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M Transition probabilities from higher rank vertex models
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Asymmetric simple exclusion process

Space-time ASEP Simulation
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Time-evolution

m The probability satisfies the time-evolution equation
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Time-evolution

m The probability satisfies the time-evolution equation
d
G Pit) = S WA S VP E) = Y W — p)P(v; t)
Av utv
m The totally asymmetric version (TASEP) is obtained by setting g = 0.

Theorem (Schiitz (1997), Tracy and Widom (2008))

Given initial v and final conditions v the transition probability on Z is given by

TASEP T dz 1T 11—z i il —p—
PP ) = [T g2 S I (52 ) o g
01 1 g

TES, i=

which satisfies the time-evolution with initial condition

P(;FASEP(N — V) = H 6’/,',;14'

=1
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TASEP crossing probability

m We choose the step initial condition pj = i
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TASEP crossing probability

m We choose the step initial condition pj = i

m Define probability of n particles crossing a wall at position s € N as

Pcross(S) = P(S <nm<m<---< Vn)-

NpF=-==-==-
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Limiting behaviour of TASEP

m We may find this probability as a Fredholm determinant
PCTOSS(S) = det(]‘ - K"(va))EQ(N)7
where

Ka(x,y) = Y $()un(y).
k=0
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m We may find this probability as a Fredholm determinant
PCTOSS(S) = det(]‘ - K"(va))EZ(N)7
where

Ka(x,y) = Y $()un(y).
k=0

m The functions ¢, ¥ are defined as contour integrals

R B e B e

3 i (n — 1)k+1° 2mi (k2

m We change k = vt — Kt'/3 for k > 0 and through a steepest decent
analysis we find

tllm (), /3 (51 t1/3) = Ai(k + &),

Nim B0,y (1'7) = Ails + &),

which converge uniformly for some unimportant functions fi, f>.
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Limiting behaviour of TASEP
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Limiting behaviour of TASEP

m With the change k = vt — kt¥/% and n = vt as t — o0

n—1

Koloo) = D n(al) ~ [ A ) A+ € = (1,0
k=0 0

m This function satisfies

det(1 — Kairy(§1,€2)) 20y = F2(@)

where F; is the Tracy-Widom distribution of the largest eigenvalue for the
Gaussian unitary ensemble (GUE).
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Limiting behaviour of TASEP

Theorem (Johansson, 2000)

For the step initial condition, when setting n = vt, we obtain the limit

lim P <M > a) = F(w),

t— o0 cot!/3

for some constant c.
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Limiting behaviour of TASEP

Theorem (Johansson, 2000)

For the step initial condition, when setting n = vt, we obtain the limit

lim P <m > a) = F(w),

t— o0 cot!/3
for some constant c.

m The TASEP lies within the KPZ universality class for the case of step
initial condition.

m There are very few rigorous similar results for models with distinguishable
particles. Our work provides a starting point for their asymptotic analysis.
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m We start with a square lattice and draw paths between vertices
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Six-vertex model

m We start with a square lattice and draw paths between vertices
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m We wish to compute the partition function of this model.
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Six-vertex model

m We start with a square lattice and draw paths between vertices
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m We wish to compute the partition function of this model.
m Schiitz's TASEP transition probability can be realised as the partition
function of the stochastic six-vertex model.
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Six-vertex model weights

m We are allowed to have the following vertex Configurations with
Boltzmann weights
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Six-vertex model weights

m We are allowed to have the following vertex Configurations with
Boltzmann weights
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m The classical partition function can be computed by summing over
connected path configurations

Z = Z af(1—a)*alf (1 - a)”.
Q
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Six-vertex model weights

m Introduce a small parameter € > 0
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Six-vertex model weights

m Introduce a small parameter € > 0

m Set a, = 0 and a1 = € which gives the weights as
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Reduction to TASEP

m The TASEP transition probability can be realised as the partition function
of the stochastic six-vertex model.
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Reduction to TASEP

m The TASEP transition probability can be realised as the partition function
of the stochastic six-vertex model.
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Multi-species TASEP

m We investigate a multi-species version of the TASEP.
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Multi-species TASEP

m We investigate a multi-species version of the TASEP.

m We have many distinguishable particle species, where higher particle
species have priority over lower species.

OSSN ONOROAINOROA
m We aim to recover transition probabilities for the r-TASEP from a vertex
model.
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Higher Rank Stochastic Vertex Model

m We also consider a multi-coloured higher rank version of the stochastic six

vertex model with U, (;[,,H) symmetry.
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Higher Rank Stochastic Vertex Model

m We also consider a multi-coloured higher rank version of the stochastic six
vertex model with U, (5[n+1) symmetry.

m It will have a partition function with appropriate weights represented by

AN
T i i
1

m We can also reduce the multi-coloured partition function to the rainbow
TASEP.

m This rainbow TASEP can be partially symmetrized into the form of a
general r-species TASEP.

PZ_TASEP(M N 1/)
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The Two-species Model

m The simplest multi-species model is the 2-TASEP
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The Two-species Model

m The simplest multi-species model is the 2-TASEP
m We wish to study total crossing events of the 2-TASEP

totally crossed final state v

initial state p

m We consider n total particles with m of them being type 2.
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2-TASEP Crossing Probability

m The 2-TASEP transition probability simplifies under total crossing events.
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2-TASEP Crossing Probability

m The 2-TASEP transition probability simplifies under total crossing events.

2-TASEP dz; de
Fi (n=v)= j{H 2mi ; 27r1

le)tnm n—m

m e(: 7171)1. m
T T T -
J=

i=1

v i—1 i—j vi— =il P
e —z A —w;
xd t( R (A f) det <w, (1 ) J)
1<ij<m

1<ij<n—m
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2-TASEP Crossing Probability

m The 2-TASEP transition probability simplifies under total crossing events.

dz; 71 dw;
P> TASEP i dw;
(n=v)= H 2mi ; 27r1

le)tnm n—m

m e(: 7171)1. m
T T T -
J=

i=1
et (771 o - z,.y—f) det (w2 (1 W,.)f—f)
1<ij<m

1<ij<n—m

m This result generalises to r-species using the vertex model approach.
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2-TASEP Crossing Probability

‘—H—.—.—.—. v

Bernoulli distributed  fixed position
with density p
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2-TASEP Crossing Probability
t /////z
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Bernoulli distributed  fixed position
with density p
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2-TASEP Crossing Probability

The Bernoulli crossing probability is given by

(z,-—l)tz—SQ—m+1

B-cross dZ, o = e A
SRS BRI I ROl fav e

0,1,1-p j_1 i#j i=1
n—m m n—m n—m _
I ) (I |
— Zi — w
- i ! (1 — wy)n—m—i+l
A= i=1 j=1 i=1

X det (Vv.j_1 _ Win_m+sl_52_1)

1<ij<n—m "

20/23



2-TASEP Crossing Probability

What if we take s; < —m?

S1

m Since the type 1 particles move backwards when overtaken, all possible
total crossing configurations contribute towards PE%(s;, s).
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2-TASEP Crossing Probability

When s; < —m the (n — m)-fold integral over type 1 particles collapses into 1
integral

dw e(wfl)t Wn72m75271

B-cross m
P;

(o2) =" Pom w-1

<% dz e(z—l)tzi+j—52—m—1 ( )>
X det — w—z .
011 p 2mi (z — 1)™t(z — 1 4 p) r<iiem
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Final Thoughts

m The initial TASEP results in this talk exist in an extended form with
left-hopping included (general ASEP).
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Final Thoughts

m The initial TASEP results in this talk exist in an extended form with
left-hopping included (general ASEP).

m The focus of future work will investigate the KPZ style asymptotic analysis
of multi-coloured models.

m This has only been investigated in very limited circumstances.

m Recent work (Nejjar, 2020) investigates the asymptotics with one
second-class particle, which we expect to recover.

m These multi-species transition probabilities are useful for constructing
higher-rank stochastic dualities and their expectations (work in progress).
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