Transition Probabilities in the Multi-species Asymmetric Exclusion Process

William Mead

School of Mathematics and Statistics
The University of Melbourne

Based on work with Jan de Gier and Michael Wheeler (arXiv:2109.14232)

Randomness, Integrability and Universality
Galileo Galilei Institute for Theoretical Physics, Florence
4 May 2022
1 Single-colour models
1 Single-colour models
 - ASEP
1 Single-colour models
 - ASEP
 - Transition probabilities from vertex models
Outline

1. Single-colour models
 - ASEP
 - Transition probabilities from vertex models

2. Multi-colour models
1. Single-colour models
 - ASEP
 - Transition probabilities from vertex models
2. Multi-colour models
 - Transition probabilities from higher rank vertex models
1. Single-colour models
 - ASEP
 - Transition probabilities from vertex models
2. Multi-colour models
 - Transition probabilities from higher rank vertex models
3. Progress on two-colours
Consider an ASEP on the infinite lattice \mathbb{Z}.
Consider an ASEP on the infinite lattice \mathbb{Z}.

The ASEP is
Asymmetric simple exclusion process

Consider an ASEP on the infinite lattice \mathbb{Z}

The ASEP is
- a continuous time Markov process
Asymmetric simple exclusion process

Consider an ASEP on the infinite lattice \mathbb{Z}

The ASEP is

- a continuous time Markov process
- integrable
Asymmetric simple exclusion process
The probability satisfies the time-evolution equation

$$\frac{d}{dt} P(\nu; t) = \sum_{\lambda \neq \nu} \mathcal{W}(\lambda \rightarrow \nu) P(\lambda; t) - \sum_{\mu \neq \nu} \mathcal{W}(\nu \rightarrow \mu) P(\nu; t)$$
The probability satisfies the time-evolution equation

$$\frac{d}{dt} P(\nu; t) = \sum_{\lambda \neq \nu} W(\lambda \rightarrow \nu) P(\lambda; t) - \sum_{\mu \neq \nu} W(\nu \rightarrow \mu) P(\nu; t)$$

The totally asymmetric version (TASEP) is obtained by setting $q = 0$.
The probability satisfies the time-evolution equation

\[
\frac{d}{dt} P(\nu; t) = \sum_{\lambda \neq \nu} W(\lambda \rightarrow \nu) P(\lambda; t) - \sum_{\mu \neq \nu} W(\nu \rightarrow \mu) P(\nu; t)
\]

The totally asymmetric version (TASEP) is obtained by setting \(q = 0\).

Theorem (Schütz (1997), Tracy and Widom (2008))

Given initial \(\mu\) and final conditions \(\nu\) the transition probability on \(\mathbb{Z}\) is given by

\[
P_{t}^{TASEP}(\mu \rightarrow \nu) = \int_{0}^{\infty} \prod_{i=1}^{n} \frac{dz_{i}}{2\pi i} \sum_{\pi \in S_{n}} (-1)^{|\pi|} \prod_{i=1}^{n} \left(\frac{1 - z_{i}}{1 - z_{\pi_{i}}} \right)^{i} e^{(z_{i}^{-1} - 1)t} z_{\nu_{i}}^{\nu_{i}} z_{i}^{-\mu_{i} - 1}
\]

which satisfies the time-evolution with initial condition

\[
P_{0}^{TASEP}(\mu \rightarrow \nu) = \prod_{i=1}^{n} \delta_{\nu_{i}, \mu_{i}}.
\]
We choose the step initial condition $\mu_i = i$
We choose the step initial condition $\mu_i = i$

Define probability of n particles crossing a wall at position $s \in \mathbb{N}$ as

$$P_{\text{cross}}(s) = \mathbb{P}(s \leq \nu_1 < \nu_2 < \cdots < \nu_n).$$
We may find this probability as a Fredholm determinant

\[P_{\text{cross}}(s) = \det(1 - K_n(x, y))_{\ell^2(\mathbb{N})}, \]

where

\[K_n(x, y) = \sum_{k=0}^{n-1} \phi_k(x)\psi_k(y). \]
We may find this probability as a Fredholm determinant

\[P_{\text{cross}}(s) = \det(1 - K_n(x, y))_{\ell^2(\mathbb{N})}, \]

where

\[K_n(x, y) = \sum_{k=0}^{n-1} \phi_k(x) \psi_k(y). \]

The functions \(\phi_k, \psi_k \) are defined as contour integrals

\[\phi_k(x) = \oint_1 \frac{d\eta}{2\pi i} \frac{\eta^{k-x} e^{-\eta t}}{(\eta - 1)^{k+1}}, \quad \psi_k(y) = \oint_0 \frac{d\zeta}{2\pi i} \frac{(\zeta - 1)^k e^{\zeta t}}{\zeta^{k-y+2}}. \]
Limiting behaviour of TASEP

We may find this probability as a Fredholm determinant

\[P_{\text{cross}}(s) = \det(1 - K_n(x, y))_{\ell^2(\mathbb{N})}, \]

where

\[K_n(x, y) = \sum_{k=0}^{n-1} \phi_k(x) \psi_k(y). \]

The functions \(\phi_k, \psi_k \) are defined as contour integrals

\[\phi_k(x) = \oint_1 d\eta \frac{\eta^{k-x} e^{-\eta t}}{2\pi i (\eta - 1)^{k+1}}, \quad \psi_k(y) = \oint_0 d\zeta \frac{(\zeta - 1)^k e^{\zeta t}}{\zeta^{k-y+2}}. \]

We change \(k = vt - \kappa t^{1/3} \) for \(\kappa > 0 \) and through a steepest decent analysis we find

\[\lim_{t \to \infty} f_1(t) \phi_{vt - \kappa t^{1/3}} \left(\xi_1 t^{1/3} \right) = \text{Ai}(\kappa + \xi_1), \]

\[\lim_{t \to \infty} f_2(t) \psi_{vt - \kappa t^{1/3}} \left(\xi_2 t^{1/3} \right) = \text{Ai}(\kappa + \xi_2), \]

which converge uniformly for some unimportant functions \(f_1, f_2 \).
Limiting behaviour of TASEP

With the change \(k = \nu t - \kappa t^{1/3} \) and \(n = \nu t \) as \(t \to \infty \)

\[
K_n(x, y) = \sum_{k=0}^{n-1} \phi_k(x) \psi_k(y) \sim \int_0^\infty \text{Ai}(\kappa + \xi_1) \text{Ai}(\kappa + \xi_2) d\kappa =: K_{\text{Airy}}(\xi_1, \xi_2)
\]
With the change $k = vt - \kappa t^{1/3}$ and $n = vt$ as $t \to \infty$

$$K_n(x, y) = \sum_{k=0}^{n-1} \phi_k(x) \psi_k(y) \sim \int_0^\infty Ai(\kappa + \xi_1) Ai(\kappa + \xi_2) d\kappa =: K_{\text{Airy}}(\xi_1, \xi_2)$$

This function satisfies

$$\det(1 - K_{\text{Airy}}(\xi_1, \xi_2))_{L^2(\mathbb{R} \geq \alpha)} = F_2(\alpha)$$

where F_2 is the Tracy-Widom distribution of the largest eigenvalue for the Gaussian unitary ensemble (GUE).
Theorem (Johansson, 2000)

For the step initial condition, when setting $n = vt$, we obtain the limit

$$\lim_{t \to \infty} P \left(\frac{\nu_1(t) - vt}{c_0 t^{1/3}} \geq \alpha \right) = F_2(\alpha),$$

for some constant c_0.

Limiting behaviour of TASEP
Theorem (Johansson, 2000)

For the step initial condition, when setting $n = vt$, we obtain the limit

$$\lim_{t \to \infty} P\left(\frac{\nu_1(t) - vt}{c_0 t^{1/3}} \geq \alpha \right) = F_2(\alpha),$$

for some constant c_0.

- The TASEP lies within the KPZ universality class for the case of step initial condition.
Theorem (Johansson, 2000)

For the step initial condition, when setting $n = vt$, we obtain the limit

$$\lim_{t \to \infty} \mathbb{P}\left(\frac{v_1(t) - vt}{c_0 t^{1/3}} \geq \alpha \right) = F_2(\alpha),$$

for some constant c_0.

- The TASEP lies within the KPZ universality class for the case of step initial condition.

- There are very few rigorous similar results for models with distinguishable particles. Our work provides a starting point for their asymptotic analysis.
We start with a square lattice and draw paths between vertices.
We start with a square lattice and draw paths between vertices
We start with a square lattice and draw paths between vertices.

We wish to compute the partition function of this model.
We start with a square lattice and draw paths between vertices.

We wish to compute the partition function of this model.

Schütz’s TASEP transition probability can be realised as the partition function of the stochastic six-vertex model.
We are allowed to have the following vertex Configurations with Boltzmann weights:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>(a_1)</th>
<th>(1 - a_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1 - a_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We are allowed to have the following vertex configurations with Boltzmann weights:

The classical partition function can be computed by summing over connected path configurations:

\[
\mathcal{Z} = \sum_{\Omega} a_1^\# (1 - a_1)^\# a_2^\# (1 - a_2)^\#.
\]
Six-vertex model weights

- Introduce a small parameter $\epsilon > 0$
Introduce a small parameter $\epsilon > 0$

Set $a_2 = 0$ and $a_1 = \epsilon$ which gives the weights as

\[
\begin{array}{ccc}
1 & \epsilon & 1 - \epsilon \\
\epsilon & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]
Reduction to TASEP

t/ϵ rows
Reduction to TASEP

t/ε rows
Reduction to TASEP

t/\epsilon \text{ rows}

take \epsilon \to 0
Reduction to TASEP

t/ϵ rows

take $\epsilon \to 0$

TASEP space-time diagram
Reduction to TASEP

t/\epsilon\) rows

take \(\epsilon \rightarrow 0\)

TASEP space-time diagram
The TASEP transition probability can be realised as the partition function of the stochastic six-vertex model.
The TASEP transition probability can be realised as the partition function of the stochastic six-vertex model.

Proposition

\[
\lim_{\epsilon \to 0} \mathbb{P}^{6VM}[\mu \to \nu - (t/\epsilon)^n]\bigg|_{\ell=t/\epsilon, a_1=\epsilon, a_2=0} = \mathbb{P}_t^{TASEP}(\mu \to \nu)
\]
We investigate a multi-species version of the TASEP.
We investigate a multi-species version of the TASEP.

We have many distinguishable particle species, where higher particle species have priority over lower species.
We investigate a multi-species version of the TASEP.

We have many distinguishable particle species, where higher particle species have priority over lower species.

We aim to recover transition probabilities for the r-TASEP from a vertex model.
We also consider a multi-coloured higher rank version of the stochastic six vertex model with $U_q \left(\hat{\mathfrak{sl}}_{n+1} \right)$ symmetry.
We also consider a multi-coloured higher rank version of the stochastic six vertex model with $U_q\left(\widehat{sl}_{n+1}\right)$ symmetry.

It will have a partition function with appropriate weights represented by the diagram:
We also consider a multi-coloured higher rank version of the stochastic six vertex model with $U_q \left(\widehat{sl}_{n+1} \right)$ symmetry.

It will have a partition function with appropriate weights represented by

![Diagram of a multi-coloured stochastic vertex model with arrows and lines indicating transitions between states.](image)

We can also reduce the multi-coloured partition function to the rainbow TASEP.

$$P_r \text{-TASEP}(\mu \rightarrow \nu)$$
We also consider a multi-coloured higher rank version of the stochastic six vertex model with $U_q \left(\hat{sl}_{n+1} \right)$ symmetry.

It will have a partition function with appropriate weights represented by

$$\frac{1}{2} \cdots \frac{1}{n}$$

We can also reduce the multi-coloured partition function to the rainbow TASEP.

This rainbow TASEP can be partially symmetrized into the form of a general r-species TASEP.

$$\mathbb{P}^r_{t} - \text{TASEP} (\mu \rightarrow \nu)$$
The Two-species Model

- The simplest multi-species model is the 2-TASEP
The simplest multi-species model is the 2-TASEP

We wish to study total crossing events of the 2-TASEP

totaly crossed final state ν
The Two-species Model

- The simplest multi-species model is the 2-TASEP
- We wish to study total crossing events of the 2-TASEP

We consider n total particles with m of them being type 2.
The 2-TASEP transition probability simplifies under total crossing events.
The 2-TASEP transition probability simplifies under total crossing events.

Proposition

\[
\mathbb{P}_{t}^{2-TASEP}(\mu \rightarrow \nu) = \oint \prod_{i=1}^{m} \frac{dz_i}{2\pi i} \prod_{j=1}^{n-m} \frac{dw_j}{2\pi i} \\
\times \prod_{i=1}^{m} \left(\frac{e^{(z_i^{-1}-1)t}}{(1-z_i)^{n-m}}\right) \prod_{i=1}^{n-m} \left(\frac{e^{(w_i^{-1}-1)t}}{(1-w_i)^{n-m}}\right) \prod_{i=1}^{m} \prod_{j=1}^{n-m} (w_j - z_i) \\
\times \det \left(\binom{\nu_{n-m+j}-\mu_{i-1}}{(1-z_i)^{i-j}}\right)_{1 \leq i, j \leq m} \det \left(\binom{\nu_{j+m-i-1}}{(1-w_i)^{i-j}}\right)_{1 \leq i, j \leq n-m}
\]
The 2-TASEP transition probability simplifies under total crossing events.

Proposition

\[
\mathbb{P}^{2\text{-TASEP}}_t (\mu \rightarrow \nu) = \oint \prod_{i=1}^{m} \frac{dz_i}{2\pi i} \prod_{j=1}^{n-m} \frac{dw_j}{2\pi i} \\
\times \prod_{i=1}^{m} \frac{e^{(z_i^{-1}-1)t}}{(1-z_i)^{n-m}} \prod_{i=1}^{n-m} e^{(w_i^{-1}-1)t} \prod_{i=1}^{m} \prod_{j=1}^{n-m} (w_j - z_i) \\
\times \text{det} \left(z_i^{\nu_j - \mu_i + 1} (1 - z_i)^{i-j} \right)_{1 \leq i,j \leq m} \text{det} \left(w_i^{\nu_j - \mu_m + i - 1} (1 - w_i)^{i-j} \right)_{1 \leq i,j \leq n-m}
\]

This result generalises to \(r \)-species using the vertex model approach.
2-TASEP Crossing Probability

Bernoulli distributed with density ρ

fixed position
2-TASEP Crossing Probability

Bernoulli distributed with density ρ

fixed position
2-TASEP Crossing Probability

Bernoulli distributed with density ρ

fixed position

s_1

s_2
The Bernoulli crossing probability is given by

\[
P_{B-cross}^{t}(s_1, s_2) = \frac{\rho^m}{m!} \oint_{0,1,1-\rho} \prod_{i=1}^{m} \frac{dz_i}{2\pi i} \prod_{i \neq j} (z_j - z_i) \prod_{i=1}^{m} \frac{e^{(z_i-1)t} z_i^{-s_2-m+1}}{(z_i-1)^n(z_i-1+\rho)}
\]

\[
\times \oint_{0,1} \prod_{i=1}^{n-m} \frac{dw_i}{2\pi i} \prod_{i=1}^{m} \prod_{j=1}^{n-m} (z_i - w_j) \prod_{i=1}^{n-m} \frac{-e^{(w_i-1)t} w_i^{-s_1-m}}{(1-w_i)^{n-m-i+1}}
\]

\[
\times \det \left(w_i^{j-1} - w_i^{n-m+s_1-s_2-1} \right)_{1 \leq i, j \leq n-m}.
\]
What if we take $s_1 < -m$?

Since the type 1 particles move backwards when overtaken, all possible total crossing configurations contribute towards $\mathbb{P}_t^{B-cross}(s_1, s_2)$.
Proposition

When $s_1 \leq -m$ the $(n - m)$-fold integral over type 1 particles collapses into 1 integral

\[P^t_{B-cross}(s_1, s_2) = \rho^m \oint_0^{2\pi i} \frac{dw}{w - 1} e^{(w-1)t} w^{n-2m-s_2-1} \]
\[\times \det \left(\oint_{0,1,1-\rho} \frac{dz}{2\pi i} \frac{e^{(z-1)t} z^{i+j-s_2-m-1}}{(z-1)^{m+1}(z-1+\rho)} (w - z) \right)_{1 \leq i,j \leq m}. \]
The initial TASEP results in this talk exist in an extended form with left-hopping included (general ASEP).

Recent work (Nejjar, 2020) investigates the asymptotics with one second-class particle, which we expect to recover. These multi-species transition probabilities are useful for constructing higher-rank stochastic dualities and their expectations (work in progress).
Final Thoughts

- The initial TASEP results in this talk exist in an extended form with left-hopping included (general ASEP).

- The focus of future work will investigate the KPZ style asymptotic analysis of multi-coloured models.
Final Thoughts

- The initial TASEP results in this talk exist in an extended form with left-hopping included (general ASEP).

- The focus of future work will investigate the KPZ style asymptotic analysis of multi-coloured models.

 - This has only been investigated in very limited circumstances.
The initial TASEP results in this talk exist in an extended form with left-hopping included (general ASEP).

The focus of future work will investigate the KPZ style asymptotic analysis of multi-coloured models.

- This has only been investigated in very limited circumstances.

- Recent work (Nejjar, 2020) investigates the asymptotics with one second-class particle, which we expect to recover.
Final Thoughts

- The initial TASEP results in this talk exist in an extended form with left-hopping included (general ASEP).

- The focus of future work will investigate the KPZ style asymptotic analysis of multi-coloured models.

 - This has only been investigated in very limited circumstances.

 - Recent work (Nejjar, 2020) investigates the asymptotics with one second-class particle, which we expect to recover.

- These multi-species transition probabilities are useful for constructing higher-rank stochastic dualities and their expectations (work in progress).