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Long-range interacting integrable models

- Long range integrable deformations of Heisenberg-like models are important for
various applications (e.g. AAS/CFT, 2d CFT, condensed matter, stochastic processes,
etc)

- Very few cases are completely understood

+ The algebraic structure 1s rather rigid

- Unified framework for nearest-neighbour and long range interaction (e.g: separation
of variables for long range spin chains)?

- Here: a new method to obtain the eigenfunctions of the i1sotropic Haldane-Shastry
Hamiltonian which can be potentially extended to various deformations



The isotropic Haldane-Shastry Hamiltonian

[Haldane, 88; Shastry, 88]

N su(2) spins 1/2 on a circle with periodic boundary conditions z; — w’/ = >/

Hps = — ZV(Zz'azj) P

7]
2% 1 1 .
V(2 2) = R D L (g0 Spin
V(i z)? sin’r(i—g)/N Py =5 (joi + 1) permutation
also solvable for su(n) spins in fundamental representation
Yangian symmetry and CFT limit: [Haldane, Ha, Talstra, Bernard, Pasquier, 92]
algebraic structure: [Bernard, Gaudin, Haldane, Pasquier, 93]

Yangian and spinon description of su(2)k=1 CFT: [Bernard, Pasquier, D.S. 94]



A family of long-range isotropic spin chains

particular limit in a family of long-range potentials V'(z) with parameter ~

Inozemtsev [Inozemtsev, 92] Haldane-Shastry
Heisenberg S
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©(2) Weierstrass elliptic function with periods N and inw/k

interpolation between the spectra of Heisenberg and Haldane-Shastry models



The spectrum of the Haldane-Shastry Hamiltonian

[Haldane, Ha, Talstra, Bernard, Pasquier, 92]
[Bernard, Gaudin, Haldane, Pasquier, 93]

The model 1s Yangian symmetric (huge degeneracy) and the spectrum is encoded by motifs:
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cach motif corresponds to a Yangian representation

bound states in the XXX model evolve into descendants of Haldane-Shastry highest weight
states when ~ — 0



The hyperbolic limit of the Inozemtsev model

the nice algebraic structure (Yangian symmetry) is lost for the elliptic deformation, but
some interesting features are retrieved for infinite length N — oo

N—00 sinh” Kz

1 1
the potential becomes lim Py rw(z) = K7 < o+ §>

and 1t can be obtained from the Haldane-Shastry potential by the analytical continuation

2wi/N —2K

w=e —t=ce€

higher Hamiltonians obtained by the same analytical continuation

used to match the first few orders of the long-range deformation of the Heisenberg model
appearing in AAS/CFT [D.S., Staudacher, 03, D.S. 12]

up to exponential corrections of order e the spectrum is obtained from the asymptotic
Bethe Ansatz equations

exp (1pjN) = exp Z X(pj: i)

k#a



The hyperbolic limit of the Inozemtsev model

[Inozemtsev, 92]

asymptotic Bethe Ansatz equations: oPiN H p(p;) — ppk) + Z
kikty ¥ — (pr) =1
K large gp(p) = lcot P + 1 {CO’C(Z—? _ ’I;/in) 4+ COt(Z—? 4 mn)}
2772 " 24 2 5
o= 1cot]—)wLQE: t”sinp
272 2 4 4t sin(p/2)
m m m(p — 2mm) (p 4+ 2wm) D
= _—coth oL 4 = th th P
o stall o) = ok U 2k t 2K = [CO 2K Teo 2K 2K
mT—p

Kk — 0 o(p) ~ P

1 —p— 2
piN =lim =S WP =22 o — 07 N 0(p; — ) + 2n
k—0 1 ‘= Di— P + 21K 1

solution: p; = 27ij/N with mj41 — My > 2 (mOtlfS)



The hyperbolic limit of the Inozemtsev model

asymptotic Bethe Ansatz equations: il — H

o(pr) +1
k;k#j (p

p(Ps) —
p(pj) — p(pr) — i
the rapidity ¢(P) is quasi-periodic o(p + 2m) = ¢(p) and p(p + 2ik) = p(p) — ¢

the XXX model has bound states; when ~ diminishes their rapidities approach the real axis

M=2 example: two types of bound states  [Dittrich, Inozemtsev, 96; Klabbers, Lamers, 20]

P P

type I bound states: pL=5+ iq , P2 =5~ iq
transition at ¢ =~ K at small £ Feor ~ 5k
type II bound states: p1 =P1 + ik, P2 = Po — Ik

the momentum with smaller real part vanishes at £ — 0 and the state becomes a descendant



The solution of the Haldane Shastry Hamiltonian

to solve the Haldane-Shastry model it 1s useful to solve first the spin
Calogero-Sutherland model [Bernard, Gaudin, Haldane, Pasquier, 93]

N

Hpp = Z(Zjaj>2 T 25(5 + ij)(

j=1 j#k

Rj Rk

25 — zk) (26 — 2;)

when 3 — oo the positions of the particles freeze at their equilibrium positions

and the Hamiltonian becomes that of Haldane-Shastry [Polychronakos, 93]
zj W = 2™/

the model 1s solved using the degenerate double affine Hecke algebra (DDAHA) generated by

{21, 2y vn ,ZN} , and {d17 dg, ce ,dN}
[Zivzj] — [divdj] =0

) .9, 2 o “k .
Dunkl operators: d; = 2;0; + B ; P K, — 5 ; = Kk Kijzi = zj Ky
J J .
coordinate
ermutation
(0 Ky, kit P

Kijidy=Sdis1 Kij1— B8, k=1,
\di K1+ 0 k=1+1.




The solution of the Haldane Shastry Hamiltonian

N

the spin Calogero-Sutherland model: Hpr =) (50, +) BBF ij)(

j=1 J#k

iRk

zj — 2x) (2K — 25)

1s diagonalised on functions completely (anti)symmetric by permutations of spins and
coordinates

U=]](zi—2)" ¥ K Py = 40
i<j
V= Z (= D)7 W(2(iy in,.osing}o Zlinsinging}) 01582, - 5 T01))

11<12<...<t)\f

/ ’2177ZM>>:O-Z_10-2_M|T

partially (anti)symmetric in both groups of variables

Z{i1,i9, g} — {Z’ila Rig ZiM}

Ziy iz, ing} = 171 22 -+ AN F\{ Zirs Zip - - - Zigg )

on this space of functions we can define a projection  7pr(... Kij) = 75 (... Fj)

N
Hpp=mpF (Zﬁ)

j=1



The algebraic structure of the Haldane Shastry
Hamiltonian

algebraic structure of the spin Calogero-Sutherland model:
[Bernard, Gaudin, Haldane, Pasquier, 93; Uglov, 97]

the long range nature of the interaction 1s contained in the
dynamical inhomogeneities d;

the integrals of motion are generated by the quantum determinant

N

N
di
qDet T,(u) = 7p (Hu1+25> Hy =mp (Zﬁ)
1 1=1

1=1

and they commute with the elements of 7,(u) (Yangian symmetry)



Basis of antisymmetric states (wedges)
[Uglov, 97]
su(n) chain in fundamental representation: at each site we use the basis

up, = 2" k), k€Z, withk, kdeterminedby k=k+kn, 0<k<n-—1

/N

coordinate su(n) spin
Uop = 22 |0)
u, =z |0) Upr1 = 2 |1) Usp_1 = 2 |n—1)
Ug = O> U1 = ’1> Up—1 — n — 1>
U_p, = 271|0) Ui_p = 2 H[1) u_, =z 'n—1)

wedges (Slater determinants):

’ﬂ,k — ukl VANAN U/kN = Z Sgn(o-) uk‘a(l) ... uk'o(N)
ocESN

ki1>...>kn ; at most n consecutive k’s can be equal



Basis of antisymmetric states (wedges)

On the wedge basis the action of the Calogero-Sutherland Hamiltonian 1s triangular:

Hgp iy = By uy, + 20 Z hij g
1<i<j<N

N N
_ - N(N? —1)
_ 2 _ 2
Ek_ij+5 Z(N+1—2])/<;j+5 T
7=1 7=1
and Pij Wy AN oo o ANug Ao N A AN gy
ki—kj—1
= > (hi—ky =) gy A AUy A A U A A gy
r=1 squeezing

freezing keeps only the part linear in 53 in the Hamiltonian and evaluates the positions at
N-th roots of unity evy 2j = w’

N
(1 + Pij) EHS,k — Z(N +1- 2]) Ej
i i =

Ri%j

Hpys = evy



Wedges in the frozen limit

When the coordinates are evaluated at roots of unity only a finite number of eigenstates survive;

we use a collection of identities:

: N(N? -1
veZ SiFk ( )

itk ijzkzj 12

symmetric sums:

pr(2)

N
k
Z “j

J=1

€Vy pk(z) =N 5k,0 mod N

or CVy (pkz<za) -+ pk:<z6¢>> — Nén,Oa

ground state energy of the CS model

maximum degree of polynomial in each
variable should be N-1

and elementary
symmetric

functions: 1<iy<..<ip<N

evy, Bk(Z) = 5k:,0 -+ (—1)N_1(5k,N

k<N

er(z) = Z Zig o -

k



Wedges in the frozen limit

specialise to su(2) for simplicity, and split the integers k ;

; Into two groups depending on the
value of k; =0,1

s sE BV s s EY

and define the partitions A, v with parts

M=k -M+i,  u=k" - N+ M+
. Schur polynomials
the wedges can be written as
= (D" TT (= 2) Salza) ] (25— 2) Su(za) |a))
o j<ke€a j<kea
ZQE{Zil,...,ZiM}, for Oé:{il,.--,iM},
1§21<<2M§M7 |O‘|:Zk€ak
upon evaluation: W. = H (W — W) = Cy ij W,
I<kea o

and €V SI/(Z&) — ju €V Sl/’(za)



Wedges in the frozen limit

upon freezing: up = const Z H — 2 H 2j Sx(Za) Sv(Za) )
a j<k€a JEQ
since Sx(2a) Sv(za) = Sxtw(2a) + lower one can assume V=10

hence the integers EEO) are compactly packed and not affected by squeezing

—(0) :

then the rank of the wedges can be reduced by 1

. o ) -y M+l
Up — Up=up, Ao Aug ; k§1)+ 2+ o i=1,....M

on the new wedge basis the HS acts like a dynamical CS with parameter 05 = 1

A M M Mo (M2 — 1) A
HHSu];: (Z —I—Z M—|—1—2j Nij—l— 19 +EI§S) uy,
j=1 j=1 j=1

ki—kj—1
+ 2 (ki — ks —r)ug, Ao Aug_ Ao A,

r=1

ol



Eigenfunctions of the Haldane Shastry Hamiltonian

recap: U= > U(iriseins Hivsizeine}) 1182, iar))
11<12<...<tpf
N
\Ij(z{il,iQ ..... in ) Z{il,iQ ..... ’LM}> — ¢(2i1> Rigy v ZZM) uSIIlg Z Z? — Nan,O mod N
=1
[BGHP, 93;

@DA(Zl; B2y e 7ZM) — H (Zm - Zn)2 Pf:2(217 B2y e n 7ZM)
m<n / Bernard, Pasquier, D.S., 93]

symmetric Jack polynomials labelled by partitions N —2M +1> XA > ... > Ay > 1
this construction works for the highest weight states

when extra magnons are excited v # () and the maximum degree of ¥(2) , Duax =2M + 1+ 14 + Ay,
reaches N; the corresponding states are Yangian descendants (no closed form)



Comments and outlook

similar result at higher rank: su(n) HS Hamiltonian equivalent to dynamical
su(n-1) CS Hamiltonian with 8 = 1

wedges are well-adapted for the infinite length, low-energy limit (CFT); the
antiferromagnetic state is particularly simple in this language

we expect a similar description for the g-deformed Haldane-Shastry Hamiltonian
|[Lamers, Pasquier, D.S., 20] 1n terms of g-wedges [Kashiwara, Miwa, Stern, 95]

M
\IIA(ZM' ) '7ZM) = ( H (q cm T q_lzn) (q_lzm - qzn))-P;:(zl) | '7ZM)

m<n

P§is a Macdonald polynomial with parameters 4" = (t)? = q

q roots of unity, e.g. =17 (the spectrum 1s extremely degenerate)



Comments and outlook

Separation of variables: in the traditional approach a la Sklyanin one needs the
transfer matrix/ B operator to generate the spectrum/eigenvectors

—— define a hybrid model starting from the CS monodromy matrix by taking as
generating function of the twisted transfer matrix

te(u) = vA(u) + 2 ' D(u)

for zero/infinite twist the eigenvectors are the same as for CS;
what happens upon freezing?

the eigenvalues of the separated variables are given by the eigenvalues of the Dunkl
operators; they can and do occur at degenerate values d; ~ d; 1 + 3

[in progress with G. Ferrando, J. Lamers, F. Levkovich-Maslyuk]



