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(Classical) Newton’s Cradle on YouTube




chaotic / ergodic VS. integrable / non-ergodic
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to characterize a macrostate, one needs
02 the entire distribution of velocities
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after short relaxation time Trelax, the macrostate
in the box is entirely characterized by

n, u, &
particle density, mean velocity, energy density




chaotic / ergodic VS. integrable / non-ergodic

is there a coarse-grained or
hydrodynamic description?

state in each ‘fluid cell’ characterized by

n(x,t),u(x,t),e(x,t) This is what ‘Generalized HydroDynamics’
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This talk

Generalized Hydrodynamics (GHD) in the quantum one-dimensional Bose gas.

1. Generalized Hydrodynamics (GHD) of the 1D Bose gas: standard theory
2. Checks in cold atoms experiments

3. Re-introducing quantum fluctuations



1. Crash course on GHD
The 2-body problem

P1 P2
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As we've seen, the eigenstates of

h2
H = —%(@%1 +92,) + go(x1 — z2)

in the limit of infinite repulsion g — OO were
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1. Crash course on GHD
The 2-body problem: the scattering phase

P1 P2
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Now, as we go away from that limit

h2
H = —%(3; +92,) + go(x1 — z2)

the eigenstates change continuously with g

e (P1T1+p2ws) _%@mﬂ?lm) if o1 <o
w(ﬂ?la@) —

(1 ¢ x2) \ if x9 < xy




1. Crash course on GHD
The 2-body problem: the scattering phase

One physical consequence of this scattering phase is the following. Take two
wave packets with semiclassical velocities v1 = p1/m and V2 = pg/m

V1 U2
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1. Crash course on GHD
The 2-body problem: the scattering phase

One physical consequence of this scattering phase is the following. Take two
wave packets with semiclassical velocities v1 = p1/m and V2 = pg/m
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1. Crash course on GHD
The 2-body problem: the scattering phase

One physical consequence of this scattering phase is the following. Take two
wave packets with semiclassical velocities v1 = p1/m and V2 = pg/m

U2 U1

< —

6%(1913314-2?2962) _%(p2$1+P19€2) if r1 < T
¢(3317332) —

(1 ¢ x2) \ if 2o < 24




1. Crash course on GHD
The 2-body problem: the scattering phase

One physical consequence of this scattering phase is the following. Take two
wave packets with semiclassical velocities v1 = p1/m and V2 = pg/m

After they have scattered, the two packets are not quite where you would expect
them. Compared to the non-interacting case, they are shifted by a distance

d
A=K7
dp
In the Lieb-Liniger model this is a lorentzian
2g/m
A(’UQ — ”Ul) — /

(9/1)? + (v2 — v1)?



1. Crash course on GHD
The ‘effective velocity’ caused by 2-body scattering

position L

See e.g. [Caux Doyon, Yoshimura, 2017]. This effective velocity had appeared
previously in [Bonnes, Essler, Lauchli 2014], and for the 1d billiard or hard gas
in [Percus, 1969], [Boldrighini, Dobrushin, Sukhov 1983].



1. Crash course on GHD
The rapidities

For N particles, the eigenstates on the infinite line are Bethe states labeled by their
rapidities [Lieb, Liniger, 1963]

Z (_1)|J|e@xl—l—-..—l—va(@ 1f T < e & TN
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(xi > zE\T; < 21, €tL.) otherwise
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sum of 2-body scattering phases) transp. T}



1. Crash course on GHD
The rapidities ee-#8l— o

The rapidities (i.e. asymptotic velocities) collisions
can be measured by letting the gas expand during

in 1D [Rigol-Muramatsu, PRL 94, 2005; Minguzzi- expansion
Gangardt, PRL 94, 2005; Jukic-Pezer-Gasenzer-Buljan, v

PRA 78, 2008; Bolech-Heidrich-Meisner-Langer-McCulloch-
Orso-Rigol, PRL 109, 2012; Bolech-Heidrich-Meisner-
Langer-McCulloch-Orso-Rigol, J.o. Physics: Conference

Time

no collision l

Series 414 2013, Campbell-Gangardi-Kheruntsyan, PRL - » - - - T
114, 2015; Caux-Doyon-JD-Konik-Yoshimura, SciPost 6, U1 () UN
2019, ...]
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QUANTUM GASES

Observation of dynamical fermionization

Joshua M. Wilson, Neel Malvania, Yuan Le, Yicheng Zhang, Marcos Rigol, David S. Weiss*

from bosonic to fermionic after its axial confinement is removed. The asymptotic momentum distribution
after expansion in one dimension is the distribution of rapidities, which are the conserved quantities
associated with many-body integrable systems. Our measurements agree well with T-G gas theory. We
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1. Crash course on GHD
The people who made the discovery

week ending

PRL 117, 207201 (2016) PHYSICAL REVIEW LETTERS 11 NOVEMBER 2016

Breakthrough

from 201 6' Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents

Bruno Bemm Mario Collura," Jacopo De Nardis,” and Maurizio Fagom
'SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy
. *The Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford, OX1 3NP, United Kingdom
jDépartemem‘ de Physique, Ecole Normale Supérieure/PSL Research University, CNRS, 24 rue Lhomond, 75005 Paris, France
(Received 17 June 2016; published 8 November 2016)

We consider the nonequilibrium time evolution of piecewise homogeneous states in the XXZ spin-1,/2
chain, a paradigmatic example of an interacting integrable model. The initial state can be thought of as the
)‘ _ result of joining chains with different global properties. Through dephasing, at late times, the state becomes

locally equwalent toa statmnary state which explicitly depends on position and time. We propose a kinetic

|8J Selected for a Viewpoint in P hyszcs ) ind derive a continuity equation which fully characterizes the

PHYSICAL REVIEW X 6, 041065 (2016) estrict ourselves to the gapless phase and consider cases where the

mperatures, (2) in the ground state of two different models, and (3) in

(cellent agreement (any discrepancy is within the numerical error)

umerical simulations of time evolution based on time-evolving block

ry, we unveil an exact expression for the expectation values of the
ry state.
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Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium

Olalla A. Castro-Alvaredo,’ Benjamin Doyon,” and Takato Yoshimura®

]Department of Mathematics, City, University of London,
Northampton Square, London EC1V 0HB, United Kingdom
’Department of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom
(Received 12 July 2016; revised manuscript received 22 September 2016; published 27 December 2016)

Understanding the general principles underlying strongly interacting quantum states out of equilibrium
is one of the most important tasks of current theoretical physics. With experiments accessing the intricate
dynamics of many-body quantum systems, it is paramount to develop powerful methods that encode the
emergent physics. Up to now, the strong dichotomy observed between integrable and nonintegrable
evolutions made an overarching theory difficult to build, especially for transport phenomena where space-
time profiles are drastically different. We present a novel framework for studying transport in integrable
systems: hydrodynamics with infinitely many conservation laws. This bridges the conceptual gap between
integrable and nonintegrable quantum dynarnics, and gives powerful tools for accurate studies of space-
time profiles. We apply it to the description of energy transport between heat baths, and provide a full
description of the current-carrying nonequilibrium steady state and the transition regions in a family of
models including the Lieb-Liniger model of interacting Bose gases, realized in experiments.

DOI: 10.1103/PhysRevX.6.041065 Subject Areas: Nonlinear Dynamics,
Quantum Physics, Statistical Physics



1. Crash course on GHD

Long story short, GHD is a fluid-like picture where each ‘cell’ is in a macrostate

characterized by its distribution of rapidities.

Then one writes a transport equation for the rapidities:

where p(v, €, t) is the local distribution of rapidities, and the effective
velocity is the one caused by the 2-body scattering:




1. Crash course on GHD

This was the ‘handwaving’ intoduction of GHD. Another, more well-

defined, way to arrive at it is to derive it like a standard hydrodynamic
theory.

Namely, to postulate local relaxation and express the expectation
values of the currents in terms of those of the local charges.



1. Crash course on GHD
GHD from the formula for the expectation value of currents

Let |v) = |{va}1<a<n) be the Bethe state with rapidities v, a =1,..., N

The conserved charges of the Lieb-Liniger model are the operators Q)| f| diagonal
in the basis of Bethe states and with eigenvalues:

QIf]Iv) = (Z f(va>> v)

L
The current operator j|f](x) associated to the charge Q|f] :/ q|fl(x)dx
Is defined by the continuity equation 0

Ovqlf] + O23|f] = ¢ [H,q[f]] + 027lf] = 0O

Then the key problem is to compute the expectation value of the current

VIl V)

(V|v)




1. Crash course on GHD
GHD from the formula for the expectation value of currents

Note: before 2016, this looked like a totally hopeless problem. Several issues:

L
First, writing the charges Q| f| = / q|f](x)dx in second quantization is usually
0

not possible, as it gives rise to regularization issues in the Lieb-Liniger model [Davies,
Korepin 1989].

Second, even if one has a good regularization for the charges, one needs to compute the
current operators. This looks like a non-trivial problem (to me, at least)

Third, even if one has an expression for the currents, computing their expectation value in
Bethe states may well turn out to be an intractable problem...



1. Crash course on GHD
GHD from the formula for the expectation value of currents

The big ‘guess’ of [Castro-Alvaredo, Doyon, Yoshimura, 2016] and [Bertini, Collura, de
Nardis, Fagotti, 2016] is that, in the thermodynamic limit, one should have

- (v] q[f]
e

N.L—oo  (V|v

’V>_ (V) V)av
> —/f()p()d

Since 2016, several works have increased our understanding of that formula for the current
[Vu, Yoshimura, 2019], [Spohn, 2020], [Cubero, Panfil, 2020], [Bajnok, 2020], [Spohn,
Yoshimura 2020], and the level of rigor in its derivation.

Remarkably, a new fundamental Bethe Ansatz formula was discovered in finite
size [Pozsgay 2020], [Borsi, Pozsgay, Pristyak, 2020], [Pozsgay 2020]. It is
proved using new developments in the Algebraic Bethe Ansatz. Its thermodynamic
limit gives the formula above.

inverse of Gaudin matrix



This talk

Generalized Hydrodynamics (GHD) in the quantum one-dimensional Bose gas.

1. Generalized Hydrodynamics (GHD) of the 1D Bose gas: standard theory
2. Checks in cold atoms experiments

3. Re-introducing quantum fluctuations



2. Applying the theory to cold atom experiments

Why should experimentalists care about GHD?

It is much easier to numerically solve the GHD equation than
to solve the full many-body Schrédinger equation for N ~ 101 — 10 atoms.

For instance: how hard is it to simulate the quantum Newton’s cradle numerically?

nature

LETTERS

Before 2016, no one knew how
to do this.

A quantum Newton's cradle

Toshiya Kinoshita', Trevor Wenger' & David S. Weiss' b

Now, with GHD, it can be done
on a laptop in a few minutes (at
least for a single tube).

Nomalized optical thickness

There is a publicly available GHD code: iFluid [Moller, Schmiedmayer, Scipost 2020]



2. Applying the theory to cold atom experiments

Example: GHD numerical simulation of the Newton’s cradle [Caux, Doyon, JD, Konik, Yoshimura, 2017]
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Figure 1: Evolution of the density of quasi-particles p,(6, x, t) —here plotted in the
(x, 6)-plane— in the QNC setup, with parameters given in the text. The solution of
the GHD equations are obtained from the flea gas [35]. The results are displayed
for the harmonic trap (top row) and the weakly anharmonic one (middle row), on
one period of the (quasi-)harmonic trap. (Bottom row) Corresponding density of
particles n(x, t), for the harmonic trap (blue) and the anharmonic one (red).
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Figure 2: Same as Fig. 1, on a larger time window. In the harmonic case, the two
blobs in the (x, 8)-plane keep rotating around each other after several trap periods.
In the anharmonic case, the distribution p,(6, x) is strongly stirred up after a few

trap periods, and it goes to stationary state that looks rotationally invariant in the
(x, 6)-plane.



2. Applying the theory to cold atom experiments
Two classes of experiments on 1D gases

Atom chip: atoms trapped by the
magnetic field created above an electronic
chip.

Allows to trap a single 1D cloud, usually
with weak repulsion between the atoms

Optical trapping: atoms trapped by
counter propagating lasers.

Allows to create a bundle of 1D clouds,
with slightly different parameters for each
1D tube: observables are averaged over
all tubes

Strong repulsion between the atoms.




2. Applying the theory

Two classes of experiments

PRL 100, 090402 (2008)
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Yang-Yang Thermodynamics on an Atom Chip

A.H. van Amerongen,1 J.J.P. van Es,! P. Wicke,! K. V. Kheruntsyan,2 and N.J. van Druten’

"Wan der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65-67, 1018 XE Amsterdam, The Netherlands

2ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland,
Brisbane, Queensland 4072, Australia
(Received 12 September 2007; revised manuscript received 24 January 2008; published 3 March 2008)

We investigate the behavior of a weakly interacting nearly one-dimensional trapped Bose gas at finite
temperature. We perform in situ measurements of spatial density profiles and show that they are very well
described by a model based on exact solutions obtained using the Yang-Yang thermodynamic formalism,
in a regime where other, approximate theoretical approaches fail. We use Bose-gas focusing [L
Shvarchuck et al., Phys. Rev. Lett. 89, 270404 (2002)] to probe the axial momentum distribution of
the gas and find good agreement with the in situ results.

DOLI: 10.1103/PhysRevLett.100.090402 PACS numbers: 05.30.Jp, 03.75.Hh, 05.70.Ce

PHYSICAL REVIEW A 88, 031603(R) (2013)

Thermodynamics of strongly correlated one-dimensional Bose gases

Andreas Vogler, Ralf Labouvie, Felix Stubenrauch, Giovanni Barontini, Vera Guarrera, and Herwig ott”
Research Center OPTIMAS, Technische Universitdt Kaiserslautern, 67663 Kaiserslautern, Germany
(Received 8 April 2013; revised manuscript received 17 June 2013; published 11 September 2013)

We investigate the thermodynamics of one-dimensional (1D) Bose gases in the strongly correlated regime.
To this end, we prepare ensembles of independent 1D Bose gases in a two-dimensional optical lattice and
perform high-resolution in situ imaging of the column-integrated density distribution. Using an inverse Abel
transformation we derive effective one-dimensional line-density profiles and compare them to exact theoretical
models. The high resolution allows for a direct thermometry of the trapped ensembles. The knowledge about the
temperature enables us to extract thermodynamic equations of state such as the phase-space density, the entropy
per particle, and the local pair-correlation function.

DOI: 10.1103/PhysRevA.88.031603 PACS number(s): 67.85.—d, 03.75.Hh, 05.30.Jp, 37.10.Jk
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FIG. 1. Linear atomic density from absorption images ob-
tained in situ (a)—(d) and in focus (e)—(h) by lowering (from
top to bottom as indicated) the final rf evaporation frequency.
In situ: solid lines are fits using Yang-Yang thermodynamic
equations (see text). The values of p and T resulting from the
fits are shown in the figure. Dotted line: ideal Bose-gas profile
showing divergence for u(x) = 0. Dashed line in (d): quasicon-
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2. Applying the theory to cold atom experiments
Two experiments on GHD

Regimes of the 1D Bose gas (at equilibrium):
[Petrov, Shlyapnikov, Walraven PRL 85, 2000]

0

Palaiseau experiment
(Bouchoule), atom chip,
single 1D tube

N ~ 10*

dimensionless
temperature

0 = 2h*T/(mg?)

10 .
— quasi-condensate Penn State experiment

strongly | | _
107 interacting (Wi'ssgloptﬁa[')ttragplng,
' e
10~ 100 10° N ~ 10" — 102
dimensionless (per tube)

repulsion strength
v = mg/(h°n)



2. Applying the theory to cold atom experiments

Results of the Palaiseau experiment (Bouchoule group)
[Schemmer, Bouchoule, Doyon, JD, PRL 122, 2019]
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2. Applying the theory to cold atom experiments

Results of the Palaiseau experiment (Bouchoule group)
[Schemmer, Bouchoule, Doyon, JD, PRL 122, 2019]

density

1 (atom/pm)

Quench from double-well to harmonic
potential:

V(z)
x

0 200

position (um)

about 20% of atoms lost
(not described in the theory)



2. Applying the theory to cold atom experiments

Results of the Penn State experiment (Weiss group)
[Malvania, Zhang, Le, JD, Rigol, Weiss, arXiv:2009.06651]

Results for 10-times increase of the depth:
Integrated rapidity distribution f(0) = /p(a:,@)da:
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2. Applying the theory to cold atom experiments

Results of the Penn State experiment (Weiss group)
[Malvania, Zhang, Le, JD, Rigol, Weiss, arXiv:2009.06651]

Integrated rapidity distripution
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2. Applying the theory to cold atom experiments

Results of the Penn State experiment (Weiss group)
[Malvania, Zhang, Le, JD, Rigol, Weiss, arXiv:2009.06651]

Integrated rapidity distripution

£6) = [ o0
Results for 100-times increase of the depth: 10 1 a

0.8 ’ A
0.6 S L] '

‘A:’/"’x\"‘\‘ ¥ P n‘

: | 7w,

> o~

0.4

f(e) (hk)~*

Remarkably: this is an ‘extreme’ situation where the density changes very
rapidly, both in time and space. Also, the number of particles is very small:
N ~ 11 per tube (in average).

So the hydrodynamic picture of a continuous medium made of ‘fluid cells’ that
have time to locally relax to a Generalized Gibbs Ensemble is challenged.

This suggests that ‘GHD’ might not be a hydrodynamic theory after all (cf.
Tonks-Girardeau case). More theory work is heeded there.



i = [ o (0@ + S0 + Vi)
: . classical evolution
equation (GHD)

full quantum many-body problem

atp + O (’Uﬁf]f P) — avp
v‘[apff(v) =v+ /dw A(v —w) p(w) (vﬁff(w) — vﬁ(v)

 Q1: where does the quantumness of the microscopic model enter
the large-scale hydrodynamic description?

e Q2: are there quantum effects that are lost in that description?
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H = [ao (G @0t + G070 + V@
classical evolution
equation (GHD)
full quantum many-body problem

ac

Orp + Oy ( []P) = Oup
vf’pff( ):fv+/de v —w) p(w) (Uﬁf{(w) vﬁ(v)

 Q1: where does the quantumness of the microscopic model enter
the large-scale hydrodynamic description?

 A1: it enters through the Wigner time delay A(v — w)

 Q2: are there quantum effects that are lost in that description?

 A2: yes: entanglement and correlations between ,E
fluid cells at equal time / SR
in classical hydrodynamics, no / |
correlations between different d
fluid cells at equal time. Yet, in ot e e n f bl So e 0oy

the original quantum system,
such correlations are present



p "r real beast
H = /d:c |
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such correlations are present




Quantum fluctuations around GHD

'standard’ GHD predicts time-evolution the idea is to allow this region
of region of phase-space occupied by to fluctuate in phase space
quasi-particles

(z1(s), 04(s))

 technically, this is done by defining an operator 5,5(3) which measures the small fluctuation of the
contour encircling the region of phase-space occupied by quasi-particles

1

« the operator satisfies the commutation relations of a chiral boson: [04(s),0p(s")] = 2—m_5’(s — )

* the Hamiltonian that governs the time evolution is quadratic in 5,5(8) so we are dealing with a free
boson theory (as in Luttinger liquid theory).

 the difficulty is to compute the propagator of the bosonic field. This is done numerically.



Examples of results obtained with this approach

quench from the ground
state in a double-well potential... V(ac;)

N
\J

| —200 0 200 —200 0 200 —200 0 200 —200 0 200

from [Ruggiero, Doyon, Calabrese, JD, 2020]



Examples of results obtained with this approach

guench from the ground V(x)

state in a double-well potential... ~+-to harmonic potential V(x)

A

SR N Y/ N 4
\J o

| —200 0 200 —200 0 200 —200 0 200 - —200 0 200

from [Ruggiero, Doyon, Calabrese, JD, 2020]



Examples of results obtained with this approach

guench from the ground

state in a double-well potential...

N

B V(ﬂi)

<
t=0 \

v

\J

=

<

...to harmonic potential

Ny
<
5

<
t>0 \

v

s

4
"

A
NN
A\

time

>

entanglement entropy of subsystem A (compared with numerics in the hard core limit)

t=030r |

t =0.157

m t = 0.60r

600 -600 -200 600 -600

gquantum !!mg GHD

F va

fluct

from [Ruggiero, Doyon, Calabrese, JD, 2022]




Examples of results obtained with this approach

quench from ground state of half-filled lattice gas on the left,

empty system on the right entanglement entropy profiles from ‘quantum GHD’,
compared to numerics (non-interacting fermions)

half-filled

) ) 1
region empty region I, =200 S(0,t) ~ 1 logt
t<0: p—c—o—o/-c—o—o—oo—ooo—o—o—o—o Lo ‘
T £ 1.4}
walls | free expansion 1.2 41 »
t>0: 1 ~ i
I \'—/4 0.8
T !()= g f
B j A 0.6}
0.4
0.2 ‘ —— t=180.0
LY —— £=200.0
O-thoo =100 0 100 200

J
[Scopa, Krajenbrink, Calabrese, JD 2021]. See also [Eisler 2021],
[Scopa, Calabrese, JD 2022]



(probably way over time by now...)

Thank you!



