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Long range spin chains from freezing



Long-range interacting integrable models 


• Long range integrable deformations of Heisenberg-like models are important for 
various applications (e.g. AdS/CFT, 2d CFT, condensed matter, stochastic processes, 
etc)


• Very few cases are completely understood


• The algebraic structure is rather rigid 


• Unified framework for nearest-neighbour and long range interaction (e.g: separation 
of variables for long range spin chains)?


• Here: a new method to obtain the eigenfunctions of the isotropic Haldane-Shastry 
Hamiltonian which can be potentially extended to various deformations




The isotropic Haldane-Shastry Hamiltonian
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[Haldane, 88; Shastry, 88]
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matrices. The (isotropic) Haldane–Shastry spin chain has Hamiltonian [Hal88Hal88,Sha88Sha88]

(1.1) Hhs = evÊ
ÂHhs , ÂHhs = ≠

Nÿ

i<j

evÊ
zi zj

(zi ≠ zj)2 (1 ≠ Pij) .

The overall sign ensures that (1.11.1) is positive: (≠)Hhs is (anti)ferromagnetic. Let Ê :=
e2fii/N œ C◊ := C \ {0} be the primitive Nth root of unity. Following [Ugl95Ugl95] we write

(1.2) evÊ : zj ‘≠æ Êj = e2fiij/N

for the map evaluating z1, · · · , zN at the corresponding Nth roots of unity. On shell, i.e.
after evaluation, we can think of the zj as the position of site j of the chain, viewed as
being embedded in the unit circle S1 ™ C. We will refer to the zj as coordinates.

The many remarkable properties of this model include a particularly simple spectrum.
The energy and momentum are additive, with a quadratic dispersion relation:

(1.3) XMmaÁhs(n) = 1
2 n (N ≠ n) , phs(n) = 2fi

N
n .

The spectrum is highly degenerate [Hal88Hal88], partially [FGL15FGL15] due to an infinite-
dimensional symmetry algebra present already at for finite size [HHT+92HHT+92, BGHP93BGHP93].
There is one highest-weight eigenvector for each partition ⁄ with ⁄1 Æ N ≠ 2 ¸(⁄) + 1
(see §1.1.31.1.3), with wave function [Hal91bHal91b,BGHP93BGHP93]

(1.4) �(i1, · · · , iM ) = evÊ

MŸ

m<n

(zim ≠ zin)2 P (1/2)
⁄ (zi1 , · · · , ziM ) .

Here P (–)
⁄ is a Jack polynomial with parameter – = g≠1, where g (g ≠1) is the Calogero–

Sutherland coupling (§A.1A.1). The special case P (1/2)
⁄ is a zonal spherical polynomial. cf [Cherednik, Matsuo](To

compare: – = 1 gives Schur and – = 2 zonal polynomials; cf. Figure 44 on p. 2626.)
Refer to q = 1 sects/app. incl §A.2A.2

In this work we extend all of this to the partially isotropic case, building on [BGHP93BGHP93,
Ugl95Ugl95,Lam18Lam18]. do we have new results

for q = 1 too?

1.1.1. Hamiltonians. Fix an anisotropy parameter q œ C◊. The Hamiltonian of the
(chiral) q-deformed Haldane–Shastry spin chain [Ugl95Ugl95] can be expressed in a long-range
pairwise form too [Lam18Lam18]:

(1.5) H = ≠ [N ]
N

Nÿ

i<j

evÊ V (zi, zj) S[i,j] .

Appendix . . . contains a comparison with the conventions from [Ugl95Ugl95, Lam18Lam18]. The
prefactor involves the q-analogue of N œ N,

[N ] := qN ≠ q≠N

q ≠ q≠1 = qN≠1 + qN≠3 + · · · + q3≠N + q1≠N .

Next, the potential in (1.51.5) reads

(1.6) V (zi, zj) = zi zj

(q zi ≠ q≠1zj)(q≠1zi ≠ q zj) .

A geometric way to think about this quantity is shown in Figure 11.

N su(2) spins 1/2 on a circle with periodic boundary conditions
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spin 
permutation

also solvable for su(n) spins in fundamental representation  

[Bernard, Gaudin, Haldane, Pasquier, 93]algebraic structure:  

[Haldane, Ha, Talstra, Bernard, Pasquier, 92]Yangian symmetry and CFT limit:

Yangian and spinon description of su(2)k=1 CFT:  [Bernard, Pasquier, D.S. 94]



A family of long-range isotropic spin chains


Inozemtsev

particular limit in a family of long-range potentials         with parameter 

V (zi, zj) =
zizj

(zi � zj)2
=

1

sin2 ⇡(i� j)/N

S[i,j] = Pij

E(µ)� E0 =
MX

m=1

"(µm) =
MX

m=1

µm(N � µm)

�̄m = µM�m+1 � 2(M �m)� 1

[H, H̄] = 0

g ! 1

qdeta L
sp

a (u; z) = tN/2
NY

i=1

u� zi
tu� zi

qdeta La(u; z) = tN/2
NY

i=1

u� zi
tu� zi

eH =
N\

i=1

ker(T sp

i � T pol

i )

Dr = er(Y)

eDr = er(eY)

� eD1 ⇠ H = � [N ]

N

X

i<j

V (zi, zj) S[i,j]

eLa(u)

e�(u) = e�0(u) + (q � 1) � e�(u) +O(q � 1)2

q⇤ = (t⇤)1/2 = q2

V (z)

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}
[zi, zj] = [di, dj] = 0

Kij zi = zj Kij , (105)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(106)

References

32

V (zi, zj) =
zizj

(zi � zj)2
=

1

sin2 ⇡(i� j)/N
S[i,j] = Pij

E(µ)� E0 =
MX

m=1

"(µm) =
MX

m=1

µm(N � µm)

�̄m = µM�m+1 � 2(M �m)� 1

[H, H̄] = 0

g ! 1

qdeta L
sp

a (u; z) = tN/2
NY

i=1

u� zi
tu� zi

qdeta La(u; z) = tN/2
NY

i=1

u� zi
tu� zi

eH =
N\

i=1

ker(T sp

i � T pol

i )

Dr = er(Y)

eDr = er(eY)

� eD1 ⇠ H = � [N ]

N

X

i<j

V (zi, zj) S[i,j]

eLa(u)

e�(u) = e�0(u) + (q � 1) � e�(u) +O(q � 1)2

q⇤ = (t⇤)1/2 = q2

Pjk =
1

2

�
�a
j �

a
k + 1

�

V (z)

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}
[zi, zj] = [di, dj] = 0

Kij zi = zj Kij , (105)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(106)

 ! 1
�i,j+1 + �i,j�1

References

32

V (zi, zj) =
zizj

(zi � zj)2
=

1

sin2 ⇡(i� j)/N
S[i,j] = Pij

E(µ)� E0 =
MX

m=1

"(µm) =
MX

m=1

µm(N � µm)

�̄m = µM�m+1 � 2(M �m)� 1

[H, H̄] = 0

g ! 1

qdeta L
sp

a (u; z) = tN/2
NY

i=1

u� zi
tu� zi

qdeta La(u; z) = tN/2
NY

i=1

u� zi
tu� zi

eH =
N\

i=1

ker(T sp

i � T pol

i )

Dr = er(Y)

eDr = er(eY)

� eD1 ⇠ H = � [N ]

N

X

i<j

V (zi, zj) S[i,j]

eLa(u)

e�(u) = e�0(u) + (q � 1) � e�(u) +O(q � 1)2

q⇤ = (t⇤)1/2 = q2

Pjk =
1

2

�
�a
j �

a
k + 1

�

V (z)

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}
[zi, zj] = [di, dj] = 0

Kij zi = zj Kij , (105)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(106)

 ! 1
�i,j+1 + �i,j�1

References

32

Heisenberg
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interpolation between the spectra of Heisenberg and Haldane-Shastry models

2.2. Limits and combs. The different limits of the normalised pair potential are
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On the left δ denotes a Kronecker delta function, and in the top left dL(z) := minn∈Z |z + n L|
the distance function on ZL := Z/LZ. See also the plots in Figures 1 and 2 below.

The arrows in the right half of (2.3) admit inverses, as is well known in the area of integrable
quantum-many body systems of Calogero–Sutherland type, see e.g. [Sut04]. Indeed, one can
introduce a period a in a (suitable) function f via

(2.4) comba f(z) :=
∑

n∈Z

f(z + n a) .

Physically one can think of this as a ‘comb of particles’, that is, infinitely many copies of a
particle on a line, equally spaced at distance a of each other and moving in exactly the same
way. Starting with the rational case we obtain

(2.5)
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The functions at the intermediate stage are related by ‘Wick rotating’ L = ω1 ↔ ω2 = ω = iπ/κ.
Observe that the elliptic function depends on the route taken. By the Legendre relation the
difference is η1/L−η2/ω = 2πi/(Lω) = 2κ/L; in particular both elliptic functions have the same
limits when L → ∞ or ω → i∞ (κ → 0). Either shift removes an (irrelevant but unwanted)
additive constant: when |ωa|→∞ the Weierstrass elliptic function (without the shift) tends to
℘(z)→ (π/ωb)2 [sin−2(π z/ωb)− 1/3] for b %= a.

Before we return to the spin chain let us give another way to understand the shift. Let ϑ(z | τ)
denote the odd Jacobi theta function with nome eiπτ (see §B). We will need two variants of this
odd Jacobi theta function, which we denote by

(2.6) θ1(z) := ϑ
(
π z/L

∣∣ ω/L
)

, θ2(z) := ϑ
(
π z/ω

∣∣ −L/ω
)

,
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Ři,i+1(u) = t1/2
uT sp

i � (T sp

i )�1

tu� 1

q⇤ = (t⇤)1/2 = q

! ! e2

Kijzi = zjKij

(⇡/N)2

sin2(⇡z/N)

N ! 1

References

34

2.2. Limits and combs. The different limits of the normalised pair potential are

(2.3)

elliptic

nH(κ)
(
℘(z) +

η2

ω

)

contact

δdL(z),1

trigonometric

(π/L)2

sin2(π z/L)

nH(κ)κ2

sinh2(κ z)

hyperbolic

δ|z|,1
1

z2
rational

κ → ∞
(ω → 0)

z ∈ R, dL(z) ≥ 1

L → ∞

κ → 0
(ω → i ∞)

L → ∞ L → ∞

κ → ∞
(ω → 0)

z ∈ R, |z| ≥ 1

κ → 0
(ω → i ∞)

i π/κ ↔ L
& rescale

On the left δ denotes a Kronecker delta function, and in the top left dL(z) := minn∈Z |z + n L|
the distance function on ZL := Z/LZ. See also the plots in Figures 1 and 2 below.

The arrows in the right half of (2.3) admit inverses, as is well known in the area of integrable
quantum-many body systems of Calogero–Sutherland type, see e.g. [Sut04]. Indeed, one can
introduce a period a in a (suitable) function f via

(2.4) comba f(z) :=
∑

n∈Z

f(z + n a) .

Physically one can think of this as a ‘comb of particles’, that is, infinitely many copies of a
particle on a line, equally spaced at distance a of each other and moving in exactly the same
way. Starting with the rational case we obtain

(2.5)

elliptic

℘(z) +
η2

ω
℘(z) +

η1

L
trigonometric

(π/L)2

sin2(π z/L)

κ2

sinh2(κ z)
=

(π/ω)2

sin2(π z/ω)

hyperbolic

1

z2
rational

combL

combω

combL

combω

ω ↔ L

The functions at the intermediate stage are related by ‘Wick rotating’ L = ω1 ↔ ω2 = ω = iπ/κ.
Observe that the elliptic function depends on the route taken. By the Legendre relation the
difference is η1/L−η2/ω = 2πi/(Lω) = 2κ/L; in particular both elliptic functions have the same
limits when L → ∞ or ω → i∞ (κ → 0). Either shift removes an (irrelevant but unwanted)
additive constant: when |ωa|→∞ the Weierstrass elliptic function (without the shift) tends to
℘(z)→ (π/ωb)2 [sin−2(π z/ωb)− 1/3] for b %= a.

Before we return to the spin chain let us give another way to understand the shift. Let ϑ(z | τ)
denote the odd Jacobi theta function with nome eiπτ (see §B). We will need two variants of this
odd Jacobi theta function, which we denote by

(2.6) θ1(z) := ϑ
(
π z/L

∣∣ ω/L
)

, θ2(z) := ϑ
(
π z/ω

∣∣ −L/ω
)

,
6

V (zi, zj) =
zizj

(zi � zj)2
=

1

sin2 ⇡(i� j)/N

S[i,j] = Pij

E(µ)� E0 =
MX

m=1

"(µm) =
MX

m=1

µm(N � µm)

�̄m = µM�m+1 � 2(M �m)� 1

[H, H̄] = 0

g ! 1

qdeta L
sp

a (u; z) = tN/2
NY

i=1

u� zi
tu� zi

qdeta La(u; z) = tN/2
NY

i=1

u� zi
tu� zi

eH =
N\

i=1

ker(T sp

i � T pol

i )

Dr = er(Y)

eDr = er(eY)

� eD1 ⇠ H = � [N ]

N

X

i<j

V (zi, zj) S[i,j]

eLa(u)

e�(u) = e�0(u) + (q � 1) � e�(u) +O(q � 1)2

q⇤ = (t⇤)1/2 = q2

Pjk =
1

2

�
�a
j �

a
k + 1

�

V (z)

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}
[zi, zj] = [di, dj] = 0

Kij zi = zj Kij , (105)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(106)

 ! 1
�i,j+1 + �i,j�1

 ! 0

32

p = q2/�

�k ⌘ �̄k + 1

N � 2M + 1 � �1 � . . . � �M � 1

si ⌘ Ki,i+1

Weierstrass elliptic function with periods N and !

T pol

i := �t�1/2 tzi � zi+1

(zi � zi+1)
(1�Ki,i+1)

Rpol

i,i+1
:= t�1/2 T pol

i Ki,i+1

Ti zi Ti = zi+1 , Tj zi = zi Tj , if j 6= i, i+ 1
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hyperbolic rational

[Inozemtsev, 92]
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The spectrum of the Haldane-Shastry Hamiltonian


The model is Yangian symmetric (huge degeneracy) and the spectrum is encoded by motifs: 
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Q-DEFORMED HALDANE–SHASTRY, SPIN-RUIJSENAARS AND MACDONALD POLYNOMIALS 11

Recall that a partition ⁄ = (⁄1 Ø ⁄2 Ø · · · Ø 0) is a weakly decreasing sequence of
integers. The length ¸(⁄) of ⁄ is the number of nonzero parts of ⁄. Then2

⁄m = µM≠m+1 ≠ 2 (M ≠ m) , 1 Æ m Æ M = ¸(⁄) = ¸(µ) ,(1.27a)

gives a bijection between MN and the set of partitions with ⁄1 Æ N ≠ 2 ¸(⁄) + 1. If
”M := (M ≠ 1, M ≠ 2, · · · ) denotes the staircase partition of length M ≠ 1 and µ+ is the
partition obtained from µ œ MN by reversal then this relation takes the succinct form

⁄ + 2 ”¸(µ) = µ+ ,(1.27b)
where addition and scalar multiplication are pointwise. See also Figure 33.

µ1 µ2 · · · µM

1 3 · · · 2M≠1 N≠1

⁄̄M ⁄̄M≠1
· · · ⁄̄1

Figure 3. The correspondence (1.271.27) between a motif µ œ MN of length
M := ¸(µ) Ø 1 and a partition with ⁄1 Æ N ≠ 2 M + 1 and ¸(⁄) = M ,
given by ⁄m = ⁄̄m + 1, 1 Æ m Æ M . Here ⁄̄ characterises the extent by
which µ di�ers from the left-most filled motif of length M , as shown.

With this notation in place the (unnormalised) wave function of |µÍ is the following
q-deformation of (1.41.4). The component where all magnons sit on the left remains simple:

(1.28) �µ(1, · · · , M) = ÈÈ1, · · · , M |µÍ = evÊ
Â�⁄(µ)(z1, · · · , zM ) .

Here ⁄(µ) denotes the partition associated to µ via (1.271.27) and Â�⁄ is a symmetric poly-
nomial in the magnon coordinates:

(1.29) Â�⁄(z1, · · · , zM ) :=
A

MŸ

m<n

(q zm ≠ q≠1zn) (q≠1zm ≠ q zn)
B

P ı
⁄ (z1, · · · , zM ) .

Besides the ‘symmetric square’ of the q-Vandermonde product it features the special case
of a Macdonald polynomial (§2.1.22.1.2) with parameters pı = qı = q2. The dependence on
q2 reflects a sort of symmetry of the Hamiltonian under q ‘æ ≠q, see app. In the notation
of Macdonald [Mac95Mac95,Mac98Mac98] the parameters of P ı

⁄ are related as qı = tı – for – = 1/2:
P ı

⁄ is a quantum spherical zonal function. See also Figure 44 on p. 2626. cf [Nou96Nou96], . . . ,

Cher-Matsuo corresp

[Kasatani Pasquier,

Kasatani Takeyama,

Stokman]?

The other components are more involved than in the isotropic case (1.41.4). They are
obtained from (1.291.29) by moving the magnons via q-deformed permutations (the Hecke
algebra, §2.1.12.1.1) before evaluation. Namely, let si be the permutation zi ¡ zi+1 and set in terms of a, b, cf §2.12.1?

(1.30) T pol
i := f≠1

i,i+1(si ≠ gi,i+1) , fi,i+1 := f(zi/zi+1) , gi,i+1 := g(zi/zi+1) ,

2 Note that ⁄ defined in (1.271.27) is the conjugate of the partition associated to µ in [Ugl95Ugl95] follow-
ing [JKK+95aJKK+95a]. See §3.2.33.2.3 for the reason of the conjugation.

M magnon motif

“vacuum” M magnon motif

S[i,j] = Pij

E(µ) =
MX

m=1

"(µm) =
MX

m=1

µm(N � µm)

�̄m = µM�m+1 � 2(M �m)� 1
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Q-DEFORMED HALDANE–SHASTRY, SPIN-RUIJSENAARS AND MACDONALD POLYNOMIALS 8

1.1.2. Motifs and exact energy spectrum. The spectrum is conveniently described in
terms of the following patterns [HHT+92HHT+92]. For a spin chain with N spin-1/2 sites define

(1.18) MN :=
)
(1 Æ µ1 < · · · < µM Æ N ≠ 1)

-- µm+1 > µm + 1
*

.

An element µ œ MN , called a motif (though ‘N -motif’ would be more precise), thus is a
sequence in {1, · · · , N ≠1} increasing with steps of at least two. Denote the empty motif
by 0. For example, M2 = {0, (1)}, M3 = {0, (1), (2)} and M4 = {0, (1), (2), (3), (1, 3)}.
Let us define the length ¸(µ) of µ to be the number of parts µm. The motif conditio
thatn implies 0 Æ ¸(µ) Æ ÂN/2Ê for any µ œ MN . We will further write

|µ| :=
¸(µ)ÿ

m=1
µm .

Conditioning on whether N ≠ 1 œ µ yields a recursion MN
≥= MN≠1  MN≠2 (disjoint

union), so the number of motifs forms a Fibonacci sequence with o�set one in the system
size: #MN = FibN+1.

As we will demonstrate in §33 (see especially §3.2.33.2.3, 3.33.3, 3.53.5) these motifs label the
eigenspaces of the Hamiltonians,

(1.19) Hsp =
n

µ œ MN

Hsp,µ ,

with (strictly) additive q-momentum and energy eigenvalues

(1.20)

G |Hsp,µ = ei p(µ) , p(µ) := 2fi

N
|µ| mod 2fi ,

H |Hsp,µ = E(µ) =
Mÿ

m=1
Á(µm) ,

H̄ |Hsp,µ = Ē(µ) =
Mÿ

m=1
Á̄(µm) .

Note that the µm can be seen as the ‘Bethe quantum numbers’, or, up to a factor,
quasimomenta pm = 2fiµm/N . The energy is strictly additive: there is no interaction
(bound-state) energy. The physical picture is that of a gas of anyons: free quasiparticles
that interact through their statistics only, just as for the Haldane–Shastry model [Hal91bHal91b,
Hal91aHal91a].

The chiral quasienergy in (1.201.20) is given by Uglov’s dispersion relation [Ugl95Ugl95]

(1.21) XMmaÁ(n) = 1
q ≠ q≠1

3 q≠n

q≠N
[n] ≠ n

N
[N ]

4
.

As q æ 1 we retrieve the quadratic dispersion (1.31.3), as can be seen by writing q = e“

and expanding the part in parentheses to second order in “.
The antichiral dispersion relation di�ers from (1.211.21) by inverting q or, equivalently,

reflecting the motif:

(1.22) XMmaÁ̄(n) = 1
q ≠ q≠1

3 qn

qN
[n] ≠ n

N
[N ]

4
= Á(n)

--
q‘æq≠1 = Á(N ≠ n) .

[Haldane, Ha, Talstra, Bernard, Pasquier, 92]

[Bernard, Gaudin, Haldane, Pasquier, 93]

each motif corresponds to a Yangian representation

bound states in the XXX model evolve into descendants of Haldane-Shastry highest weight 

states when 
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The hyperbolic limit of the Inozemtsev model 


the nice algebraic structure (Yangian symmetry) is lost for the elliptic deformation, but 

some interesting features are retrieved for infinite length
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the potential becomes

and it can be obtained from the Haldane-Shastry potential by the analytical continuation

higher Hamiltonians obtained by the same analytical continuation

up to exponential corrections of order            the spectrum is obtained from the asymptotic 

Bethe Ansatz  equations  
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used to match the first few orders of the long-range deformation of the Heisenberg model 

appearing in AdS/CFT [D.S., Staudacher, 03, D.S. 12]



The hyperbolic limit of the Inozemtsev model 


asymptotic Bethe Ansatz  equations:  
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The dynamical Dunkl operators Dk can be diagonalised

Dk ! nk + �(L+ 1� 2k) , (1.9)

where nk are integer. In the freezing limit, the dynamics Dunkl operators Dk reduce to the

statical ones dk, whose eigenvalues ✓k are constants (i.e. representation independent) [2]

dk ! ✓k = L+ 1� 2k . (1.10)

Derive the Bethe Ansatz-like equations for Haldane-Shastry.

The integrable structure of the Inozemtsev model, at large length L can be obtained

by analytically continuing ! = e
2⇡i/L ! t = e

�2
. In the large L limit the spectrum is

described (up to exponential corrections) by the asymptotic Bethe ansatz equations,
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CA , (1.11)

where �(pj , pk) is the phase shift for the scattering of two magnons of momenta pj and pk

and M is the number of magnons. Inozemtsev computed the phase shift for the scattering
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The last term in the formula above insures the desired quasi-periodicity properties, '(p+

2⇡) = '(p) and '(p+ 2i) = '(p)� i

It is easy to check that in the limit  ! 1, the magnon energy and the phase shift

reduce to the corresponding Heisenberg values, in particular '(p) ! (1/2) cot(p/2). In the

opposite limit  ! 0 the hyperbolic cotangent coth ⇡p
2 becomes simply a signum function,

except for the pole at p = 0 (the region with p ⇠  should be treated with special care).

Therefore for p 2 (0, 2⇡)

'(p) ' ⇡ � p

2
. (1.16)

The Bethe equations become in this limit

pjL = lim
!0
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✓(pj � pl) + 2⇡Ij . (1.17)

if the integer mode numbers are ordered such that Ij � Ij+1 � 1 then the solutions of the

Bethe equations above are given by pj = 2⇡mj/L, in terms of motifs, or collections of

integers m1, . . . ,mM with mj+1 �mj � 2.

An important question is what happens to the bound states which are known to exist

in the Heisenberg limit  ! 1 when  is reduced continuously to 0. The situation was

analysed for two-magnon bound state by Dittrich and Inozemtsev [3] and more recently in

[4]. Their conclusion is that there are two types of bound states at an arbitrary value of ,

and that the transition between the two different type of bound states happens at a value

P = Pcr() of the total momentum P = p1 + p2. For P < Pcr the bound states are of type

I and for P > Pcr they are of type II. For Heisenberg Pcr(1) = ⇡ so that all the bound

states are of type I.

Let us remind the expression of the two-magnon wave function of the Inozemtsev model

in the large L limit,

 (n1, n2) = e
ip1n1+ip2n2 ('(p1)� '(p2)� i coth(n1 � n2)) (1.18)

+e
ip1n2+ip2n1 ('(p1)� '(p2) + i coth(n1 � n2)) .

The condition for the bound states is given by

'(p2)� '(p1) = i . (1.19)

Given the quasi-periodicity of '(p), this equation is automatically satisfied if p1 = p2+2i.

Together with the condition that p1+p2 = P to be real this gives p1,2 =
P
2 ±i. Substituting

this in (1.18) one sees that for these values the wave function is identically zero. The two

possibilities which are left are the following:

Type I bound states: the two magnons have the same real part of the momentum

p1 =
P

2
+ iq , p =

P

2
� iq . (1.20)
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The last term in the formula above insures the desired quasi-periodicity properties, '(p+
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if the integer mode numbers are ordered such that Ij � Ij+1 � 1 then the solutions of the

Bethe equations above are given by pj = 2⇡mj/L, in terms of motifs, or collections of

integers m1, . . . ,mM with mj+1 �mj � 2.

An important question is what happens to the bound states which are known to exist

in the Heisenberg limit  ! 1 when  is reduced continuously to 0. The situation was

analysed for two-magnon bound state by Dittrich and Inozemtsev [3] and more recently in

[4]. Their conclusion is that there are two types of bound states at an arbitrary value of ,

and that the transition between the two different type of bound states happens at a value

P = Pcr() of the total momentum P = p1 + p2. For P < Pcr the bound states are of type

I and for P > Pcr they are of type II. For Heisenberg Pcr(1) = ⇡ so that all the bound

states are of type I.

Let us remind the expression of the two-magnon wave function of the Inozemtsev model

in the large L limit,
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The condition for the bound states is given by
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Given the quasi-periodicity of '(p), this equation is automatically satisfied if p1 = p2+2i.

Together with the condition that p1+p2 = P to be real this gives p1,2 =
P
2 ±i. Substituting

this in (1.18) one sees that for these values the wave function is identically zero. The two
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[Inozemtsev, 92]



The hyperbolic limit of the Inozemtsev model 


asymptotic Bethe Ansatz  equations:  
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the rapidity           is quasi-periodic

The dynamical Dunkl operators Dk can be diagonalised

Dk ! nk + �(L+ 1� 2k) , (1.9)

where nk are integer. In the freezing limit, the dynamics Dunkl operators Dk reduce to the

statical ones dk, whose eigenvalues ✓k are constants (i.e. representation independent) [2]

dk ! ✓k = L+ 1� 2k . (1.10)

Derive the Bethe Ansatz-like equations for Haldane-Shastry.

The integrable structure of the Inozemtsev model, at large length L can be obtained

by analytically continuing ! = e
2⇡i/L ! t = e

�2
. In the large L limit the spectrum is

described (up to exponential corrections) by the asymptotic Bethe ansatz equations,
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0
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1

CA , (1.11)

where �(pj , pk) is the phase shift for the scattering of two magnons of momenta pj and pk

and M is the number of magnons. Inozemtsev computed the phase shift for the scattering

of two magnons,
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as well as the magnon energy,
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where P1(z) = d⇣1(z)/dz denotes the Weierstrass elliptic functions of periods 1 and i⇡/,

and the quasi-periodic zeta function is odd, ⇣1(�z) = �⇣1(z). The function '(p) is also

quasi-periodic, '(p + 2⇡) = '(p) and '(p + 2i) = '(p) � i. Notice that for real p the

function '(p) is real, '(⇡) = 0 and '(p) = 1/p for small enough p.

The rapidity (1.12) can be written as an infinite sum in two different ways
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which is well adapted for the Heisenberg limit t ! 0, or in the dual representation adapted

for the Haldane-Shastry limit  ! 0,
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the XXX model has bound states; when     diminishes their  rapidities  approach the real axis   

The last term in the formula above insures the desired quasi-periodicity properties, '(p+

2⇡) = '(p) and '(p+ 2i) = '(p)� i

It is easy to check that in the limit  ! 1, the magnon energy and the phase shift

reduce to the corresponding Heisenberg values, in particular '(p) ! (1/2) cot(p/2). In the

opposite limit  ! 0 the hyperbolic cotangent coth ⇡p
2 becomes simply a signum function,

except for the pole at p = 0 (the region with p ⇠  should be treated with special care).

Therefore for p 2 (0, 2⇡)
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The Bethe equations become in this limit
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if the integer mode numbers are ordered such that Ij � Ij+1 � 1 then the solutions of the

Bethe equations above are given by pj = 2⇡mj/L, in terms of motifs, or collections of

integers m1, . . . ,mM with mj+1 �mj � 2.

An important question is what happens to the bound states which are known to exist

in the Heisenberg limit  ! 1 when  is reduced continuously to 0. The situation was

analysed for two-magnon bound state by Dittrich and Inozemtsev [3] and more recently in

[4]. Their conclusion is that there are two types of bound states at an arbitrary value of ,

and that the transition between the two different type of bound states happens at a value

P = Pcr() of the total momentum P = p1 + p2. For P < Pcr the bound states are of type

I and for P > Pcr they are of type II. For Heisenberg Pcr(1) = ⇡ so that all the bound

states are of type I.

Let us remind the expression of the two-magnon wave function of the Inozemtsev model

in the large L limit,

 (n1, n2) = e
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+e
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The condition for the bound states is given by

'(p2)� '(p1) = i . (1.19)

Given the quasi-periodicity of '(p), this equation is automatically satisfied if p1 = p2+2i.

Together with the condition that p1+p2 = P to be real this gives p1,2 =
P
2 ±i. Substituting

this in (1.18) one sees that for these values the wave function is identically zero. The two

possibilities which are left are the following:

Type I bound states: the two magnons have the same real part of the momentum
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2
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P

2
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M=2 example: two types of bound states [Dittrich, Inozemtsev, 96; Klabbers, Lamers, 20]

type I bound states: 

The last term in the formula above insures the desired quasi-periodicity properties, '(p+

2⇡) = '(p) and '(p+ 2i) = '(p)� i

It is easy to check that in the limit  ! 1, the magnon energy and the phase shift

reduce to the corresponding Heisenberg values, in particular '(p) ! (1/2) cot(p/2). In the

opposite limit  ! 0 the hyperbolic cotangent coth ⇡p
2 becomes simply a signum function,

except for the pole at p = 0 (the region with p ⇠  should be treated with special care).

Therefore for p 2 (0, 2⇡)

'(p) ' ⇡ � p

2
. (1.16)

The Bethe equations become in this limit

pjL = lim
!0

1

i

X

j 6=l

ln
pj � pl � 2i

pj � pl + 2i
+ 2⇡Ij = 2⇡

X

j 6=l

✓(pj � pl) + 2⇡Ij . (1.17)

if the integer mode numbers are ordered such that Ij � Ij+1 � 1 then the solutions of the

Bethe equations above are given by pj = 2⇡mj/L, in terms of motifs, or collections of

integers m1, . . . ,mM with mj+1 �mj � 2.

An important question is what happens to the bound states which are known to exist

in the Heisenberg limit  ! 1 when  is reduced continuously to 0. The situation was

analysed for two-magnon bound state by Dittrich and Inozemtsev [3] and more recently in

[4]. Their conclusion is that there are two types of bound states at an arbitrary value of ,

and that the transition between the two different type of bound states happens at a value

P = Pcr() of the total momentum P = p1 + p2. For P < Pcr the bound states are of type

I and for P > Pcr they are of type II. For Heisenberg Pcr(1) = ⇡ so that all the bound

states are of type I.

Let us remind the expression of the two-magnon wave function of the Inozemtsev model

in the large L limit,

 (n1, n2) = e
ip1n1+ip2n2 ('(p1)� '(p2)� i coth(n1 � n2)) (1.18)

+e
ip1n2+ip2n1 ('(p1)� '(p2) + i coth(n1 � n2)) .

The condition for the bound states is given by

'(p2)� '(p1) = i . (1.19)

Given the quasi-periodicity of '(p), this equation is automatically satisfied if p1 = p2+2i.

Together with the condition that p1+p2 = P to be real this gives p1,2 =
P
2 ±i. Substituting

this in (1.18) one sees that for these values the wave function is identically zero. The two

possibilities which are left are the following:

Type I bound states: the two magnons have the same real part of the momentum

p1 =
P

2
+ iq , p2 =

P

2
� iq . (1.20)

– 4 –type II bound states: 

By quasi-periodicity it is sufficient to take q < a. We define the function

FP (q) =
1

i
('(P/2 + iq)� '(P/2� iq)) + 1 , (1.21)

such that the bound state condition is FP (q) = 0. At  = 1 this condition is satisfied by

e
�q = cosP/2, and it has a real solution for any P 2 (�⇡,⇡). As mentioned previously,

FP () = 0, and FP (0) = 1, therefore to have an extra non-trivial zero for 0 < q <  it is

sufficient to have

F
0
P () = '

0(P/2 + i) + '
0(P/2� i) > 0 , (1.22)

The function '
0(p) is doubly periodic and even and it is given by

'
0(P/2 + i) =



2

1X

n=�1

1

sinh2
�
iP
4 + (n+ 1/2)

� . (1.23)

At P = 0 this quantity is obviously positive, while at P = ⇡ it is negative,

'
0(⇡/2 + i) = �

1X

n=�1



cosh2 ((n+ 1/2))
. (1.24)

When  ! 0, '0(⇡/2 + i) ! �1. The critical value Pcr is defined by '
0(Pcr + i) = 0.

Numerically it looks like at small  the critical momentum is Pcr ' 5.

Type II bound states: the two magnons have momenta with different real parts and

the imaginary part corresponds to the half period

p1 = p̃1 + i , p2 = p̃2 � i . (1.25)

Taking into account the properties of the Weierstrass zeta function, one can check that (see

[3] for details)

'(p± i) = �(p)⌥ i

2
(1.26)

where �(p) ⌘ �
Ino(p)/2 is real if p is real. The bound state condition becomes now

�(p̃1) = �(p̃2) , (1.27)

therefore the function �(p) should be non-monotonic.
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at small 

The last term in the formula above insures the desired quasi-periodicity properties, '(p+

2⇡) = '(p) and '(p+ 2i) = '(p)� i

It is easy to check that in the limit  ! 1, the magnon energy and the phase shift

reduce to the corresponding Heisenberg values, in particular '(p) ! (1/2) cot(p/2). In the

opposite limit  ! 0 the hyperbolic cotangent coth ⇡p
2 becomes simply a signum function,

except for the pole at p = 0 (the region with p ⇠  should be treated with special care).

Therefore for p 2 (0, 2⇡)

'(p) ' ⇡ � p

2
. (1.16)

The Bethe equations become in this limit

pjL = lim
!0

1

i

X

j 6=l

ln
pj � pl � 2i

pj � pl + 2i
+ 2⇡Ij = 2⇡

X

j 6=l

✓(pj � pl) + 2⇡Ij . (1.17)

if the integer mode numbers are ordered such that Ij � Ij+1 � 1 then the solutions of the

Bethe equations above are given by pj = 2⇡mj/L, in terms of motifs, or collections of

integers m1, . . . ,mM with mj+1 �mj � 2.

An important question is what happens to the bound states which are known to exist

in the Heisenberg limit  ! 1 when  is reduced continuously to 0. The situation was

analysed for two-magnon bound state by Dittrich and Inozemtsev [3] and more recently in

[4]. Their conclusion is that there are two types of bound states at an arbitrary value of ,

and that the transition between the two different type of bound states happens at a value

P = Pcr() of the total momentum P = p1 + p2. For P < Pcr the bound states are of type

I and for P > Pcr they are of type II. For Heisenberg Pcr(1) = ⇡ so that all the bound

states are of type I.

Let us remind the expression of the two-magnon wave function of the Inozemtsev model

in the large L limit,

 (n1, n2) = e
ip1n1+ip2n2 ('(p1)� '(p2)� i coth(n1 � n2)) (1.18)

+e
ip1n2+ip2n1 ('(p1)� '(p2) + i coth(n1 � n2)) .

The condition for the bound states is given by

'(p2)� '(p1) = i . (1.19)

Given the quasi-periodicity of '(p), this equation is automatically satisfied if p1 = p2+2i.

Together with the condition that p1+p2 = P to be real this gives p1,2 =
P
2 ±i. Substituting

this in (1.18) one sees that for these values the wave function is identically zero. The two

possibilities which are left are the following:

Type I bound states: the two magnons have the same real part of the momentum

p1 =
P

2
+ iq , p =

P

2
� iq . (1.20)
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Together with the condition that p1+p2 = P to be real this gives p1,2 =
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ev! S⌫(z↵̄) = jµ ev! S⌫0(z↵), (118)

buk = const
X

↵

Y

j<k2↵

(zj � zk)
2
Y

j2↵

zj S�(z↵) S⌫0(z↵) |↵ii . (119) wedgepol

ev!
�
pk(z↵) + pk(z↵̄)

�
= N�n,0, k < N , (120)

S�(z↵) S⌫0(z↵) = S�+⌫0(z↵) + lower

⌫ = ;

⌫ 6= ;

buk ! buek ⌘ uek1 ^ . . . ^ uekM . (121)

ekj ⌘ k
(1)

j +
M + 1

2
, j = 1, . . . ,M . (122)

Dmax = 2M + 1 + ⌫ 0
1
+ �1 . (123)

 (z)

q ' 
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transition at



The solution of the Haldane Shastry Hamiltonian


to solve the Haldane-Shastry model it is useful to solve first the spin 

Calogero-Sutherland model Q-DEFORMED HALDANE–SHASTRY, SPIN-RUIJSENAARS AND MACDONALD POLYNOMIALS 3

matrices. The (isotropic) Haldane–Shastry spin chain has Hamiltonian [Hal88Hal88,Sha88Sha88]

(1.1) Hhs = evÊ
ÂHhs , ÂHhs = ≠

Nÿ

i<j

evÊ
zi zj

(zi ≠ zj)2 (1 ≠ Pij) .

The overall sign ensures that (1.11.1) is positive: (≠)Hhs is (anti)ferromagnetic. Let Ê :=
e2fii/N œ C◊ := C \ {0} be the primitive Nth root of unity. Following [Ugl95Ugl95] we write

(1.2) evÊ : zj ‘≠æ Êj = e2fiij/N

for the map evaluating z1, · · · , zN at the corresponding Nth roots of unity. On shell, i.e.
after evaluation, we can think of the zj as the position of site j of the chain, viewed as
being embedded in the unit circle S1 ™ C. We will refer to the zj as coordinates.

The many remarkable properties of this model include a particularly simple spectrum.
The energy and momentum are additive, with a quadratic dispersion relation:

(1.3) XMmaÁhs(n) = 1
2 n (N ≠ n) , phs(n) = 2fi

N
n .

The spectrum is highly degenerate [Hal88Hal88], partially [FGL15FGL15] due to an infinite-
dimensional symmetry algebra present already at for finite size [HHT+92HHT+92, BGHP93BGHP93].
There is one highest-weight eigenvector for each partition ⁄ with ⁄1 Æ N ≠ 2 ¸(⁄) + 1
(see §1.1.31.1.3), with wave function [Hal91bHal91b,BGHP93BGHP93]

(1.4) �(i1, · · · , iM ) = evÊ

MŸ

m<n

(zim ≠ zin)2 P (1/2)
⁄ (zi1 , · · · , ziM ) .

Here P (–)
⁄ is a Jack polynomial with parameter – = g≠1, where g (g ≠1) is the Calogero–

Sutherland coupling (§A.1A.1). The special case P (1/2)
⁄ is a zonal spherical polynomial. cf [Cherednik, Matsuo](To

compare: – = 1 gives Schur and – = 2 zonal polynomials; cf. Figure 44 on p. 2626.)
Refer to q = 1 sects/app. incl §A.2A.2

In this work we extend all of this to the partially isotropic case, building on [BGHP93BGHP93,
Ugl95Ugl95,Lam18Lam18]. do we have new results

for q = 1 too?

1.1.1. Hamiltonians. Fix an anisotropy parameter q œ C◊. The Hamiltonian of the
(chiral) q-deformed Haldane–Shastry spin chain [Ugl95Ugl95] can be expressed in a long-range
pairwise form too [Lam18Lam18]:

(1.5) H = ≠ [N ]
N

Nÿ

i<j

evÊ V (zi, zj) S[i,j] .

Appendix . . . contains a comparison with the conventions from [Ugl95Ugl95, Lam18Lam18]. The
prefactor involves the q-analogue of N œ N,

[N ] := qN ≠ q≠N

q ≠ q≠1 = qN≠1 + qN≠3 + · · · + q3≠N + q1≠N .

Next, the potential in (1.51.5) reads

(1.6) V (zi, zj) = zi zj

(q zi ≠ q≠1zj)(q≠1zi ≠ q zj) .

A geometric way to think about this quantity is shown in Figure 11.

�i,j+1 + �i,j�1

 ! 0

H� =
NX

j=1

(zj@j)
2 +

X

j 6=k

�(� + Pjk)
zjzk

(zj � zk)(zk � zj)

dj = zj@j + �
X

k>j

zj
zj � zk

Kjk � �
X

k<j

zk
zk � zj

Kjk

� ! 1
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when                the positions of the particles freeze at their equilibrium positions 

and the Hamiltonian becomes that of Haldane-Shastry [Polychronakos, 93]

the model is solved using the degenerate double affine Hecke algebra (DDAHA) generated by

V (zi, zj) =
zizj

(zi � zj)2
=

1

sin2 ⇡(i� j)/N

S[i,j] = Pij

E(µ)� E0 =
MX

m=1

"(µm) =
MX

m=1

µm(N � µm)

�̄m = µM�m+1 � 2(M �m)� 1

[H, H̄] = 0

g ! 1

qdeta L
sp

a (u; z) = tN/2
NY

i=1

u� zi
tu� zi

qdeta La(u; z) = tN/2
NY

i=1

u� zi
tu� zi

eH =
N\

i=1

ker(T sp

i � T pol

i )

Dr = er(Y)

eDr = er(eY)

� eD1 ⇠ H = � [N ]

N

X

i<j

V (zi, zj) S[i,j]

eLa(u)

e�(u) = e�0(u) + (q � 1) � e�(u) +O(q � 1)2

q⇤ = (t⇤)1/2 = q2

Pjk =
1

2

�
�a
j �

a
k + 1

�

V (z)

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}

[zi, zj] = [di, dj] = 0

Kij zi = zj Kij , (105)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(106)

 ! 1
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Dunkl operators:
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coordinate

permutation

[Bernard, Gaudin, Haldane, Pasquier, 93]

Kij zi = zj Kij , (105)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(106)
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the spin Calogero-Sutherland model:

is diagonalised on functions completely (anti)symmetric by permutations of spins and 
coordinates

Any vector in the M -particle sector HM can be written via the coordinate basis as

(1.7)
N∑

i1<···<iM

Ψ(i1, · · · , iM ) |i1, · · · , iM 〉〉 , |i1, · · · , iM 〉〉 := σ−
i1

· · · σ−
iM

|↑ · · · ↑〉 .

Thus, |∅〉〉 = |↑ · · · ↑〉 ∈ H0 is the pseudovacuum, |i〉〉 ∈ H1 has a ↓ at site i, and so on. (This
notation is adapted from [HL18].) By Yangian symmetry it suffices to find the vectors in each
M -particle sector that have Yangian highest weight in that they are annihilated by the two spin
raising operators S+ and Q+. Recall that a partition ν = (ν1 ≥ ν2 ≥ · · · ≥ 0) is a weakly
decreasing sequence of integers, with length #(ν) the number of nonzero parts. Partitions with
ν1 ≤ N − 2 #(ν) + 1 are equivalent to motifs (§1.2.4). For each such partition there is one
Yangian highest-weight Hhs-eigenvector. It has M = #(ν) excited spins, with (unnormalised)
wave function [Hal91b,BGHP93]

(1.8)

Ψhs
ν (i1, · · · , iM ) = evω Ψ̃hs

ν (zi1 , · · · , ziM ) ,

Ψ̃hs
ν (z1, · · · , zM ) =

M∏

m<n

(zm − zn)2 P (1/2)
ν (z1, · · · , zM ) .

Here P (α)
ν is a Jack polynomial [Jac70] with parameter α = k−1 related to the coupling k (k −1)

of the (trigonometric quantum) Calogero–Sutherland model [Sut71, Sut72]. These symmetric
polynomials are studied extensively in the literature, see e.g. [Sta89,Mac95], play an important
role in [Mat92], and appear for the fractional quantum Hall effect [KP07, BH08]. If α = 1/2,
as in (1.8), one gets zonal spherical polynomials, see e.g. §VII.6 in [Mac95]. (For comparison:
α = 1 gives Schur and α = 2 zonal polynomials; cf. Figure 5 on p. 33.) Note that #(ν) = M
means that νM ≥ 1 and νM+1 = 0, so ν = ν̄ + (1M ) for some partition ν̄ with #(ν̄) ≤ M . Jack
polynomials have the property

(1.9) P (α)
ν (z1, · · · , zM ) = z1 · · · zM P (α)

ν̄ (z1, · · · , zM ) , ν = ν̄ + (1M ) .

In the literature on the Haldane–Shastry model this relation is often used to extract an explicit
centre-of-mass factor z1 · · · zM and end up with a polynomial associated to ν̄ as on the right-
hand side of (1.9). This factor (or, equivalently, the condition #(ν) = M) ensures that the
resulting eigenvector has Yangian highest-weight on shell [BPS95].

The many special properties of the Haldane–Shastry spin chain naturally arise [BGHP93]
from a connection with a dynamical model: the spin-version of the Calogero–Sutherland model,
with N spin-1/2 particles moving on a circle while interacting in pairs, governed by the Hamilto-
nian [HH92,MP93,HW93] (see also [Che94b,Res17])

(1.10)

H̃nr =
1

2

N∑

i=1

(
zi ∂zi

)2
+

N∑

i<j

−zi zj

(zi − zj)2
k (k − Pij)

= −
1

2

N∑

i=1

∂2
xi

+
N∑

i<j

k (k − Pij)

4 sin2[(xi − xj)/2]
, zj = ei xj .

In the second line we switched to additive notation. This model already has Yangian sym-
metry [BGHP93], and was studied in [Ugl96, TU97, Ugl98]. As foreseen in [Sha88] the spin
chain emerges through freezing [Pol93, SS93, BGHP93, TH95]: if one carefully lets k → ∞ the
kinetic energy is negligible compared to the potential energy and the particles ‘freeze’ at their
equally spaced (static) classical equilibrium positions evω zj to yield (1.1).

1.2. q-deformed Haldane–Shastry. Our goal is to extend all of the preceding to the partially
isotropic (xxz-like) case, building on [BGHP93,TH95,Ugl95,Lam18]. This generalisation comes
with an anisotropy parameter q ∈ C \ {−1, 0, 1}, which particular allows us to study the crystal
limit q → 0, ∞ (§1.2.2). This is relevant for the isotropic (q = 1) Haldane–Shastry model (1.1)
too: the q-deformation does not change the representation-theoretic content when q is real
(corresponding to the massive regime ∆ = (q + q−1)/2 ≥ 1 for the Heisenberg spin chain). The
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on this space of functions we can define a projection  

Kij zi = zj Kij , (105)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(106)
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algebraic structure of the spin Calogero-Sutherland model:
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the long range nature of the interaction is contained in the 
dynamical inhomogeneities 

The resulting Hamiltonian can be then diagonalised on the space of antisymmetric func-
tions Fn,N on which Pij = �Kij , with Kij the coordinate permutation. The action on
antisymmetric functions of H�,n can be the reduced to the action on the coordinates,

H�,n =
NX

j=1

D
2

j + �

NX

j=1

(2j �N � 1)Dj + 2�
X

j<k

✓jk(Dj �Dk � ✓kj(Kjk � 1)) +
�
2
N(N2 � 1)

12
,

(1.5)

where Dj = zj@j and ✓jk = zj/zjk. This can be in turn reinterpreted as

H�,n = �
2

NX

j=1

d
2

j (�) , (1.6)

with dj(�) the Dunkl operators

dj = �
�1

Dj +
N + 1

2
� j +

X

j<k

✓kj(Kjk � 1)�
X

j>k

✓jk(Kjk � 1) . (1.7)

1.1 Wedges and the Uglov mapping

Uglov [1] proposed to diagonalise H�,n on the skew symmetric basis obtained in the following
way: for each particle one takes a basis vector 1

uk = z
k ⌦ vk , k = k + nk , k 2 {0, . . . , n� 1} and k, k 2 Z (1.8)

and vk a basis vector for su(n) in the fundamental representation. From these vectors one
builds the basis of Fn,N by taking the skew-symmetric vectors, or wedges

ûk = uk1 ^ . . . ^ ukN =
X

�2SN

sgn(�) uk�(1)
⌦ . . .⌦ uk�(N)

(1.9)

where we have the ordered sequence k = (k1, . . . , kN ) with k1 > k2 > . . . > kN . If two k’s
are equal the wedge is zero by antisymmetry. As an example, for N = 2 one has

u2 ^ u0 ! (z1 � z2) |00i (1.10)

u3 ^ u0 ! z1 |10i � z2 |01i .

On this basis, the Hamiltonian (1.5) acts triangularly,

H�,n ûk = Ek ûk + 2�
X

1i<jN

hij ûk (1.11)

with

Ek =
NX

j=1

k̄
2

j + �

NX

j=1

(N + 1� 2j) k̄j + �
2
N(N2 � 1)

12
(1.12)

1
Our convention is such that the numbers k1, . . . , kN can be rendered all positive by an appropriate

shift.

– 2 –

the integrals of motion are generated by the quantum determinant

The algebraic structure of the Haldane Shastry 
Hamiltonian


and they commute with the elements of                 (Yangian symmetry)
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✓
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sinh2 z
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1

3

◆
.

! = e2⇡i/N ! t = e�2



i⇡/

e�N

qDet Ta(u) = ⇡F

 
NY
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u+ di + i�

u+ di
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exp (ipjN) = exp

0

B@i
MX

k=1
k 6=j

�(pj, pk)

1

CA , (107)

eipjN =
Y

k;k 6=j

'(pj)� '(pk) + i

'(pj)� '(pk)� i
(108)

'(p) =
1

2
cot

p

2
+

1

2

X

n>0

h
cot(

p

2
� in) + cot(

p

2
+ in)

i
(109)

=
1

2
cot

p

2
+ 2

X

n>0

tn sin p

(1� tn)2 + 4tn sin2(p/2)

 large

 small

pjN = lim
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1

i

X
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ln
pj � pl � 2i

pj � pl + 2i
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X

j 6=l
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pj = 2⇡mj/N

,

Ta(u) ⌘ ⇡F (bTa(u)) , bTa(u) =
NY
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✓
1 +

i�Pja

u+ dj

◆
, (111) mmCS
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[Bernard, Gaudin, Haldane, Pasquier, 93; Uglov, 97]

ev! S⌫(z↵̄) = jµ ev! S⌫0(z↵), (118)

buk = const
X

↵

Y

j<k2↵

(zj � zk)
2
Y

j2↵

zj S�(z↵) S⌫0(z↵) |↵ii . (119) wedgepol

ev!
�
pk(z↵) + pk(z↵̄)

�
= N�n,0, k < N , (120)

S�(z↵) S⌫0(z↵) = S�+⌫0(z↵) + lower

⌫ = ;

⌫ 6= ;

buk ! buek ⌘ uek1 ^ . . . ^ uekM . (121)

ekj ⌘ k
(1)

j +
M + 1

2
, j = 1, . . . ,M . (122)

Dmax = 2M + 1 + ⌫ 0
1
+ �1 . (123)

 (z)
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Basis of antisymmetric states (wedges)


su(n) chain in fundamental representation: at each site we use the basis

[Uglov, 97]

coordinate su(n) spin
...

u2n = z2 |0i ...
...

un = z |0i un+1 = z |1i · · · u2n�1 = z |n� 1i
u0 = |0i u1 = |1i · · · un�1 = |n� 1i

u�n = z�1|0i u1�n = z�1|1i · · · u�1 = z�1|n� 1i
...

...
...
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so that
...

u2r = z
2 |0Í

...
...

ur = z |0Í ur+1 = z |1Í · · · u2r≠1 = z |r ≠ 1Í

u0 = |0Í u1 = |1Í · · · ur≠1 = |r ≠ 1Í

u≠r = z
≠1|0Í u1≠n = z

≠1|1Í · · · u≠1 = z
≠1|r ≠ 1Í

...
...

...

From these vectors one builds a basis of Fr,N by applying the total antisymmetriser

A
tot

N ©
ÿ

‡œSN

sgn(‡) K‡ P‡ , (Atot

N )2 = N ! A
tot

N , (1.10)

to N -fold tensor products in order to get the skew-symmetric vectors, or wedges,

ûk © uk1 · . . . · ukN ©
ÿ

‡œSN

sgn(‡) uk‡(1) ¢ . . . ¢ uk‡(N) . (1.11)

Here we may assume that k = (k1, . . . , kN ) is ordered as k1 > . . . > kN by antisymmetry.
In particular ûk = 0 if any two kj are equal. Finally, z in the ith factor of a wedge or
tensor product may be interpreted as zi. For example, when N = r = 2 we have

û(20) = (z |0Í) · |0Í = (z1 ≠ z2) |00Í ,

û(30) = (z |1Í) · |0Í = z1 |10Í ≠ z2 |01Í

= 1
2(z1 ≠ z2)

!
|10Í + |01Í

"
+ 1

2(z1 + z2)
!
|10Í ≠ |01Í

"
.

[moved the discussion about the scalar case here – does not need the Hamiltonian]
It is instructive to consider the spinless case (r = 1). Here kj = k̄j , we may ignore the
(overall) spin vector |0 · · · 0Í, and wedges are simply antisymmetrisations of plane waves
z

k1
1

· · · z
kN
N

= ei(k1 x1+···+kN xN ):

r = 1: uk1 · · · · · ukN = ak(z) ©
ÿ

‡œSN

sgn(‡) z
k‡(1)
1

· · · z
k‡(N)
N

= det
i,j

z
kj

i
. (1.12)

The strictness k1 > · · · > kN means that k = ⁄ + ”N where ”N © (N ≠ 1, N ≠ 2, . . . , 1, 0)
is the staircase partition, and ⁄ = (⁄1 Ø ⁄2 Ø · · · ) is a partition. If ⁄ = 0 then

a”N(z) = V (z) ©
NŸ

i<j

(zi ≠ zj) (1.13)

is the Vandermonde polynomial. In general, by antisymmetry (1.12) is always divisible by
V , yielding the (symmetric) Schur polynomial

s⁄(z) © ak(z)
V (z) , ⁄j = kj ≠ N + j . (1.14)
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wedges (Slater determinants):

...

u2n = z2 |0i ...
...

un = z |0i un+1 = z |1i · · · u2n�1 = z |n� 1i
u0 = |0i u1 = |1i · · · un�1 = |n� 1i

u�n = z�1|0i u1�n = z�1|1i · · · u�1 = z�1|n� 1i
...

...
...

uk = zk̄ |ki , k 2 Z , with k̄, k determined by k = k + k̄ n , 0  k  n� 1 ,
(112)
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...

u2n = z2 |0i ...
...

un = z |0i un+1 = z |1i · · · u2n�1 = z |n� 1i
u0 = |0i u1 = |1i · · · un�1 = |n� 1i
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at most n consecutive k̄’s can be equal
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Basis of antisymmetric states (wedges)


On the wedge basis the action of the Calogero-Sutherland Hamiltonian is triangular:

The resulting Hamiltonian can be then diagonalised on the space of antisymmetric func-
tions Fn,N on which Pij = �Kij , with Kij the coordinate permutation. The action on
antisymmetric functions of H�,n can be the reduced to the action on the coordinates,

H�,n =
NX

j=1

D
2

j + �

NX

j=1

(2j �N � 1)Dj + 2�
X

j<k

✓jk(Dj �Dk � ✓kj(Kjk � 1)) +
�
2
N(N2 � 1)

12
,

(1.5)

where Dj = zj@j and ✓jk = zj/zjk. This can be in turn reinterpreted as

H�,n = �
2

NX

j=1

d
2

j (�) , (1.6)

with dj(�) the Dunkl operators

dj = �
�1

Dj +
N + 1

2
� j +

X

j<k

✓kj(Kjk � 1)�
X

j>k

✓jk(Kjk � 1) . (1.7)

1.1 Wedges and the Uglov mapping

Uglov [1] proposed to diagonalise H�,n on the skew symmetric basis obtained in the following
way: for each particle one takes a basis vector 1

uk = z
k ⌦ vk , k = k + nk , k 2 {0, . . . , n� 1} and k, k 2 Z (1.8)

and vk a basis vector for su(n) in the fundamental representation. From these vectors one
builds the basis of Fn,N by taking the skew-symmetric vectors, or wedges

ûk = uk1 ^ . . . ^ ukN =
X

�2SN

sgn(�) uk�(1)
⌦ . . .⌦ uk�(N)

(1.9)

where we have the ordered sequence k = (k1, . . . , kN ) with k1 > k2 > . . . > kN . If two k’s
are equal the wedge is zero by antisymmetry. As an example, for N = 2 one has

u2 ^ u0 ! (z1 � z2) |00i (1.10)

u3 ^ u0 ! z1 |10i � z2 |01i .

On this basis, the Hamiltonian (1.5) acts triangularly,

H�,n ûk = Ek ûk + 2�
X

1i<jN

hij ûk (1.11)

with

Ek =
NX

j=1

k̄
2

j + �

NX

j=1

(N + 1� 2j) k̄j + �
2
N(N2 � 1)

12
(1.12)

1
Our convention is such that the numbers k1, . . . , kN can be rendered all positive by an appropriate

shift.
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X

�2SN

sgn(�) uk�(1)
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(1.9)

where we have the ordered sequence k = (k1, . . . , kN ) with k1 > k2 > . . . > kN . If two k’s
are equal the wedge is zero by antisymmetry. As an example, for N = 2 one has

u2 ^ u0 ! (z1 � z2) |00i (1.10)

u3 ^ u0 ! z1 |10i � z2 |01i .

On this basis, the Hamiltonian (1.5) acts triangularly,

H�,n ûk = Ek ûk + 2�
X

1i<jN

hij ûk (1.11)

with

Ek =
NX
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k̄
2

j + �
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2
N(N2 � 1)

12
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Our convention is such that the numbers k1, . . . , kN can be rendered all positive by an appropriate

shift.
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and

hij uk1 ^ . . . ^ uki ^ . . . ^ ukj ^ . . . ^ ukN (1.13)

=

k̄i�k̄j�1X

r=1

(k̄i � k̄j � r) uk1 ^ . . . ^ uki�nr ^ . . . ^ ukj+nr ^ . . . ^ ukN .

Let us note that � = g � 1 = 0 is the fermionic case, where the wave functions are the
wedges ûk, or Slater determinants. In the spinless n = 1 case, the wedges are proportional
to the Schur polynomials times a Vandermonde of the variables, V =

Q
1i<jN

(zi � zj),

uk1 ^ . . . ^ ukN = uN�1 ^ . . . ^ u0 S�(z1, . . . , zN ) , (1.14)

with �j ⌘ k̄j � N + j. For n = 1 and � arbitrary (1.11) is nothing but the action of the
spineless Calogero-Sutherland Hamiltonian on the basis of Schur polynomials.

At this point, the integers (k1, . . . , kN ) are just a bookkeeping device to keep track of
the spin indices, and they are blind to the action of the Hamiltonian. The energy of a state
does not explicitly depend on their values, so we expect a large degeneracy, up to n

N , for
each state.

Since the off-diagonal action (1.13) of the Hamiltonian is independent of a simultaneous
shift (boost) of the momenta k̄j ! k̄j + �, we conclude that the boosted state is also an
eigenstate, with energy Ek+�.

1.2 Strong interaction and freezing

Let us look at what happens when we send the coupling constant � ! 1 in (1.1). Obviously,
the term proportional to �

2 will dominate over the kinetic energy. This classical potential
is minimised by the configuration with the coordinates evaluated at the Nth roots of unity,

zj ! !
j
, ! = e

2⇡i/N
. (1.15)

Since in this limit the particles are confined to their equilibrium position we are going to
call it freezing limit. The classical energy corresponding to this equilibrium configuration is

ev! �
2
X

j 6=k

zjzk

zjkzkj
=

N�1X

j=1

N�
2

(1� !j)(1� !�j)
=

I

C̄1

dy

2⇡i

N�
2

(1� y)(1� y�1)

d

du

y
N � 1

y � 1
, (1.16)

where

ev! zj ⌘ !
j
, (1.17)

and the contour C̄1 encircles all the roots of unity y = !
j except 1 = !

0 counterclockwise.
By deforming the integration contour and taking into account that the integral over the
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 and

freezing keeps only the part linear in      in the Hamiltonian and evaluates the positions at 

N-th roots of  unity

contour at infinity vanishes, we get
I

C̄1

dy

2⇡i

N�
2

(1� y)(1� y�1)

d

du

y
N � 1

y � 1
= �

I

C1

dy

2⇡i

N�
2

(1� y)(1� y�1)

d

du

y
N � 1

y � 1

= N�
2 Resy!1

1

(1� y�1)(yN � 1)

d

dy

y
N � 1

y � 1
= �

2
N(N2 � 1)

12
, (1.18)

where C1 is the contour encircling 1 counterclockwise. This is also the contribution to the
energy proportional to �

2 coming from the Dunkl operators,

E
0 = �

2

NX

j=1

✓
N + 1

2
� j

◆
2

= �
2
N(N2 � 1)

12
. (1.19)

In the freezing limit � ! 1 we remove this infinite constant and rescale the Hamiltonian
by �. We argue that the result is the Haldane-Shastry Hamiltonian

HHS = ev!
X

i 6=j

zizj

zijzji
(1 + Pij) . (1.20)

Using ta similar reasoning as above we deduce that the second term in the r.h.s. of (1.4)
vanishes upon evaluation because

N�1X

j=1

1 + !
j

1� !j
= � Resy!1

2

(1� y)

(y � 1)

(yN � 1)

d

dy

y
N � 1

y � 1
�N � 1 = 0 .

The reduction procedure implies that the spectrum of HHS is given by the part linear
in � in (1.12)

EHS,k =
NX

j=1

(N + 1� 2j) k̄j (1.21)

and the eigenfunctions are the limits � ! 1 and zj ! !
j of the eigenfunctions of the

dynamical Calogero-Sutherland Hamiltonian (1.5). The main question is how many of
these states survive the limit and which is the range of the integers k̄j in (1.21). We are
trying to answer this question in the following. Let us first consider the eigenstates of (1.5)
which are symmetric by simultaneous permutations of spins, for example

W (z) P (�+1)

�
(z) |00 . . . 00i �!1�! W (z) e�0(z) |00 . . . 00i , (1.22)

with e�0(z) = e�0
1
e�0

2
. . . the elementary symmetric polynomial associated to the conjugate

partition �
0. Note that eq(z1, . . . , zN ) = 0 if q > N . Upon evaluation we have

ev! eq(z) = �q,0 + (�1)N�1
�q,N . (1.23)

We conclude that the only fully symmetric polynomials surviving evaluation correspond to
partitions � = r

N with r arbitrary. The states with k̄1+ r, . . . , k̄N + r and arbitrary r have
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W (z) P (�+1)

�
(z) |00 . . . 00i �!1�! W (z) e�0(z) |00 . . . 00i , (1.22)

with e�0(z) = e�0
1
e�0

2
. . . the elementary symmetric polynomial associated to the conjugate

partition �
0. Note that eq(z1, . . . , zN ) = 0 if q > N . Upon evaluation we have

ev! eq(z) = �q,0 + (�1)N�1
�q,N . (1.23)

We conclude that the only fully symmetric polynomials surviving evaluation correspond to
partitions � = r

N with r arbitrary. The states with k̄1+ r, . . . , k̄N + r and arbitrary r have
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and

hij uk1 ^ . . . ^ uki ^ . . . ^ ukj ^ . . . ^ ukN (1.13)

=

k̄i�k̄j�1X

r=1

(k̄i � k̄j � r) uk1 ^ . . . ^ uki�nr ^ . . . ^ ukj+nr ^ . . . ^ ukN .

Let us note that � = g � 1 = 0 is the fermionic case, where the wave functions are the
wedges ûk, or Slater determinants. In the spinless n = 1 case, the wedges are proportional
to the Schur polynomials times a Vandermonde of the variables, V =

Q
1i<jN

(zi � zj),

uk1 ^ . . . ^ ukN = uN�1 ^ . . . ^ u0 S�(z1, . . . , zN ) , (1.14)

with �j ⌘ k̄j � N + j. For n = 1 and � arbitrary (1.11) is nothing but the action of the
spineless Calogero-Sutherland Hamiltonian on the basis of Schur polynomials.

At this point, the integers (k1, . . . , kN ) are just a bookkeeping device to keep track of
the spin indices, and they are blind to the action of the Hamiltonian. The energy of a state
does not explicitly depend on their values, so we expect a large degeneracy, up to n

N , for
each state.

Since the off-diagonal action (1.13) of the Hamiltonian is independent of a simultaneous
shift (boost) of the momenta k̄j ! k̄j + �, we conclude that the boosted state is also an
eigenstate, with energy Ek+�.

1.2 Strong interaction and freezing

Let us look at what happens when we send the coupling constant � ! 1 in (1.1). Obviously,
the term proportional to �

2 will dominate over the kinetic energy. This classical potential
is minimised by the configuration with the coordinates evaluated at the Nth roots of unity,

zj ! !
j
, ! = e

2⇡i/N
. (1.15)

Since in this limit the particles are confined to their equilibrium position we are going to
call it freezing limit. The classical energy corresponding to this equilibrium configuration is

ev! �
2
X

j 6=k

zjzk

zjkzkj
=

N�1X

j=1

N�
2

(1� !j)(1� !�j)
=

I

C̄1

dy

2⇡i

N�
2

(1� y)(1� y�1)

d

du

y
N � 1

y � 1
, (1.16)

where

ev! zj ⌘ !
j
, (1.17)

and the contour C̄1 encircles all the roots of unity y = !
j except 1 = !

0 counterclockwise.
By deforming the integration contour and taking into account that the integral over the
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squeezing



Wedges in the frozen limit


When the coordinates are evaluated at roots of unity only a finite number of eigenstates survive;


we use a collection of identities:

...

u2n = z2 |0i ...
...

un = z |0i un+1 = z |1i · · · u2n�1 = z |n� 1i
u0 = |0i u1 = |1i · · · un�1 = |n� 1i

u�n = z�1|0i u1�n = z�1|1i · · · u�1 = z�1|n� 1i
...

...
...

uk = zk̄ |ki , k 2 Z , with k̄, k determined by k = k + k̄ n , 0  k  n� 1 ,
(112)

at most n consecutive k̄’s can be equal

ev!
X

j 6=k

zjzk
zjkzkj

=
N(N2 � 1)

12
, (113)
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ground state energy of the CS model

all the same Haldane-Shastry energy. We conclude that the states with � = r
N can be

identified with the ferromagnetic state |00 . . . 00i, with energy

E
F

HS =
NX

j=1

(N + 1� 2j) (N � j) =
N(N2 � 1)

6
. (1.24)

Here we used the boost invariance to fix the last momentum to zero, so that k̄
F

j
= N � j.

This is consistent with the evaluation of (1.20) if all Pij = 1.
To further restrict the range of the integers k̄j we use the fact that after evaluation

some of the basis vectors uk become equivalent,

ev! unN+k ' ev! uk , (1.25)

which leads us to restrict

N > k1 � . . . � kN = 0 . (1.26)

Moreover, due to the wedge structure, we know that no more than n consecutive integers
k̄j can be equal.

1.3 Particular case: n = 2

Let us consider first the case with su(2) symmetry, for simplicity. We also assume that N is
even. By su(2) symmetry we know that inverting the spins states sends an eigenstate into
another eigenstate from the same spin multiplet. We are going therefore to assume without
loss of generality that the number of odd integers kj , M , is smaller or equal to N/2. M

will be called the magnon number. We are going to split the integers kj into two groups,
depending on the value of the corresponding kj = 0, 1, and relabel the indices such that

k
(0)

1 > . . . > k
(0)

N�M , k
(1)

1 > . . . > k
(1)

M . (1.27)

The corresponding wedge û
M

k
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û
M

k
= ck u

2k
(1)
1 +1

^ . . . ^ u
2k

(1)
M +1

^ u
2k

(0)
1

^ . . . ^ u
2k

(0)
N�M

(1.28)

= ck AN

MY

1j<k

(zj � zk) S⌫(z{1,...,M})
NY

M+1j<k

(zj � zk) Sµ(z{M+1,...,N})|1, . . .Mii ,

where ck = ±1 is a sign coming from the reordering of the factors in the wedge product,
S⌫(z{1,...,M}) and Sµ(z{M+1,...,N}) are Schur polynomials of M and respectively N � M

variables with

⌫i = k̄
(1)

i
�M + i , µi = k̄

(0)

i
�N +M + i , (1.29)
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functions:
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↵

(�1)|↵|
Y

j<k2↵

(zj � zk) S�(z↵)
Y

j<k2↵̄

(zj � zk) S⌫(z↵̄) |↵ii , (115)

�i = k̄(1)

i �M + i , ⌫i = k̄(0)

i �N +M + i , (116)

�, ⌫

z↵ ⌘ {zi1 , . . . , ziM} , for ↵ = {i1, . . . , iM} , (117)

1  i1 < . . . < iM  M ,

W↵̄ ⌘
Y

j<k2↵̄

(!j � !k) = CN

Y

↵

!j W↵

ev! S⌫(z↵̄) = jµ ev! S⌫0(z↵), (118)

buk = const
X

↵

Y

j<k2↵

(zj � zk)
2
Y

j2↵

zj S�(z↵) S⌫0(z↵) |↵ii . (119) wedgepol

ev!
�
pk(z↵) + pk(z↵̄)

�
= N�n,0, k < N , (120)
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all the same Haldane-Shastry energy. We conclude that the states with � = r
N can be

identified with the ferromagnetic state |00 . . . 00i, with energy

E
F

HS =
NX

j=1

(N + 1� 2j) (N � j) =
N(N2 � 1)

6
. (1.24)

Here we used the boost invariance to fix the last momentum to zero, so that k̄
F

j
= N � j.

This is consistent with the evaluation of (1.20) if all Pij = 1.
To further restrict the range of the integers k̄j we use the fact that after evaluation

some of the basis vectors uk become equivalent,

ev! unN+k ' ev! uk , (1.25)

which leads us to restrict

N > k1 � . . . � kN = 0 . (1.26)

Moreover, due to the wedge structure, we know that no more than n consecutive integers
k̄j can be equal.

1.3 Particular case: n = 2

Let us consider first the case with su(2) symmetry, for simplicity. We also assume that N is
even. By su(2) symmetry we know that inverting the spins states sends an eigenstate into
another eigenstate from the same spin multiplet. We are going therefore to assume without
loss of generality that the number of odd integers kj , M , is smaller or equal to N/2. M

will be called the magnon number. We are going to split the integers kj into two groups,
depending on the value of the corresponding kj = 0, 1, and relabel the indices such that

k
(0)

1 > . . . > k
(0)

N�M , k
(1)

1 > . . . > k
(1)

M . (1.27)

The corresponding wedge û
M

k
can be written as

û
M

k
= ck u

2k
(1)
1 +1

^ . . . ^ u
2k

(1)
M +1

^ u
2k

(0)
1

^ . . . ^ u
2k

(0)
N�M

(1.28)

= ck AN

MY

1j<k

(zj � zk) S⌫(z{1,...,M})
NY

M+1j<k

(zj � zk) Sµ(z{M+1,...,N})|1, . . .Mii ,

where ck = ±1 is a sign coming from the reordering of the factors in the wedge product,
S⌫(z{1,...,M}) and Sµ(z{M+1,...,N}) are Schur polynomials of M and respectively N � M

variables with

⌫i = k̄
(1)

i
�M + i , µi = k̄

(0)

i
�N +M + i , (1.29)
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specialise to su(2) for simplicity, and split the integers       into two groups depending on the 
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X
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Wedges in the frozen limit


Schur polynomials 

such that ⌫1  N �M and µ1  M , and AN is the total antisymmetrizer

AN =
X

�2SN

(�1)|�|K�P� . (1.30)

We are also using the notation

z↵ ⌘ {zi1 , . . . , ziM } , for ↵ = {i1, . . . , iM} , (1.31)

1  i1 < . . . < iM  M ,

and ↵̄ ⌘ {1, . . . , N} \↵. After expliciting the action of the antisymmetrizer the wedge û
M

k

becomes

û
M

k
= (�1)

M(M+1)
2 ck

X

↵

(�1)|↵|
Y

j<k2↵
(zj � zk) S⌫(z↵)

Y

j<k2↵̄
(zj � zk) Sµ(z↵̄) |↵ii ,

(1.32)

with |↵| =
P

k2↵ k. Upon evaluation, the basis vectors û
M

k
become linearly dependent.

This can be seen by evaluating the Vandermonde determinants

WN =

Q
j<k; j,k2↵̄

Q
j<k; j2↵

Q
j<k; k2↵Q

j<k; j,k2↵
(!j � !

k) =
(�1)M�|↵|

N
M

Q
j2↵ !

j

W↵̄

W↵

, (1.33)

where W↵ =
Q

j<k2↵(!
j � !

k), as well as the Schur polynomial. Here we have used the
following properties

N�1Y

j=1

(1� !
j) = lim

x!1

N�1Y

j=1

(x� !
j) = lim

x!1

x
N � 1

x� 1
= N , (1.34)

and
Y

j<k; j2↵

Y

j<k; k2↵
(!j � !

k) =
Y

j<k; j2↵
(!j � !

k)
Y

k<j; j2↵
(!k � !

j) = (1.35)

Y

j2↵
(�1)

P
k(↵k�1)

Y

k 6=j

(!j � !
k) = (�1)|↵|�M

Y

j2↵
!
j(N�1)

Y

k 6=j

(1� !
j�k) = (1.36)

(�1)|↵|�M
N

M
Y

j2↵
!
�j

.

Upon evaluation, the symmetric sums pn(z) ⌘
P

N

j=1
z
n

j
obey

ev!
�
pn(z↵) + pn(z↵̄)

�
= N�n,0, n < N , (1.37)

which signifies for the Schur polynomials

ev! Sµ(z↵̄) = jµ ev! Sµ0(z↵), (1.38)
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ev! S⌫(z↵̄) = j⌫ ev! S⌫0(z↵), (118)

buk = const
X

↵

Y

j<k2↵

(zj � zk)
2
Y

j2↵

zj S�(z↵) S⌫0(z↵) |↵ii . (119) wedgepol

ev!
�
pk(z↵) + pk(z↵̄)

�
= N�n,0, k < N , (120)

S�(z↵) S⌫0(z↵) = S�+⌫0(z↵) + lower

⌫ = ;

⌫ 6= ;

buk ! buek ⌘ uek1 ^ . . . ^ uekM . (121)

ekj ⌘ k
(1)

j +
M + 1

2
, j = 1, . . . ,M . (122)

Dmax = 2M + 1 + ⌫ 0
1
+ �1 . (123)

 (z)

q ' 

Hk = ⇡F

 
NX

i=1

dki

!
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one can assume 

with jµ a partition-dependent constant and µ
0 the partition conjugate to µ. We conclude

that the vector generated by (1.32) is equivalent to that generated by

û
M

k
⇠ const

X

↵

Y

j<k2↵
(zj � zk)

2
Y

j2↵
zj S⌫(z↵) Sµ0(z↵) |↵ii . (1.39)

The polynomial S⌫(z↵) Sµ0(z↵) can be expanded on the Schur polynomials S⌫+µ0(z↵)+lower,
so the states with partitions µ 6= ; are linearly dependent of the others on the Schur basis.
Notice that the maximal length of µ

0 is equal to M , which is also the length of ⌫, so it
makes sense to add the two partitions. In conclusion, we can then assume the partition µ is
trivial. In order to keep the maximum degree of the polynomial in each variable less than
N one should impose that ⌫1  N � 2M . This in turn means that

k
(0)

j = N �M � j , k
(1)

1  N �M � 1 , (1.40)

that is, the momenta associated with the spin states 0 are frozen to their minimal values
and momenta associated with the magnons, or the spin state 1, are free to move among
them, but not exceed their range. This also means that all the integers k

(1)

j are among the
integers k

(0)

j . Let us show that these integers are related to the motifs. We define a motif
as the collection of M integers 0 < mj < N ,

mj = k
(1)

M�j+1 + j , j = 1, . . . ,M . (1.41)

In terms of these integers we have

k̄j = N � j �
MX

k=1

✓(mk � j) , (1.42)

where ✓(x) = 0 if x < 0 and 1 otherwise. With this notation, the energy of the Haldane-
Shastry states (1.21) becomes

EHS,k = E
F

HS �
MX

k=1

mk(N �mk) . (1.43)

Let us now look at the wave function constructed from the wedges û
M

k
in (1.28). If

the integers k obey the condition (1.40), we know the we cannot remove a magnon from
these states (since two 0 spins will share the same integer), therefore they are su(2) highest
weights. They are also Yangian highest weights, as we show below.

According to (1.39), the polynomial multiplying the spin vector |1, . . .Mii is of the
form

P⌫(z) ⌘
MY

j<k

(zj � zk)
2

MY

j=1

zj [S⌫(z1, . . . , zM ) + lower] , P⌫(z1 = 0) = 0 . (1.44)
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 then the rank of the wedges can be reduced by 1

This exactly the Yangian highest weight condition.
Let us now flip one spin from 0 to 1 by keeping the numbers k̄1, . . . k̄N constant, that is

sending k̄
(0)

m = N�M�m ! k̄
(1)

l
for some m  N�M and l  M+1. This procedure will

keep the energy constant but will increase the number of magnons form M to M + 1, and
we expect this state to be a descendant. After the freezing the leading wedge will have an
expansion similar to (1.39) with ⌫ and µ replaced by ⌫̃ and �̃. The corresponding partitions
⌫̃ and �̃ are given as follows: µ̃

0
1
= m � 1 and µ̃

0
j
= 0 for j > 1 and the partition ⌫̃ gets a

new line ⌫l inserted
8
>>><

>>>:

⌫̃j+1 = ⌫j , if j � l ,

⌫̃l = N � 2M � 1�m+ l ,

⌫̃j = ⌫j � 1 , if j < l .

(1.45)

The maximum degree of the resulting polynomial is given by

Dmax = 2M + 1 + µ̃
0
1 + ⌫̃1 . (1.46)

If l = 1 then Dmax = N . If l > 1 this implies that k̄(0)m < k̄
(1)

l
, or equivalently N �M �m <

⌫1+M � 1, which leads to Dmax = 2M +m+ ⌫1� 1 > N . We conclude than in both cases
the maximum degree of the polynomial reaches N .

Let us now obtain the decomposition of the polynomial P⌫(z) on the Schur basis. Given
the fact that the spin 0 states are now spectators, we can reduce the rank of the wedges by
one, that is to n = 1,

û
M

k
! u

k
(1)
1

^ . . . ^ u
k
(1)
M

. (1.47)

For better convenience, we also redefine the quantum numbers

k̃j ⌘ k
(1)

j +
M + 1

2
, j = 1, . . . ,M . (1.48)

as well as the wedges,

û
k̃
⌘ u

k̃1
^ . . . ^ u

k̃M
= (z1 . . . zM )

M+1
2 u

k
(1)
1

^ . . . ^ u
k
(1)
M

. (1.49)

The action of the Haldane-Shastry Hamiltonian on the new wedges now amounts to

HHS û
k̃
=

0

@
MX

j=1

k̃
2

j +
MX

j=1

(M + 1� 2j)k̃j �N

MX

j=1

k̃j +
M(M2 � 1)

12
+ E

F

HS

1

A û
k̃

(1.50)

+ 2

k̃i�k̃j�1X

r=1

(k̄i � k̄j � r) u
k̃1

^ . . . ^ u
k̃i�r

^ . . . ^ u
k̃j+r

^ . . . ^ u
k̃M

.

Comparing with (1.11), (1.12), (1.13), we recognise the action of the (gauge transformed)
dynamical n = 1 Calogero-Sutherland Hamiltonian with � = 1, or g = 2, up to a term
proportional to the total momentum

P
M

j=1
Dj . The gauge transformed eigenfunctions are

of course antisymmetric. By transforming them back we get the usual Vandermonde square
factor for the magnon wave functions.
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upon freezing:



�i,j+1 + �i,j�1

 ! 0

H� =
NX

j=1

(zj@j)
2 +

X

j 6=k

�(� + Pjk)
zjzk

(zj � zk)(zk � zj)

dj = zj@j + �
X

k>j

zj
zj � zk

Kjk � �
X

k<j

zk
zk � zj

Kjk

� ! 1

 =
Y

i<j

(zi � zj)
� e 

e =
X

i1<i2<...<iM

 (z{i1,i2,...,iM}, z̄{i1,i2,...,iM}) |i1, i2, . . . , iMii

z{i1,i2,...,iM} ⌘ {zi1 , zi2 . . . ziM}

z̄{i1,i2,...,iM} = {z1, z2 . . . zN}\{zi1 , zi2 . . . ziM}

KijPij
e = ±e 
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P(z) = Weierstrass elliptic function
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[BGHP, 93; 


Bernard, Pasquier, D.S., 93]

Eigenfunctions of the Haldane Shastry Hamiltonian


recap: 

this construction works for the highest weight states 


when extra magnons are excited           and the maximum degree of            ,                                   ,   
reaches N; the corresponding states are Yangian descendants (no closed form)

ev! S⌫(z↵̄) = jµ ev! S⌫0(z↵), (118)

buk = const
X

↵

Y

j<k2↵

(zj � zk)
2
Y

j2↵

zj S�(z↵) S⌫0(z↵) |↵ii . (119) wedgepol

ev!
�
pk(z↵) + pk(z↵̄)

�
= N�n,0, k < N , (120)

S�(z↵) S⌫0(z↵) = S�+⌫0(z↵) + lower

⌫ = ;

⌫ 6= ;

buk ! buek ⌘ uek1 ^ . . . ^ uekM . (121)

ekj ⌘ k
(1)

j +
M + 1

2
, j = 1, . . . ,M . (122)
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Comments and outlook


similar result at higher rank: su(n) HS Hamiltonian equivalent to dynamical

su(n-1) CS Hamiltonian with 

This exactly the Yangian highest weight condition.
Let us now flip one spin from 0 to 1 by keeping the numbers k̄1, . . . k̄N constant, that is

sending k̄
(0)

m = N�M�m ! k̄
(1)

l
for some m  N�M and l  M+1. This procedure will

keep the energy constant but will increase the number of magnons form M to M + 1, and
we expect this state to be a descendant. After the freezing the leading wedge will have an
expansion similar to (1.39) with ⌫ and µ replaced by ⌫̃ and �̃. The corresponding partitions
⌫̃ and �̃ are given as follows: µ̃

0
1
= m � 1 and µ̃

0
j
= 0 for j > 1 and the partition ⌫̃ gets a

new line ⌫l inserted
8
>>><

>>>:

⌫̃j+1 = ⌫j , if j � l ,

⌫̃l = N � 2M � 1�m+ l ,

⌫̃j = ⌫j � 1 , if j < l .

(1.45)

The maximum degree of the resulting polynomial is given by

Dmax = 2M + 1 + µ̃
0
1 + ⌫̃1 . (1.46)

If l = 1 then Dmax = N . If l > 1 this implies that k̄(0)m < k̄
(1)

l
, or equivalently N �M �m <

⌫1+M � 1, which leads to Dmax = 2M +m+ ⌫1� 1 > N . We conclude than in both cases
the maximum degree of the polynomial reaches N .

Let us now obtain the decomposition of the polynomial P⌫(z) on the Schur basis. Given
the fact that the spin 0 states are now spectators, we can reduce the rank of the wedges by
one, that is to n = 1,

û
M

k
! u

k
(1)
1

^ . . . ^ u
k
(1)
M

. (1.47)

For better convenience, we also redefine the quantum numbers

k̃j ⌘ k
(1)

j +
M + 1

2
, j = 1, . . . ,M . (1.48)

as well as the wedges,

û
k̃
⌘ u

k̃1
^ . . . ^ u

k̃M
= (z1 . . . zM )

M+1
2 u

k
(1)
1

^ . . . ^ u
k
(1)
M

. (1.49)

The action of the Haldane-Shastry Hamiltonian on the new wedges now amounts to

HHS û
k̃
=

0

@
MX

j=1

k̃
2

j +
MX

j=1

(M + 1� 2j)k̃j �N

MX

j=1

k̃j +
M(M2 � 1)

12
+ E

F

HS

1

A û
k̃

(1.50)

+ 2

k̃i�k̃j�1X

r=1

(k̄i � k̄j � r) u
k̃1

^ . . . ^ u
k̃i�r

^ . . . ^ u
k̃j+r

^ . . . ^ u
k̃M

.

Comparing with (1.11), (1.12), (1.13), we recognise the action of the (gauge transformed)
dynamical n = 1 Calogero-Sutherland Hamiltonian with � = 1, or g = 2, up to a term
proportional to the total momentum

P
M

j=1
Dj . The gauge transformed eigenfunctions are

of course antisymmetric. By transforming them back we get the usual Vandermonde square
factor for the magnon wave functions.

– 8 –

we expect a similar description for the q-deformed Haldane-Shastry Hamiltonian

                                              in terms of q-wedges [Kashiwara, Miwa, Stern, 95][Lamers, Pasquier, D.S., 20]

wedges are well-adapted for the infinite length, low-energy limit (CFT); the 

antiferromagnetic state is particularly simple in this language

Q-DEFORMED HALDANE–SHASTRY, SPIN-RUIJSENAARS AND MACDONALD POLYNOMIALS 11

Recall that a partition ⁄ = (⁄1 Ø ⁄2 Ø · · · Ø 0) is a weakly decreasing sequence of
integers. The length ¸(⁄) of ⁄ is the number of nonzero parts of ⁄. Then2

⁄m = µM≠m+1 ≠ 2 (M ≠ m) , 1 Æ m Æ M = ¸(⁄) = ¸(µ) ,(1.27a)

gives a bijection between MN and the set of partitions with ⁄1 Æ N ≠ 2 ¸(⁄) + 1. If
”M := (M ≠ 1, M ≠ 2, · · · ) denotes the staircase partition of length M ≠ 1 and µ+ is the
partition obtained from µ œ MN by reversal then this relation takes the succinct form

⁄ + 2 ”¸(µ) = µ+ ,(1.27b)
where addition and scalar multiplication are pointwise. See also Figure 33.

µ1 µ2 · · · µM

1 3 · · · 2M≠1 N≠1

⁄̄M ⁄̄M≠1
· · · ⁄̄1

Figure 3. The correspondence (1.271.27) between a motif µ œ MN of length
M := ¸(µ) Ø 1 and a partition with ⁄1 Æ N ≠ 2 M + 1 and ¸(⁄) = M ,
given by ⁄m = ⁄̄m + 1, 1 Æ m Æ M . Here ⁄̄ characterises the extent by
which µ di�ers from the left-most filled motif of length M , as shown.

With this notation in place the (unnormalised) wave function of |µÍ is the following
q-deformation of (1.41.4). The component where all magnons sit on the left remains simple:

(1.28) �µ(1, · · · , M) = ÈÈ1, · · · , M |µÍ = evÊ
Â�⁄(µ)(z1, · · · , zM ) .

Here ⁄(µ) denotes the partition associated to µ via (1.271.27) and Â�⁄ is a symmetric poly-
nomial in the magnon coordinates:

(1.29) Â�⁄(z1, · · · , zM ) :=
A

MŸ

m<n

(q zm ≠ q≠1zn) (q≠1zm ≠ q zn)
B

P ı
⁄ (z1, · · · , zM ) .

Besides the ‘symmetric square’ of the q-Vandermonde product it features the special case
of a Macdonald polynomial (§2.1.22.1.2) with parameters pı = qı = q2. The dependence on
q2 reflects a sort of symmetry of the Hamiltonian under q ‘æ ≠q, see app. In the notation
of Macdonald [Mac95Mac95,Mac98Mac98] the parameters of P ı

⁄ are related as qı = tı – for – = 1/2:
P ı

⁄ is a quantum spherical zonal function. See also Figure 44 on p. 2626. cf [Nou96Nou96], . . . ,

Cher-Matsuo corresp

[Kasatani Pasquier,

Kasatani Takeyama,

Stokman]?

The other components are more involved than in the isotropic case (1.41.4). They are
obtained from (1.291.29) by moving the magnons via q-deformed permutations (the Hecke
algebra, §2.1.12.1.1) before evaluation. Namely, let si be the permutation zi ¡ zi+1 and set in terms of a, b, cf §2.12.1?

(1.30) T pol
i := f≠1

i,i+1(si ≠ gi,i+1) , fi,i+1 := f(zi/zi+1) , gi,i+1 := g(zi/zi+1) ,

2 Note that ⁄ defined in (1.271.27) is the conjugate of the partition associated to µ in [Ugl95Ugl95] follow-
ing [JKK+95aJKK+95a]. See §3.2.33.2.3 for the reason of the conjugation.
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is a Macdonald polynomial with parameters

p = q2/�

�k ⌘ �̄k + 1

N � 2M + 1 � �1 � . . . � �M � 1

si ⌘ Ki,i+1

Weierstrass elliptic function with periods L and !

T pol

i := �t�1/2 tzi � zi+1

(zi � zi+1)
(1�Ki,i+1)

Rpol

i,i+1
:= t�1/2 T pol

i Ki,i+1

Ti zi Ti = zi+1 , Tj zi = zi Tj , if j 6= i, i+ 1

Ři,i+1(u) = t1/2
uT sp

i � (T sp

i )�1

tu� 1

q⇤ = (t⇤)1/2 = q
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q roots of unity, e.g. q=i? (the spectrum is extremely degenerate)



Separation of variables: in the traditional approach à la Sklyanin one needs the 
transfer matrix/ B operator to generate the spectrum/eigenvectors 

Comments and outlook


 define a hybrid model starting from  the CS monodromy matrix by taking as 

generating function of the twisted transfer matrix

ev! S⌫(z↵̄) = j⌫ ev! S⌫0(z↵), (118)

buk = const
X

↵

Y

j<k2↵

(zj � zk)
2
Y

j2↵

zj S�(z↵) S⌫0(z↵) |↵ii . (119) wedgepol

ev!
�
pk(z↵) + pk(z↵̄)

�
= N�n,0, k < N , (120)

S�(z↵) S⌫0(z↵) = S�+⌫0(z↵) + lower

⌫ = ;

⌫ 6= ;

buk ! buek ⌘ uek1 ^ . . . ^ uekM . (121)

ekj ⌘ k
(1)

j +
M + 1

2
, j = 1, . . . ,M . (122)

Dmax = 2M + 1 + ⌫ 0
1
+ �1 . (123)

 (z)

q ' 

Hk = ⇡F

 
NX

i=1

dki

!

tx(u) = xA(u) + x�1D(u)
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for zero/infinite twist the eigenvectors are the same as for CS; 

what happens upon freezing? 

[in progress with G. Ferrando, J. Lamers, F. Levkovich-Maslyuk]

the eigenvalues of the separated variables are given by the eigenvalues of the Dunkl 
operators; they can and do occur at degenerate values
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dj ⇠ dj+1 + �

References

37


