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Single species ASEP

o (Partially) Asymmetric Simple Exclusion Process (ASEP).

@ Ring of size n, with m < n particles.
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Single species ASEP

o (Partially) Asymmetric Simple Exclusion Process (ASEP).
@ Ring of size n, with m < n particles.
@ Let 0 <t < 1. Transitions are:

10 501, 01 -% 10.

Proposition
For any positive integers n, m < n, the ASEP on n sites with m
particles has the uniform stationary distribution, i.e.
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Multispecies ASEP

@ Now suppose there are particles labelled 1,...,s withstrength
order: 1 >2>--->s..

o Consider a ring of n sites, with particle content given by
m=(myq,...,ms), where Y. m; = n.

@ The multispecies ASEP is defined by transitions

P R AT . .
ij — ji, ji —ij, provided i <.
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Multispecies ASEP

@ Now suppose there are particles labelled 1,...,s withstrength
order: 1 >2>--->s..

o Consider a ring of n sites, with particle content given by
m=(myq,...,ms), where Y. m; = n.

@ The multispecies ASEP is defined by transitions

P R AT . .
ij — ji, ji —ij, provided i <.

Theorem (P. Ferrari and J. Martin (Ann. Prob. 2007))

Consider the multispecies TASEP (t = 0) with content
(m1,...,ms). Let Mi=my+---+m; for1 <i<s. Then the
partition function is given by

11 ()

i=1
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Partition function for multispecies ASEP

Recall that [n]g := 1+ q+---+ q" ! and [n]g! := [1]g[2]q - - - [N]4-
Theorem (J. Martin (Elec. J. Prob. 2020))

Consider the multispecies ASEP with content (my, ..., ms). Then

the partition function is given by

211 () i

The proofs use a multiline TASEP (with rejection) that projects to
the multispecies TASEP (ASEP).
We do not know of an inhomogeneous integrable generalisation!

v
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Totally Asymmetric Long-Range Exclusion Process

(TALREP)

@ Ring of size n with m < n particles.

@ From site 1,

(=}

1101
- i i+1 j

11 Q_>
i+l j=1

1 ---1 1--- with rate «;,
1 —1j

@ Also called the PushASEP and isomorphic to the
Hammersley—Aldous—Diaconis (HAD) process (on Z).

A. Ayver, |1Sc



mTALREP
0O®000000000000000000

Stationary distribution

@ Recall that the elementary symmetric polynomial of degree m
in indeterminates xi,..., Xk Is

em(X]_,...,Xk): Z Xip - o« Xiy s

1<ip < <im<k

e Let n = (m1,...,nn) be a configuration.

Proposition

The stationary probability 1 is
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Aside: open TALREP

@ n sites with open boundaries.
@ Same bulk transitions and additionally:

o From the left boundary,

10--+—1---1 1 --- with rate ap,

1 i i+l 1 i i+1

e From site i/ to outside the right boundary,

] llﬂgll Withra-teo[,.7
iitl n iiTl  n

@ Here, the stationary distribution is a product measure with
density ao/(cvo + @) at site i, and ...

o all eigenvalues are linear in ag, ..., a,
(A.—Schilling=Steinberg—Thiéry, Comm. Math. Phys. 2015).

A. Ayver, |1Sc



mTALREP
000®0000000000000000

Multispecies TALREP

@ As before, we are on the ring of n sites, with particle content
m=(my,...,ms).

@ As before, the strength order of particles: 1 >2 > --- > s.
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Multispecies TALREP

@ As before, we are on the ring of n sites, with particle content
m=(my,...,ms).

@ As before, the strength order of particles: 1 >2 > --- > s.
@ Transition when bell rings at site / with rate «;:
@ Particle at site / moves clockwise,
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Multispecies TALREP

@ As before, we are on the ring of n sites, with particle content
m=(my,...,ms).
@ As before, the strength order of particles: 1 >2 > --- > s.
@ Transition when bell rings at site / with rate «;:
@ Particle at site / moves clockwise,
@ finds the first weakest particle and displaces it,

A. Ayver, 11Sc



mTALREP
000®0000000000000000

Multispecies TALREP

@ As before, we are on the ring of n sites, with particle content
m=(my,...,ms).
@ As before, the strength order of particles: 1 >2 > --- > s.
@ Transition when bell rings at site / with rate «;:
@ Particle at site / moves clockwise,

@ finds the first weakest particle and displaces it,
© which in turn does the same.
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Multispecies TALREP

@ As before, we are on the ring of n sites, with particle content
m=(my,...,ms).
@ As before, the strength order of particles: 1 >2 > --- > s.
@ Transition when bell rings at site / with rate «;:
@ Particle at site / moves clockwise,

@ finds the first weakest particle and displaces it,
© which in turn does the same.

@ Continue this way ending at a particle of species s,
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Multispecies TALREP

@ As before, we are on the ring of n sites, with particle content
m=(my,...,ms).
@ As before, the strength order of particles: 1 >2 > --- > s.
@ Transition when bell rings at site / with rate «;:
@ Particle at site / moves clockwise,

@ finds the first weakest particle and displaces it,
© which in turn does the same.

@ Continue this way ending at a particle of species s,
© which jumps to /.

@ The homogeneous version of this process is the multispecies
HAD process (Ferrari and Martin, AIHP B, 2009).
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Examples

e m=(2,2,1,1,1) so that n=8,5s = 5.
i

1
f

(€3]

31253142 —— 35123142

Qy

31273142 —— 3123142
t

/\(W Qs
31253142 —— 31245132

t
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Basic properties

Proposition
For any m = (my,...,ms), the mTALREP is irreducible.

Proposition

The mTALREP is invariant under simultaneous translation (i.e.
rotation) of sites, i — i + 1, and of parameters a; — 1.
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Stationary distribution

Theorem (Amir—Angel-A.—Martin, 2022+)
The stationary probability of n = (n1,...,mn) is given by

m(n) = V(Zn),

where v(n) € Z[1/au,...,1/a,] and ged{v(n)} = 1.
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Stationary distribution

Theorem (Amir—Angel-A.—Martin, 2022+)
The stationary probability of n = (n1,...,mn) is given by

m(n) = V(Zn),

where v(n) € Z[1/aq,...,1/an] and ged{v(n)} = 1. Recall
Mi=mi+---+mj for1 <i<s. The partition function is

s—1
1 1
Z=|| .., —].
EM; (ala 7an>

i=1
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Connection to the multispecies TASEP

@ Recall that the partition function for the multispecies TASEP

is
S
IT (o
LLA\M; )
i=1
o Ifweset ; = - = a, =1 in the mTALREP, we obtain not
only the same partition function, but the same stationary
distribution!

o We will modify the Ferrari-Martin proof using a different
multiline process.
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m=(1,1,1)
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o Let Q = {123,132,213,231,312,321}.

@ The generator is
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m=(1,1,1)

o Let Q = {123,132,213,231,312,321}.

@ The generator is

-1 — Q2 [e %] 0 a3 0 asz
an —a1 — Q3 0 0 0 0
0 0 —a1 — 0 as 0
M =
0 0 a2 —a1 — o3 [e5) a2
[e%1 [e%1 a1 0 —ap — Q3 0
0 0 0 ap 0 —p — Q3

@ The stationary weights turn out to be

v = (a2a3(a1 + as), a%og, alag, araz(a + a3), aqas(ag + az), a%az) .

Z = (041 + ap + a3)(a1a2 + aja3 + a2a3) = e16o.

A. Ayver, 11Sc



mTALREP
000000000e0000000000

Strategy of proof: Lumping

Let S be the state space of a Markov chain with generator M.

Suppose ~ is an equivalence relation on M.

For s € S, let [s] be the equivalence class of s.

Let M(s,[t]) = > M(s,t).

t'e[t]

Definition

If M(s,[t]) = M(s',[t]) for all s,s’,t € S, then the projected
process on {[s] | s € S} is a Markov chain, known as the lumping
of the original chain.

We will construct a Markov chain whose lumping is the mTALREP.
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Configuration space

o As before, let m = (mq,..., ms) with n=>". m;.

@ Configurations live on a discrete cylinder with s — 1 rows and
n columns.

o Each site is either vacant or occupied by a particle, ...
@ such that the /'th row as M; particles.

A. Ayver, |1Sc
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Multiline TALREP

e With rate «;, the site (s — 1,/) will ring.

o If no particle there, go to site (s — 2, /).
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Multiline TALREP

e With rate «;, the site (s — 1,/) will ring.

o If no particle there, go to site (s — 2, /).

o If there is a particle, it performs a TALREP move to site i,
say. Now go to site (s — 2, ip).

@ Repeat these steps at row s — 2, and continue this way until
we reach row 1.

A. Ayver, |1Sc
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[[lustration
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[[lustration
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[[lustration
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[[lustration
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Basic properties

Proposition

For any m = (my, ..., ms), the multiline TALREP is irreducible.

Proposition

The multiline TALREP is invariant under simultaneous translation
(i.e. rotation) of sites, i — i + 1, and of parameters o; — 1.
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Stationary distribution

Theorem (Amir—Angel-A.—Martin, 2022+)

Let m= (my,...,ms) and n=">; m;.
Let c;(7}) be the number of 1's in the j'th column of 7.
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Stationary distribution

Theorem (Amir—Angel-A.—Martin, 2022+)

Let m= (my,...,ms) and n=">; m;.
Let c;(7}) be the number of 1's in the j'th column of 7.
Then the stationary probability of fj = (fj1, ..., 1n) is given by

A 1 2 —Cj il
() = Z H Q; W,
i=1

Recall Mi =m1 4+ ---+ m; for 1 <i <s. Then clearly

s
1 1
Z:HeMl. (a_l”a_,,>

i=1
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Example

o (o) [ ) (o) (o) O [ ) o] o]
(@] (@] o O (@] [ ] [ ] [ ] ]
[} [ (e) [ ] (o) [ ] O O [ ]
[} [ ) (o) [ [ [ ) [ [ o]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
Weight: L
elght: adadasajaiataladal
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|dea of proof

o Follow the strategy of P. Ferrari and J. Martin (Ann. Prob.
2007) for the multispecies TASEP.

@ Construct a time-reversed process at stationarity.

@ This is related to the notion of pairwise balance for Markov
chains (Schiitz, Ramaswamy, Barma, J. Phys. A. 1996).

e Fix s € S. For every s’ # s such that
s — 5,
we find a weight-preserving s” # s
s —s— 4.
o If s =<' for all s € S, then the chain is reversible.

A. Ayver, |1Sc
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Lumping via bully paths

(o] (@] [ ] o (@] (@] [ ] @] ]
o (e) (e) (o) (o) [ [ ] [ O
[} [ ) (o) [ ] (o) [ ) O o] [ ]
[ ] [ ] (@] [ ] [ ] [ ] [ ] [ ] ]
[} [ ) [ ] [ ] [ ] [ [ [ ] [ ]
. 1
Weight: —————5—273>

Q7 530 g (g iy (g (g
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Lumping via bully paths

o o ' o o o
o o L
° ° o ° o o
o7 [ ) o [ ) [ ) L1
‘_—|01 ° ° ° ° o . ° °
. 1
Weight: ————=— 23>

Q7 530 g (g iy (g (g
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Lumping via bully paths

o o o1 o o o o] o o
o o o L3l L3 o
2 ° o ° o o o | 5
2 o ° ° o ° ° ol_
1 2 [ [ [ o ) ) °
. 1
Weight:

3.3,2,3~,2-,4,-4,-3.2
Q705030 OOy Qig (g
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Lumping via bully paths

o o o o o o o o) o
o o J e 1 0|2 o
2 o3 ) o3 o 1 : .

._4
D

w

=

[

°

T—.-

1

3.3,2,3~,2-,4,-4,-3.2
Q705030 OOy Qig (g

Weight:
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Lumping via bully paths

o o o] o o o o] o o

o o J e 1 (%) o

2 o3 o o3 o 1 | T

1 2 3 1 ]4 ]4 L
1 2 ° 3 3 1 4 4 °

1

3.3,2,3~,2-,4,-4,-3.2
Q705030 OOy Qig (g

Weight:
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Lumping via bully paths

o o o o o o o o) o
o o J e 1 0|2 o
2 o3 ) o3 o 1 : .

=
N

w

w w
= =
22
22

o5 o5

1

3.3,2,3~,2-,4,-4,-3.2
Q705030 OOy Qig (g

Weight:
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Consequences

Proposition
o The marginal process of each row of the multiline TALREP is
the single-species TALREP.
@ The law of the lumped process at the i 'th row is the
mTALREP with content (my,...,m;,miy1+ -+ ms).

This proves the theorem on the stationary distribution of the
mTALREP.
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Example: m = (1,1,1)

°
@ Up to translation, only 2 configurations in .
o v(312) = maz(ag + az):

010 100
011 011
31 2 31 2
3oz 103
o v(321) = aday:
0 01
011
312
a2ay
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Multispecies TALREP with rejection

o let0 <t < 1.

@ As for the mTALREP, m = (my,..., ms).
@ Transition when bell rings at site / with rate «;:
@ Particle at site / moves to the right,
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Multispecies TALREP with rejection

o Llet0<t<1.
@ As for the mTALREP, m = (my,..., ms).

@ Transition when bell rings at site / with rate «;:

@ Particle at site i moves to the right,
@ displaces the j'th weakest particle with probability t/=1/[m]s,
where there are m particles with labels larger than it.
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Multispecies TALREP with rejection

o let0 <t < 1.

@ As for the mTALREP, m = (my,..., ms).
@ Transition when bell rings at site i with rate «;:

@ Particle at site i moves to the right,

@ displaces the j'th weakest particle with probability t/=1/[m]s,
where there are m particles with labels larger than it.

© The displaced particle does the same.
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Multispecies TALREP with rejection

o let0 <t < 1.

@ As for the mTALREP, m = (my,..., ms).
@ Transition when bell rings at site / with rate «;:
@ Particle at site i moves to the right,
@ displaces the j'th weakest particle with probability t/=1/[m]s,
where there are m particles with labels larger than it.
© The displaced particle does the same.
© Continue this way ending at a particle of species s,
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Multispecies TALREP with rejection

o let0 <t < 1.

@ As for the mTALREP, m = (my,..., ms).
@ Transition when bell rings at site i with rate «;:

@ Particle at site i moves to the right,

@ displaces the j'th weakest particle with probability t/=1/[m]s,
where there are m particles with labels larger than it.

© The displaced particle does the same.

© Continue this way ending at a particle of species s,

@ which jumps to /.
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Example

e m=(2,2,1,1,1) so that n=8,s5s =5.

Step 3:

Step 2: / s
y \

3

1253142 ——— 21513132
!
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Partition function

Theorem (Amir—Angel-A.—Martin, 2022+)

Let m= (my,...,ms) and n=); m;. Then the stationary
probability of n = (n1,...,nn) in the multispecies TALREP with

rejection is given by
v(n)

77(77):7,

where v(n) € Z[1/a1,...,1/an, t].

A. Ayver, |1Sc
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Partition function

Theorem (Amir—Angel-A.—Martin, 2022+)

Let m= (my,...,ms) and n=); m;. Then the stationary
probability of n = (n1,...,nn) in the multispecies TALREP with

rejection is given by

w(n) = 2,

where v(n) € Z[1/aa,...,1/an, t]. Recall Mi = my + - -- + m; for
1<i<s. Then

z=TTew (e an) T

=l

is the partition function.
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m=(1,1,1)

o Let Q = {123,132,213,231,312,321}.

@ The generator is

—Q1 — Q2 a3 0 Oé3/[2]t 0 a3/[2]t
[a%) -] — (3 azt‘/[Z]t 0 0421'/[211» 0
M= 0 0 -] — O(3f/[2]t a3 Ck3/[2]t
0 0 az/[2]y  —a1—a3  a2/[2]: as
a1/[2]¢ a1/[2]¢ a1 0 —ap — a3 0
alt/[2]t alt/[Z]t 0 a1 0 —ap — Q3

A. Ayver, |1Sc
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o Let Q = {123,132,213,231,312,321}.

@ The generator is

—Q1 — Q2 a3 0 Oé3/[2]t 0 043/[2]1»
[a%) -] — (3 azt‘/[Z]t 0 0421'/[211» 0
M= 0 0 -] — O(3f/[2]t a3 Ck3/[2]t
0 0 az/[2]y  —a1—a3  a2/[2]: as
a1/[2]¢ a1/[2]¢ a1 0 —ap — a3 0
alt/[2]t alt/[Z]t 0 a1 0 —ap — Q3

@ The stationary weights turn out to be

v = (a2a3(a1 + (14 t)az), azaz(tar + (1 + t)az), agas(tas + (1 + t)as),

araz((1+ t)az + a3), araz((1 + t)ar + a2), agao((1 + t)ag + ta3)).

@ Z=(1+1t)(o1+ a2+ az)(araz + ajaz + azas).

A. Ayver, |1Sc
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Proof strategy

@ We do not have a multiline TALREP with rejection (yet)!

@ We give (now t-dependent) weights to multiline
configurations.
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Proof strategy

@ We do not have a multiline TALREP with rejection (yet)!

@ We give (now t-dependent) weights to multiline
configurations.

@ In arXiv:1811.01024, Corteel, Mandelshtam and Williams
give a combinatorial formula for the nonsymmetric Macdonald
polynomial Ex(xi,...,Xn; g, t) and the permuted basement
Macdonald polynomials (Ferreira 2011, Alexandersson 2016)
EZ(x1,...,Xn: q, ).

@ Both involves a sum over weights of these multiline
configurations with the same projection map.

A. Ayver, |1Sc
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Proof strategy

@ This further leads to a combinatorial formula for
Pax(x1, .-, Xni g, t).
@ Our weights match theirs when g = 1.
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Proof strategy

@ This further leads to a combinatorial formula for
Pax(x1, .-, Xni g, t).
@ Our weights match theirs when g = 1.

e Alexandersson and Sawhney (Ann. Comb. 2019) proved a
certain factorisation property for EZ(xi, ..., Xn; g, t) which
gives our result.

@ Note that this is a very indirect proof.

A. Ayver, |1Sc



mTALREP with rejection
000000@00000

Symmetric functions

o Let xq,xp,... be a family of commuting indeterminates.

o Let A =A(q,t) be the algebra of symmetric functions in these
indeterminates with coefficients in Q(q, t).

@ There are several natural bases of A(Q) indexed by partitions
A, e.g. Schur functions sy.

@ The Macdonald polynomials are an amazing two-parameter
family of symmetric polynomials Py(x; g, t) (I. Macdonald,
Sem. Loth. Comb., 1988).

@ A simultaneous generalisation of many known families of
symmetric functions.

A. Ayver, |ISc
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Specialisations

e g=t

Py(x; t, t) = sx(x).
ot=1

PA(x; q,1) = my(x).
e g=1

P)\(X; 1, t = e)\/ He,\/
i>1

A. Ayver, |1Sc
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Where are the Macdonald polynomials?

@ Recall that the particle content is given by (my, ..., ms) and
n=>,m;.

e Construct the partition A = ((s —1)™,...,0™).
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Where are the Macdonald polynomials?

@ Recall that the particle content is given by (my, ..., ms) and
n=>,m;.

e Construct the partition A = ((s —1)™,...,0™).

@ Then we have

s—1
1 1
Z =Py(1/a1,....1/an1,t) =[] em, <a1) :

«
i=1 n

A. Ayver, |1Sc
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More evidence for Macdonald polynomials: |

@ Recall Martin's formula for the stationary distribution of the
multispecies ASEP.

@ The prefactor in Z involving t-factorials is the same as the
one found by Martin.

@ His proof used multiline queues with rejection.

A. Ayver, |ISc
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More evidence for Macdonald polynomials: [l

o o o] o) o o ¢ o
S~———
o 2 o ®) o] ®) [¢) o
- l ~> e
L P) o o o o] [ 3} o3
1 qt3(1 — t)*

arasazasasaazag (1 — qt2)(1— qt3)(1 — qt*)(1 — ¢°t)

@ Upon setting a1 = -+ = a, = g = 1 in the combinatorial
formula for the nonsymmetric Macdonald polynomial, Corteel,
Mandelshtam and Williams (arXiv:1811.01024) recover the
results of Martin.

A. Ayver, |1Sc
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What about the full Macdonald polynomial?

e P,(x;q,t) does not factorise in general.

@ From arXiv:1811.01024, the intuition is that g should be a
parameter in the transition involving sites n and 1.

@ Therefore, we lose translation invariance.

@ We do not have either a generalised mTALREP with rejection
or a generalised multiline TALREP whose partition function is
the Macdonald polynomial.

@ We believe insights from integrable models can play a key role
in defining such a model.

A. Ayver, |ISc



Observables
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Current

@ The current of particles of species j across any edge is the
number of such particles traversing that edge per unit time in
the long-time limit.

@ Because of particle conservation, this is independent of the
edge.

Theorem

For the multispecies TALREP with content (my, ..., ms) on n
sites, the current of species j is given by

5<2Mj+1’1mj71>(1/041, o 1l/ap)
eMj(l/al,. “ oy 1/aL)eMj+1(1/a1, ey 1/04L)'
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Observables
oce

Density

@ The density of particles of species j on a site is the probability
of such particle occupying that site in the long-time limit.

@ By symmetry, it is enough to consider the density at site 1.

Theorem

For the multispecies TALREP with content (my,..., ms) on n
sites, the density of species j at the first site is given by

1 S<2Mj,1,1mj—1>(l/a2, so0g l/aL)
(6%} eNj(l/al, cooy 1/aL)eNj_1(1/a1, 5oy 1/04L)‘

A. Ayver, |1Sc
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