sites as

$$H = \sum_{i=1}^{N-1} \mathcal{H}_{i,i+1}$$

Symmetric stochastic process without exclusion!

\rightarrow k particles jump with the rate $\varphi(k) = \frac{1}{k}$
Harmonic action as stochastic process

Hopping rates generalise to arbitrary spin $s > 0$ [Martins, Melo ’09]

$$\varphi_s(m, k) = \frac{1}{k} \frac{\Gamma(m + 1)\Gamma(m - k + 2s)}{\Gamma(m - k + 1)\Gamma(m + 2s)}$$

Again we find a symmetric particle process!

\leftrightarrow Rates depend on number of particles at departing site

Up to now only reinterpreting results of others...

Add a particle current (non-equilibrium models):

- q-analog/XXZ-analog \rightarrow asymmetric (drift) process
- Rational case with boundary reservoirs
Non-compact XXZ spin chain as stochastic particle process
Non-compact $\mathcal{U}_q(sl_2)$ invariant XXZ chain

Commutation relations $\mathcal{U}_q(sl_2)$

$$\left[S_+, S_- \right] = -\left[2S_0 \right], \quad \left[S_0, S_\pm \right] = \pm S_\pm$$

with q-number $[x] = \frac{q^x - q^{-x}}{q - q^{-1}}$.

Generators of $\mathcal{U}_q(sl_2)$ act locally as

$$S_+ |m\rangle = [m + 2s] |m + 1\rangle, \quad S_- |m\rangle = [m] |m - 1\rangle, \quad S_0 |m\rangle = (m + s) |m\rangle$$

Hamiltonian density of XXZ chain with $|q| < 1$ [Bytsko]

$$\mathcal{H} = \frac{\psi_q(S) - \psi_q(2s)}{-q^{4s} \log(q)}$$

with q-Digamma function ψ_q and S is related to the co-product of the Casimir operator via $\Delta(C) = [S][S - 1]$.
Some definitions and special functions...

Co-product

\[\Delta(S_0) = S_0 \otimes 1 + 1 \otimes S_0, \quad \Delta(S_{\pm}) = S_{\pm} \otimes q^{-S_0} + q^{S_0} \otimes S_{\pm} \]

q-Gamma function

\[\Gamma_q(x) = q^{\frac{1}{2}x(1-x)} (q^{-1} - q)^{1-x} \frac{(q^2; q^2)_\infty}{(q^{2x}; q^2)_\infty} \]

with \((a; q)_n = \prod_{k=0}^{n-1}(1 - aq^k)\)

q-Digamma function

\[\psi_q(x) = \partial_x \log \Gamma_q(x) \]
Harmonic action for XXZ chain

Use Clebsch-Gordan decomposition to obtain nearest neighbor hopping action on two sites [RF '19]

\[
\mathcal{H}|m\rangle \otimes |m'\rangle = (\alpha_+(m) + \alpha_-(m')) |m\rangle \otimes |m'\rangle - \sum_{k=1}^{m} \rho(m, k) |m - k\rangle \otimes |m' + k\rangle \\
- \sum_{k=1}^{m'} \rho(m', k) |m + k\rangle \otimes |m' - k\rangle
\]

with diagonal entries

\[
\alpha_{\pm}(m) = \frac{\psi_q(m + 2s) - \psi_q(2s) \pm m \log(q)}{-2q^{4s} \log(q)}
\]

and off-diagonal entries

\[
\rho(m, k) = \frac{q^{2ks}}{q^{4s}(1 - q^{2k})} \frac{(q^2; q^2)_m (q^{4s}; q^2)_{m-k}}{(q^2; q^2)_{m-k} (q^{4s}; q^2)_m}
\]
Relation to stochastic q-Hahn process

As in ASEP, Hamiltonian density \mathcal{H} is not a Markov matrix!

Similarity transformation yields Markov matrix

$$
\mathcal{M} = \begin{pmatrix}
\alpha_+(n) + \alpha_-(0) & -\beta_-(1,1) & -\beta_-(2,2) & \cdots & -\beta_-(n,n) \\
-\beta_+(n,1) & \alpha_+(n-1) + \alpha_-(1) & -\beta_-(2,1) & \cdots & -\beta_-(n,n-1) \\
-\beta_+(n,2) & -\beta_+(n-1,1) & \alpha_+(n-2) + \alpha_-(2) & \cdots & -\beta_-(n,n-2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\beta_+(n,n) & -\beta_+(n-1,n-1) & -\beta_+(n-2,n-2) & \cdots & \alpha_+(0) + \alpha_-(n)
\end{pmatrix}.
$$

with

$$
\beta_{\pm}(m, k) = \frac{\mu^{1/2}k(1\pm 1)}{\mu(1-\gamma^k)} \frac{(\gamma; \gamma)_m(\mu; \gamma)_{m-k}}{(\gamma; \gamma)_{m-k}(\mu; \gamma)_m},
$$

where $\gamma = q^2$ and $\mu = q^{4s}$

Coincides with rates of q-Hahn process introduced by

[Povolotsky; Barraquand-Corwin; Sasamoto-Wadati] without reference to XXZ chain!
Non-compact spin chains and stochastic particle processes

- q-Hahn process
 - $\mu = q^{4s}$
 - $\gamma = q^2$
 - $\mu \rightarrow \gamma$

- MADM
 - $\gamma = q^2$

- non-compact XXZ spin s
 - $s = \frac{1}{2}$
 - $q \rightarrow 1$

- non-compact XXX spin s
 - $s = \frac{1}{2}$
 - $q \rightarrow 1$

Harmonic processes
Non-compact XXX chain with boundaries
Stochastic process with boundary reservoirs

Add stochastic boundary conditions to rational process

\[H = B_1 + \sum_{i=1}^{N-1} \mathcal{H}_{i,i+1} + B_N. \]

Guess boundary terms for \(0 < \beta_i < 1 \) and \(s = \frac{1}{2} \) [RF, Giardinà, Kurchan '19]

\[B_i|m_i\rangle = \left(h(m_i) + \sum_{k=1}^{\infty} \frac{\beta_i^k}{k} \right) |m_i\rangle - \sum_{k=1}^{m_i} \frac{1}{k} |m_i - k\rangle - \sum_{k=1}^{\infty} \frac{\beta_i^k}{k} |m_i + k\rangle \]

Introduces reservoirs at left and right end of the chain:

Is this process integrable?
Construct the fundamental transfer matrix

\[T(x) = \text{tr} K(x)M(x)\hat{K}(x)\hat{M}(x) \]

with the monodromies

\[M(x) = R_1(x) \cdots R_N(x), \quad \hat{M}(x) = R_N(x) \cdots R_1(x) \]

where

\[R(x) = (-1)^s \frac{\Gamma(2s - x)\Gamma(s + x)}{\Gamma(2s + x)\Gamma(s - x)} \]

Hamiltonian is logarithmic derivative of \(T(x) \) at permutation point

\[H = \partial_x \log T(x)|_{x=0} \]

But: Closed expression of K-matrix unknown!
Quantum Inverse Scattering Method

Derive the universal K-matrix from BYBE [RF, Giardinà, Kurchan '19]

\[
\mathcal{L}(x - y) \hat{K}(x) \mathcal{L}(x + y) \hat{K}(y) = \hat{K}(y) \mathcal{L}(x + y) \hat{K}(x) \mathcal{L}(x - y)
\]

Lax matrix and K-matrix in fundamental representation

\[
\mathcal{L}(x) = \begin{pmatrix} x + \frac{1}{2} + S_o & -S_- \\ S_+ & x + \frac{1}{2} - S_o \end{pmatrix}, \quad \hat{K}(x) = \begin{pmatrix} q_1 + xq_2 & xq_3 \\ xq_4 & q_1 - xq_2 \end{pmatrix}
\]

Solve for \(\hat{K}(x) \)...
Universal solution to BYBE

1. Introduce useful parametrisation of boundary variables

\[q_1 = \delta, \quad q_2 = \frac{1}{2} (1 + 2\alpha\beta)\gamma, \quad q_3 = -(1 + \alpha\beta)\beta\gamma, \quad q_4 = \alpha\gamma \]

2. Make the ansatz

\[\hat{\mathcal{K}}(x) = e^{\beta S_+} e^{-\alpha S_-} \hat{\mathcal{K}}_0(S_0; x) e^{\alpha S_-} e^{-\beta S_+} \]

Yields difference equation for \(\hat{\mathcal{K}}_0(S_0; x) \) which can be solved

\[\hat{\mathcal{K}}_0(S_0; x) = \frac{\Gamma\left(\frac{1}{2} + s + 2\frac{\delta}{\gamma} - x\right) \Gamma\left(\frac{1}{2} + S_0 + 2\frac{\delta}{\gamma} + x\right)}{\Gamma\left(\frac{1}{2} + s + 2\frac{\delta}{\gamma} + x\right) \Gamma\left(\frac{1}{2} + S_0 + 2\frac{\delta}{\gamma} - x\right)} \]

Other boundary obtained via

\[\mathcal{K}(x) = \frac{1}{\hat{\mathcal{K}}(x + 1)} \]
To derive stochastic boundary conditions for Hamiltonian fix

\[\frac{2}{\gamma} = s - \frac{1}{2}, \quad \alpha = \frac{1}{1 - \beta} \]

and compute the logarithmic derivative of the transfer matrix

\[\frac{\partial}{\partial x} \ln T(x) \bigg|_{x=0} = \frac{\text{tr}_a \mathcal{K}_a(O)}{\text{tr}_a \mathcal{K}_a(O)} + 2 \frac{\text{tr}_a \mathcal{K}_a(O) \mathcal{H}_{a,1}}{\text{tr}_a \mathcal{K}_a(O)} + \frac{\hat{\mathcal{K}}'_N(O)}{\hat{\mathcal{K}}_N(O)} + 2 \sum_{k=1}^{N-1} \frac{\partial}{\partial x} \ln \mathcal{R}_{k,k+1}(x) \bigg|_{x=0}, \]

Full Hamiltonian

\[H = \mathcal{B}_1 + \sum_{i=1}^{N-1} \mathcal{H}_{i,i+1} + \mathcal{B}_N \]

with algebraic expression for boundaries

\[\mathcal{B}_i = e^{-S[i]} e^{\rho_i S[i]} \left(\psi(S_0^{[i]} + s) - \psi(2s) \right) e^{-\rho_i S[i]} e^{S[i]} \quad \text{for } i \in \{1, N\}. \]

where \(\rho_i = \frac{\beta_i}{1 - \beta_i} \).
A longer computation shows that we obtain the spin s version of desired boundary terms!

\[
\mathcal{B}_i|m_i\rangle = \left(h^{(s)}(m_i) + \sum_{k=1}^{\infty} \frac{\beta_i^k}{k} \right) |m_i\rangle - \sum_{k=1}^{m_i} \frac{1}{k} \frac{\Gamma(m_i + 1)\Gamma(m_i - k + 2s)}{\Gamma(m_i - k + 1)\Gamma(m_i + 2s)} |m_i - k\rangle
\]

\[
- \sum_{k=1}^{\infty} \frac{\beta_i^k}{k} |m_i + k\rangle,
\]

- Process is integrable!
- Derived stochastic boundaries for arbitrary spin s
Steady state of harmonic process with boundaries
Derrida solution

SSEP solved in 1993 using matrix product ansatz [Derrida et al.]

Representation of steady state $H|\mu\rangle = 0$

$$|\mu\rangle = \frac{1}{\langle W|(E + D)^N|V\rangle} \begin{pmatrix} \langle W|E\cdots EEE|V\rangle \\ \langle W|E\cdots EED|V\rangle \\ \langle W|E\cdots EDE|V\rangle \\ \vdots \\ \langle W|D\cdots DDD|V\rangle \end{pmatrix}$$

DEHP algebra

- Bulk relation: $DE - ED = D + E$
- Boundary relations:
 $$\langle W|(\alpha E - \gamma D) = \langle W|, \quad (\beta D - \delta E)|V\rangle = |V\rangle$$

MPA difficult as there are not only two operators E and D
Steady state

Follow alternative route applied for SSEP in [RF ‘19; RF, Giardina, Kurchan ‘20], inspired by [Alcaraz, Droz, Henkel, Rittenberg], [Melo, Ribeiro, Martins], [Essler, de Gier], [Crampé, Ragoucy, Vanicat]

1. SSEP generator can be brought to a block triangular form

\[
H_\Delta = G^{-1}HG = \begin{pmatrix} -\alpha - \gamma & \Delta \\ 0 & 0 \end{pmatrix} + \sum_{i=1}^{N-1} \omega_{i,i+1} \begin{pmatrix} -\beta - \delta \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

with \(\Delta = \frac{(\alpha+\gamma)(\alpha\beta-\gamma\delta)}{\beta+\delta} \) and \(G \) only depends on \(S_{a}^{\text{tot}} \).

2. \(H_\Delta \) is isospectral to diagonal Hamiltonian \(H^\circ = H_{\Delta=0} \) with \(\Delta = 0 \)

3. Determine non-local transformation \(W_\Delta \) s.t.

\[
H^\circ = W_\Delta^{-1}H_\Delta W_\Delta
\]

4. Obtain closed-form of steady state from pseudovacuum

\[
|\psi\rangle = GW_\Delta |\Omega\rangle
\]

Same logic works for non-compact boundary model [Frassek, Giardina ‘21]
Transformations for the non-compact model

Local transformation that block triangularises H:

$$G = \prod_{i=1}^{N} e^{-S_{i}^{-}} e^{\rho N S_{i}^{+}}$$

Non-local transformation that block diagonalises H_{Δ}:

$$W_{\Delta} = \sum_{k=0}^{\infty} \Delta^{k} \frac{Q_{+}^{k}}{k!} \frac{\Gamma(2(S_{0}^{\text{tot}} + s))}{\Gamma(k + 2(S_{0}^{\text{tot}} + s))}$$

with

$$Q_{+} = s S_{+}^{\text{tot}} + \sum_{i=1}^{N} S_{i}^{[i]} \left(S_{i}^{[i]} + 2 \sum_{j=i+1}^{N} S_{j}^{[j]}\right)$$

Q_{+} is obtained from the transfer matrix at leading order in spectral parameter
Evaluation of the steady state
Factorial moments

Steady state

\[\langle m|\mu \rangle = \langle m|GW_\Delta|\Omega \rangle = \sum_{n \geq m} F(n) \prod_{i=1}^{N} \left(\frac{(-1)^{n_i-m_i}}{n_i!} \binom{n_i}{m_i} \frac{\Gamma(2s+n_i)}{\Gamma(2s)} \right) \]

with factorial moments

\[F(n) = \sum_{k=0}^{\lfloor |n| \rfloor} \rho_N^{|n|-k} (\rho_1 - \rho_N)^k f_n(k) \]

where

\[f_n(k) = \sum_{|w|=k} \prod_{i=1}^{N} \binom{n_i}{w_i} \prod_{j=1}^{w_i} \frac{2s(N+1-i) - j + \sum_{k=i}^{N} w_k}{2s(N+1) - j + \sum_{k=i}^{N} w_k} . \]
Steady state for length $N=1$

$N = 1$ and $s = 1/2$

$$\langle m_1 | \mu \rangle = \frac{(\beta_L - 1)(\beta_R - 1)}{\beta_L - \beta_R}\left(\gamma_{\beta_L}(m_1 + 1) - \gamma_{\beta_R}(m_1 + 1)\right).$$

with $\beta_L = \beta_1$ and $\beta_R = \beta_N$ and

$$\gamma_{\beta}(n) = \sum_{k=n}^{\infty} \frac{\beta^k}{k}.$$
Steady state for length $N=2$

$N = 2$ and $s = 1/2$

$$\langle m_1, m_2 | \mu \rangle = 2 \frac{(\beta_L - 1)^2(\beta_R - 1)^2}{(\beta_L - \beta_R)^2} \left(\phi_{\beta_L}(m_1, m_2) - \kappa(m_1, m_2) + \phi_{\beta_R}(m_2, m_1) \right)$$

where

$$\phi_{\beta}(m_1, m_2) = \frac{1}{2} \gamma_{\beta}^2 (1 + m_1) - \sum_{k=m_1+1}^{m_2} \frac{1}{k} \gamma_{\beta}(m_1 + k + 1) + \sum_{k=m_2+1}^{m_1} \frac{1}{k} \gamma_{\beta}(m_1 + k + 1)$$

and

$$\kappa(m_1, m_2) = \gamma_{\beta_L}(1 + m_1) \gamma_{\beta_R}(1 + m_2).$$
Other eigenstates of H can be obtained from standard Bethe ansatz for H°:

$$|\Psi\rangle = GW_\Delta |\Psi^\circ\rangle$$

Process can be mapped to equilibrium H^{eq} with $\rho = \rho_1 = \rho_N$ such that

$$H = G_{\rho_N} W_\Delta G_\rho^{-1} H^{eq} G_\rho W_\Delta^{-1} G_{\rho_N}^{-1}$$

Observed macroscopically in [Tailleur, Kurchan, Lecomte ’07]
Conclusion & Outlook
Conclusion & Outlook

Conclusion

• Interesting connections between high energy physics, quantum groups, statistical mechanics and probability theory
• QISM is powerful tool to study integrable stochastic processes

Work in progress

• Boundary K-matrices for non-compact XXZ
• W_Δ for ASEP? Interesting works by [Nichols, Rittenberg, de Gier]
• Role of Baxter Q-operator and relation to [Lazarescu, Pasquier]
• Generalisation to $\mathfrak{su}_q(n, 1)$ and relation to stochastic R-matrix [Kuniba, Mangazeev, Maruyama, Okado]

Implications for AdS/CFT? [Olivucci, Vieira ’21]
Thank you!

References

arXiv:1904.01048 “Non-compact quantum spin chains as integrable stochastic particle processes”
with C. Giardinà and J. Kurchan

with C. Giardinà and J. Kurchan

arXiv:2107.01720 “Exact solution of an integrable non-equilibrium particle systems“
with C. Giardinà

with C. Franceschini and C. Giardinà