Correlation functions in many-body systems:
Euler hydrodynamics, macroscopic fluctuation theory,
and long-range correlations.

Benjamin Doyon
Department of Mathematics, King's College London

“Randomness, Integrability and Universality”, Galileo Galilei Institute, Florence
5 May 2022
Plan

Correlation functions **at large scales of space and time**

\[\langle a_1(x_1, t_1)a_2(x_2, t_2) \cdots \rangle, \quad x_i, t_i \to \infty \]
Plan

Correlation functions **at large scales of space and time**

\[\langle a_1(x_1, t_1) a_2(x_2, t_2) \cdots \rangle, \quad x_i, t_i \to \infty \]

in **statistical ensembles, in or out of equilibrium**

e.g. \(\langle \cdots \rangle = \frac{1}{Z} \text{Tr} e^{-\beta H} \cdots \) or \(\langle \cdots \rangle = \frac{1}{Z} \text{Tr} e^{-\int_{\mathbb{R}} dx \beta(x) h(x)} \cdots \) etc.
Plan

Correlation functions at large scales of space and time

\[\langle a_1(x_1, t_1) a_2(x_2, t_2) \cdots \rangle, \quad x_i, t_i \to \infty \]

in statistical ensembles, in or out of equilibrium

\[\langle \cdots \rangle = \frac{1}{Z} \text{Tr} \ e^{-\beta H} \cdots \text{ or } \langle \cdots \rangle = \frac{1}{Z} \text{Tr} \ e^{-\int_{\mathbb{R}} dx \beta(x) h(x)} \cdots \text{ etc.} \]

in one-dimensional many-body systems with short-range interactions such as spin chains, one-dimensional gases of quantum or classical particles, field theories, etc.

\[\text{e.g. } H = \sum_{x \in \mathbb{Z}} \left(\sigma_x^1 \sigma_{x+1}^1 + \sigma_x^2 \sigma_{x+1}^2 \right) \text{ or } H = \sum_i \frac{p_i^2}{2} + \sum_{ij} V(x_i - x_j) \text{ etc.} \]

of local observables

\[\text{e.g. } a(x, t) = \sigma_x^3(t) := e^{iHt} \sigma_x^3 e^{-iHt} \text{ or } a(x, t) = \sum_i \delta(x - x_i(t)) \]
Plan

Correlation functions at large scales of space and time

\[\langle a_1(x_1, t_1) a_2(x_2, t_2) \cdots \rangle, \quad x_i, t_i \to \infty \]

in statistical ensembles, in or out of equilibrium

\[\text{e.g. } \langle \cdots \rangle = \frac{1}{Z} \text{Tr} e^{-\beta H} \cdots \text{ or } \langle \cdots \rangle = \frac{1}{Z} \text{Tr} e^{-\int \beta(x) h(x) dx} \cdots \text{ etc.} \]

in one-dimensional many-body systems with short-range interactions such as spin chains, one-dimensional gases of quantum or classical particles, field theories, etc.

\[\text{e.g. } H = \sum_{x \in \mathbb{Z}} \left(\sigma_x^1 \sigma_{x+1}^1 + \sigma_x^2 \sigma_{x+1}^2 \right) \text{ or } H = \sum_i \frac{p_i^2}{2} + \sum_{ij} V(x_i - x_j) \text{ etc.} \]

of local observables

\[\text{e.g. } a(x, t) = \sigma_x^3(t) := e^{iHt} \sigma_x^3 e^{-iHt} \text{ or } a(x, t) = \sum_i \delta(x - x_i(t)) \]

Using ideas of hydrodynamics (understood in a general sense)
Plan

- Hydrodynamic linear response for two-point functions in stationary states.

 [Spohn, BD - SciPost 2017; BD - SciPost 2018; Del Vecchio Del Vecchio, BD - 2021; BD - CMP 2021; Ampelogiannis, BD - 2022]

- Fluctuations: full counting statistics and twist field correlation functions in stationary states.

 [Myers, Bhaeeen, Harris, BD - SciPost 2019; BD, Myers - AHP 2020; Del Vecchio Del Vecchio, BD - 2021]

- A general macroscopic fluctuation theory for the Euler scale: generic long-range correlations in non-stationary states of interacting models.

 [BD, Perfetto, Sasamoto, Yoshimura - in prep]
Basic correlation results

By Araki 1969 and Lieb & Robinson 1972:

\[\langle a(x, t)b(0, 0) \rangle^c = \langle a(x, t)b(0, 0) \rangle - \langle a(x, t) \rangle \langle b(0, 0) \rangle \]

In state \(\langle \cdot \rangle = Z^{-1} \text{Tr} \, e^{-W} \cdot \) with \(W, H \) short range interaction

\[\leq 2 \| a \| \| b \| \]

\[\leq C \| a \| \| b \| \, e^{-\mu(x-v_{LR}t)} \]
Basic correlation results

Almost-everywhere ergodicity: take stationary state and translation invariance,

\[[W, H] = 0 \]

Theorem: then inside any correlation function, for any \(\omega \in \mathbb{R} \),

\[
\lim_{T \to \infty} \frac{1}{T} \int_0^T dt \ e^{i\omega t} a(vt, t) = \langle a \rangle \, 1_{\delta_{\omega,0}} \quad \text{for almost all} \ v \in \mathbb{R}
\]

[BD - CMP 2021; Ampelogiannis, BD - 2022]
Hydrodynamic linear response

This is enough to give rise to the hydrodynamic structure inside the LR cone: the true relevant velocities for correlations are the hydrodynamic velocities v^{eff}_i.
Hydrodynamic linear response:

leading large-scale correlations are due to travelling waves
Hydrodynamic linear response

Hydrodynamic linear response:

leading large-scale correlations are due to travelling waves

Conserved densities (∂_x is “discrete derivative” in the case of quantum chains)

\[\partial_t q_i + \partial_x j_i = 0 \]

e.g. in XX model:
\[q_0(x) = \sigma_x^3, \quad q_1(x) = \sigma_x^1 \sigma_{x+1}^1 + \sigma_x^2 \sigma_{x+1}^2 \text{ etc.} \]

and their currents:
\[j_0(x) = 2(\sigma_{x-1}^1 \sigma_x^2 - \sigma_{x-1}^2 \sigma_x^1), \text{ etc.} \]
Hydrodynamic linear response

Hydrodynamics: from initial **inhomogeneous states** of large wavelength ℓ, e.g.

$$\rho \propto e^{-\int dx \beta^i(x/\ell)q_i(x)}$$

in “fluid cells” of mesoscopic sizes L much greater than microscopic lengths ℓ_{micro}.

$$\ell_{\text{micro}} \ll L \ll \ell$$
Hydrodynamic linear response

Hydrodynamics: from initial **inhomogeneous states** of large wavelength \(\ell \), e.g.

\[
\rho \propto e^{-\int dx \beta^i(x/\ell)q_i(x)}
\]

in “fluid cells” of mesoscopic sizes \(L \) much greater than microscopic lengths \(\ell_{\text{micro}} \),

\[
\ell_{\text{micro}} \ll L \ll \ell
\]

we have maximisation of entropy with respect to all available conservation laws

\[
\text{Tr}_{\mathbb{R}^\ell \backslash [x-L/2,x+L/2]} \rho(\ell t) \approx e^{-\sum_i \beta^i(x,t)Q_i^{(L)}} : \rho_{\beta(x,t)}, \quad Q_i^{(L)} = \int_0^L dx q_i(x)
\]
Hydrodynamic linear response

Then averages of densities and currents

\[q_i(x, t) = \text{Tr} \rho \beta(x, t) q_i, \quad j_i(x, t) = \text{Tr} \rho \beta(x, t) j_i \]

satisfy continuity equation

\[\partial_t q_i(x, t) + \partial_x j_i(x, t) = 0 \]

This is an equation for \(q_i \) using the bijection \(\{q_i\} \leftrightarrow \{\beta^i\} \).
Hydrodynamic linear response

Linear response theory: take a state that is nearly stationary, \(\rho \propto e^{-W - \int dx \delta \beta^i(x) q_i(x)} \), then small disturbance propagates according to linearised hydrodynamics

\[
\partial_t \delta q_i(x, t) + A_{ij} \partial_x \delta q_j(x, t) = 0, \quad A_{ij} = \left. \frac{\delta j_i}{\delta q_j} \right|_{\text{stationary}} e^{-W}
\]
Hydrodynamic linear response

Linear response theory: take a state that is nearly stationary, \(\rho \propto e^{-W} - \int dx \beta^i(x) q_i(x) \), then small disturbance propagates according to linearised hydrodynamics

\[
\partial_t \delta q_i(x, t) + A^j_i \partial_x \delta q_j(x, t) = 0, \quad A^j_i = \frac{\delta j_i}{\delta q_j} \bigg|_{\text{stationary } e^{-W}}
\]

which you can diagonalise to normal modes \(\delta n_i(x, t) \) with velocities \(v^\text{eff}_i \in \text{spec}(A) \subset \mathbb{R} \), i.e. \(\partial_t \delta n_i + v^\text{eff}_i \partial_x \delta n_i = 0 \)

![Diagram of hydrodynamic linear response](image-url)
Hydrodynamic linear response

Linear response theory: take a state that is nearly stationary, \(\rho \propto e^{-W - \int dx \delta \beta^i(x) q_i(x)} \), then small disturbance propagates according to linearised hydrodynamics

\[
\partial_t \delta q_i(x, t) + A^j_i \partial_x \delta q_j(x, t) = 0, \quad A^j_i = \left. \frac{\delta j_i}{\delta q_j} \right|_{\text{stationary } e^{-W}}
\]

which you can diagonalise to normal modes \(\delta n_i(x, t) \) with velocities \(v^\text{eff}_i \in \text{spec}(A) \subset \mathbb{R} \), i.e. \(\partial_t \delta n_i + v^\text{eff}_i \partial_x \delta n_i = 0 \)

This translates into a linear equation for correlation functions: reduction of degrees of freedom for calculating correlation functions!

\[
\partial_t \langle q_i(x, t) q_j(0, 0) \rangle^c + A^k_i \partial_x \langle q_k(x, t) q_j(0, 0) \rangle^c = 0
\]
Hydrodynamic linear response

In integrable systems of fermionic type: use GHD to get [BD, Spohn - SciPost 2017; BD - SciPost 2018]

\[
\langle q_i(\xi t, t) q_j(0, 0) \rangle^c \sim \frac{1}{t} \frac{\rho_p(p)(1 - n(p)) h_i^{\text{dr}}(p) h_j^{\text{dr}}(p)}{|v_{\text{eff}}'(p)|} \bigg|_{v_{\text{eff}}(p) = \xi}
\]

where \(\rho_p(p) \) is the Bethe root density, \(n(p) \) is the occupation function, \(\text{dr} \) is the TBA dressing operation, and \(h_i(p) \) is the one-particle eigenvalue of the charge \(Q_i \).
Hydrodynamic linear response

In integrable systems of fermionic type: use GHD to get [BD, Spohn - SciPost 2017; BD - SciPost 2018]

\[
\langle q_i(\xi, t, t)q_j(0, 0) \rangle^c \sim \frac{1}{t} \frac{\rho_p(p)(1 - n(p))h_{i}^{dr}(p)h_{j}^{dr}(p)}{|v_{\text{eff}}'(p)|}
\]

where \(\rho_p(p) \) is the Bethe root density, \(n(p) \) is the occupation function, \(^{dr} \) is the TBA dressing operation, and \(h_{i}(p) \) is the one-particle eigenvalue of the charge \(Q_{i} \).

- the GHD effective velocities \(v_{\text{eff}}(p) \) are identified with the hydrodynamic mode velocities
- the formula has been shown using / reproduces calculations from finite-density form factors in integrable models [De Nardis, Panfil - JSTAT 2018; Cortés Cubero, Panfil 2019]
- in the XX model, free fermions, \(v_{\text{eff}}(p) = 4 \sin p \) is the group velocity from the dispersion relation, and the dressing is trivial.

For instance for \(q_0(x) = \sigma_3^x \), we take \(h_{0}^{dr}(p) = h_{0}(p) = 1 \).
Hydrodynamic linear response

The need for fluid-cell averaging:

But wait, in the XX model, by Wick’s theorem and saddle point analysis ($\xi \in (-4, 4)$)

$$\langle \sigma^3_{\xi t}(t)\sigma^3_0(0) \rangle^c \sim \frac{2}{\pi |t| \sqrt{16 - \xi^2}} \sum_{a=\pm} \times$$

$$\times n_a \left(1 - n_a + ai (1 - n_{-a})(-1)^x e^{-2ai(x \arcsin(\xi/4)+t\sqrt{16-\xi^2})} \right)$$

where

$$n_\pm = \frac{1}{1 + \exp \left[\pm \beta \sqrt{16 - \xi^2} \right]}$$

There is an oscillatory term!
Hydrodynamic linear response

The need for fluid-cell averaging:

But wait, in the XX model, by Wick’s theorem and saddle point analysis ($\xi \in (-4, 4)$)

$$\langle \sigma^3_\xi(t)\sigma^3_0(0) \rangle^c \sim \frac{2}{\pi|t|\sqrt{16 - \xi^2}} \sum_{a=\pm} \times$$

$$\times n_a \left(1 - n_a + ai (1 - n_{-a})(-1)^x e^{-2ai(x \arcsin(\xi/4) + t\sqrt{16-\xi^2})} \right)$$

where

$$n_{\pm} = \frac{1}{1 + \exp \left[\pm \beta\sqrt{16 - \xi^2}\right]}$$

There is an oscillatory term!

Hydrodynamic results for correlation functions are valid under fluid cell averaging:

$$\langle \bar{a}(\ell x, \ell t) \cdots \rangle^c \text{ for } \bar{a}(\ell x, \ell t) = \frac{1}{LT} \int_{-L/2}^{L/2} dy \int_{-T/2}^{T/2} ds a(\ell x + y, \ell t + s)$$
Hydrodynamic linear response

Rigorous result: the general form of linearised Euler equation holds for every translation invariant quantum chains with short range interactions.

Fluid-cell mean: time average, space average

\[S_{a,b}(\kappa) = \lim_{T \to \infty} \frac{1}{T - T_0} \int_{T_0}^{T} dt \sum_{x \in \mathbb{Z}} e^{i\kappa x/t} \langle a(x, t)b(0, 0) \rangle^c \]

Theorem: then linearised Euler equation holds

\[\frac{d}{d\kappa} S_{q_i, q_j}(\kappa) = iA_{k}^i S_{q_k, q_j}(\kappa) \]

[BD - CMP 2021]
Hydrodynamic linear response

Equal-time total connected correlator:

\[(a, b) := \sum_{x \in \mathbb{Z}} \langle a(x) b(0) \rangle^c\]

Positive semidefinite \((a, a) \geq 0 \rightarrow\) inner product on equivalence classes \(\{a(x, 0) : x \in \mathbb{Z}\}\) \(\rightarrow\) Hilbert space \(\mathcal{H}\) of extensive observables. Time evolution \(\tau_t : \{a(x, 0)\} \mapsto \{a(x, t)\}\) is unitary on \(\mathcal{H}\) (by stationarity of the state and Lieb-Robinson bound).
Hydrodynamic linear response

Equal-time total connected correlator:

\[
(a, b) := \sum_{x \in \mathbb{Z}} \langle a(x)b(0) \rangle^c
\]

Positive semidefinite \((a, a) \geq 0\) → inner product on equivalence classes \(\{a(x, 0) : x \in \mathbb{Z}\}\)
→ Hilbert space \(\mathcal{H}\) of **extensive observables**. Time evolution \(\tau_t : \{a(x, 0)\} \mapsto \{a(x, t)\}\)
is unitary on \(\mathcal{H}\) (by stationarity of the state and Lieb-Robinson bound).

Conserved quantities are all the extensive observables that are invariant under \(\tau_t\)

\[
\mathcal{Q} = \{ A \in \mathcal{H} : \tau_t A = A \forall t \}
\]

Then \(q_k\) are just a basis in the closed subspace \(\mathcal{Q}\)

\[
\sum_k A^k_i S_{q_k,q_j}(\kappa) = S_{\mathbb{P}j_i,q_j}(\kappa) : \text{projection } \mathcal{H} \rightarrow \mathcal{Q} \text{ and sum over a basis.}
\]
Fluctuations

Fluctuations: consider the transport of conserved quantities from left to right

$$\langle e^{\lambda \int_0^T dt j_i(0,t)} \rangle \approx e^{TF(\lambda)} \quad (T \to \infty)$$
Fluctuations

Fluctuations: consider the transport of conserved quantities from left to right

\[\langle e^{\lambda \int_0^T dt j_i(0,t)} \rangle \approx e^{TF(\lambda)} \quad (T \to \infty) \]

\(F(\lambda) \) generates the scaled cumulants, which are time-integrated connected correlation functions (with \(j_i(t) = j_i(0, t) \))

\[
F(\lambda) = \langle j_i \rangle + \lambda \int_{-\infty}^{\infty} dt \langle j_i(0) j_i(t) \rangle^c + \frac{\lambda^2}{2} \int_{-\infty}^{\infty} dt_1 \int_{-\infty}^{\infty} dt_2 \langle j_i(0) j_i(t_1) j_i(t_2) \rangle^c + \ldots
\]
Fluctuations

Using hydrodynamic linear response, one finds that large-scale fluctuation of total currents is controlled by linear waves passing through the point $x = 0$: each mode contributes positively or negatively according to its velocity, in order to form a “new” GGE that knows about the insertion of the time-integrated current in the exponential

$$F(\lambda) = \int_0^\lambda d\lambda' j_i[\beta_{\lambda'}], \quad j_i[\beta_{\lambda}] = \frac{1}{Z} \text{Tr} e^{-\beta_{\lambda}^k Q_k j_i}, \quad \frac{d}{d\lambda} \beta_{\lambda}^j = -\text{sgn}(A[\beta_{\lambda}])^j_i$$

[BD, Myers - AHP 2020 (AHP-Birkhauser prize 2020)]
Fluctuations

Example: TASEP $j[\rho] = \rho(1 - \rho), \quad A(\rho) = 1 - 2\rho, \quad -\frac{\partial \rho}{\partial \beta} = \rho(1 - \rho)$

we reproduce the known results ($\rho < 1/2$) [de Gier, Essler - PRL 2011; Lazarescu, Mallick - JPA 2011]

$$F(\lambda) = \frac{(1 - \rho)(e^\lambda - 1)}{\rho(e^\lambda - 1) + 1}$$
Fluctuations

Example: TASEP $j[\rho] = \rho(1 - \rho)$, $A(\rho) = 1 - 2\rho$, $-\frac{\partial \rho}{\partial \beta} = \rho(1 - \rho)$

we reproduce the known results ($\rho < 1/2$) [de Gier, Essler - PRL 2011; Lazarescu, Mallick - JPA 2011]

$$F(\lambda) = \frac{(1 - \rho)(e^\lambda - 1)}{\rho(e^\lambda - 1) + 1}$$

Example: energy transport in hard rods: GHD [Myers, Bhaseen, Harris, BD - SciPost 2019]
Fluctuations

Example: TASEP $j[\rho] = \rho(1 - \rho)$, $A(\rho) = 1 - 2\rho$, $-\frac{\partial \rho}{\partial \beta} = \rho(1 - \rho)$.

We reproduce the known results ($\rho < 1/2$) [de Gier, Essler - PRL 2011; Lazarescu, Mallick - JPA 2011]

$$F(\lambda) = \frac{(1 - \rho)(e^{\lambda} - 1)}{\rho(e^{\lambda} - 1) + 1}$$

Example: energy transport in hard rods: GHD [Myers, Bhaveen, Harris, BD - SciPost 2019]

Example: Free fermion: reproduces Levitov-Lesovik formula

Example: box-ball system, shown analytically [Kuniba, Misguich, Pasquier - 2020]
Fluctuations

More generally, one can obtain asymptotics of twist field correlation functions.

XX model: written in terms of free fermions $a_x(t), a_x^\dagger(t)$, the spin variables σ^\pm are expressed using Jordan-Wigner strings. It is argued in [Del Vecchio Del Vecchio, BD - 2021] that this can be recast into space-time Jordan Wigner strings

$$\langle \sigma_x^+(t) \sigma_0^- (0) \rangle \simeq \langle a_x^\dagger(t) a_0(0) \rangle_{\beta \pi} \langle \exp i \pi \int_{0,0}^{x,t} ds \mu j_0^\mu (\vec{s}) \rangle, \quad j_0^\mu (x, t) : \text{spin 2-current}$$
Fluctuations

More generally, one can obtain asymptotics of twist field correlation functions.

XX model: written in terms of free fermions $a_x(t), a_x^\dagger(t)$, the spin variables σ^\pm are expressed using Jordan-Wigner strings. It is argued in [Del Vecchio Del Vecchio, BD - 2021] that this can be recast into space-time Jordan Wigner strings

$$\langle \sigma_x^+(t)\sigma_0^-(0) \rangle \asymp \langle a_x^\dagger(t)a_0(0) \rangle_{\beta, \pi} \langle \exp i\pi \int_{0,0}^{x,t} ds_{\mu} j_0^\mu(\vec{s}) \rangle, \quad j_0^\mu(x, t) : \text{spin 2-current}$$

The scaled cumulant generating function on an arbitrary ray is known, here:

$$\langle \exp i\pi \int_{0,0}^{x,t} ds_{\mu} j_0^\mu(\vec{s}) \rangle \asymp e^{F(x,t)}$$

where

$$F(x, t) = \int_0^{i\pi} d\lambda' (t j_0[\beta_{\lambda'}] - x q_0[\beta_{\lambda'}]), \quad \frac{d}{d\lambda} \beta^j_\lambda = -\text{sgn}(t A[\beta_\lambda] - x 1)_j^j$$
Fluctuations

This reproduces the old results [Iits, Izergin, Korepin, Slavnov - PRL 1993; Jie. - Ph.D. Thesis 1998] and gives new results (last line)

\[
F(x, t) = \begin{cases}
 f_{x,t} & (|\xi| \leq 4) \\
 |x| f_{1,0} & (|\xi| > 4, |h| \leq 2) \\
 -|x| \min\left(\arccosh(h/2), M_\xi\right) + |x| f_{1,0} & (|\xi| > 4, |h| > 2)
\end{cases}
\]

with \(M_\xi = \arccosh(\xi/4) - \sqrt{1 - \frac{16}{|\xi|^2}} \) and

\[
f_{x,t} = \int_{-\pi}^{\pi} \frac{dk}{2\pi} |x - v(k)t| \log \left| \tanh \frac{\beta E(k)}{2} \right|.
\]
Ballistic macroscopic fluctuation theory

[BD, Perfetto, Sasamoto, Yoshimura - in prep]

Take again long-wavelength initial state

\[\langle \cdots \rangle_\ell : \rho \propto e^{-\int \text{d}x \beta^i(x/\ell)q_i(x)} \]

We can reproduces all Euler-scale correlations:

\[\lim_{\ell \to \infty} \ell^{n-1} \langle \bar{a}_1(\ell x_1, \ell t_1) \cdots \bar{a}_n(\ell x_n, \ell t_n) \rangle^c_\ell \]
Ballistic macroscopic fluctuation theory

[BD, Perfetto, Sasamoto, Yoshimura - in prep]

Take again long-wavelength initial state

\[\langle \cdots \rangle_\ell : \rho \propto e^{-\int dx \beta^i(x/\ell)q_i(x)} \]

We can reproduce all Euler-scale correlations:

\[
\lim_{\ell \to \infty} \ell^{n-1} \langle \overline{a}_1(\ell x_1, \ell t_1) \cdots \overline{a}_n(\ell x_n, \ell t_n) \rangle^c_\ell
\]

replacing fluid-cell-averaged observables by random variables \(\tilde{q}_i \):

\[
\overline{q}_i(\ell x, \ell t) \to \tilde{q}_i(x, t)
\]

with every observable functions of these given by their GGE values

\[
\overline{a}(\ell x, \ell t) \to \tilde{a}(x, t) = \frac{1}{Z} \text{Tr} e^{-\tilde{\beta}^i(x,t)Q_i} a \quad \text{(at } \tilde{q}_i = q_i[\tilde{\beta}]\text{)}
\]
Ballistic macroscopic fluctuation theory

[BD, Perfetto, Sasamoto, Yoshimura - in prep]

Take again long-wavelength initial state

\[\langle \cdots \rangle_{\ell} : \rho \propto e^{-\int dx \beta^i(x/\ell)q_i(x)} \]

We can reproduce all Euler-scale correlations:

\[
\lim_{\ell \to \infty} \ell^{n-1} \langle \tilde{a}_1(\ell x_1, \ell t_1) \cdots \tilde{a}_n(\ell x_n, \ell t_n) \rangle^c_{\ell}
\]

replacing fluid-cell-averaged observables by random variables \(\tilde{q}_i \), using the BMFT measure

\[
d\mathbb{P} = [d\tilde{q}(\cdot, \cdot)] \\
\quad \times \exp \left[-\ell \int dx \left(\beta^i(x)(\tilde{q}_i(x, 0) - q_i(x)) + s[q(x)] - s[\tilde{q}(x, 0)] \right) \right] \\
\quad \times \delta[\partial_t \tilde{q} + \partial_x j[\tilde{q}]]
\]
Ballistic macroscopic fluctuation theory

That is:

$$\lim_{\ell \to \infty} \ell^{n-1} \langle \bar{a}_1(\ell x_1, \ell t_1) \cdots \bar{a}_n(\ell x_n, \ell t_n) \rangle^{\mathcal{C}}_\ell = \lim_{\ell \to \infty} \ell^{n-1} \int d\mathcal{P} \, \bar{a}_1(x_1, t_1) \cdots \bar{a}_n(x_n, t_n)$$

with

$$d\mathcal{P} = [d\mathcal{q}(\cdot, \cdot)]$$

$$\times \exp \left[-\ell \int dx \left(\beta^i(x)(\ddot{q}_i(x, 0) - q_i(x)) + s[q(x)] - s[\ddot{q}(x, 0)] \right) \right]$$

$$\times \delta[\partial_t \ddot{q} + \partial_x j[\ddot{q}]]$$
Ballistic macroscopic fluctuation theory

That is:

\[
\lim_{\ell \to \infty} \ell^{n-1} \langle \bar{a}_1(\ell x_1, \ell t_1) \cdots \bar{a}_n(\ell x_n, \ell t_n) \rangle^\ell = \lim_{\ell \to \infty} \ell^{n-1} \int d\mathbb{P} \bar{a}_1(x_1, t_1) \cdots \bar{a}_n(x_n, t_n)
\]

Main principle: **separation of scales on fluctuations:**

- average out “quick” fluctuations within the microcanonical shell due to all kinds of non-conserving processes that happen in the bulk of the fluid cell
- keep “slow” fluctuations amongst different microcanonical shells due to fluctuations of conserved quantities that happens at the surface of the fluid cell.
Ballistic macroscopic fluctuation theory

\(\ell \to \infty \): saddle point equations in terms of an auxiliary “Lagrange parameter” \(H^i(x, t) \) for the delta function \(\delta[\partial_t q + \partial_x j] = \int [dH]e^{\ell \int_x dx \int_0^T dt H(\partial_t q + \partial_x j)}. \)

With source terms, here for conserved densities \(a_r = q_{k_r} \):

\[
\begin{align*}
H^i(x, 0) &= \beta^i - \tilde{\beta}^i \\
H^i(x, T) &= 0 \\
\partial_t \tilde{\beta}^i + \tilde{A}_j^i \partial_x \tilde{\beta}^j &= 0 \\
\partial_t H^i + \tilde{A}_j^i \partial_x H^j &= \sum_{r=1}^{n} \lambda_r \delta_{k_r}^i \delta(x - x_r) \delta(t - t_r)
\end{align*}
\]
Ballistic macroscopic fluctuation theory

ℓ → ∞: saddle point equations in terms of an auxiliary “Lagrange parameter” $H^i(x, t)$ for the delta function $\delta[\partial_t q + \partial_x j] = \int [dH] e^{\ell} \int_{R} dx \int_0^T dt H(\partial_t q + \partial_x j)$.

With source terms, here for conserved densities $a_r = q_{k_r}$:

\[H^i(x, 0) = \beta^i - \tilde{\beta}^i \]
\[H^i(x, T) = 0 \]
\[\partial_t \tilde{\beta}^i + \tilde{A}_j^i \partial_x \tilde{\beta}^j = 0 \]
\[\partial_t H^i + \tilde{A}_j^i \partial_x H^j = \sum_{r=1}^n \lambda_r \delta^i_{k_r} \delta(x - x_r) \delta(t - t_r) \]

- Reproduces linear response $\partial_t \langle q_i(x, t) q_j(0, 0) \rangle + A^k_i \partial_x \langle q_k(x, t) q_j(0, 0) \rangle = 0$
- Reproduces c_2, c_3 and can be argued to reproduce the full $F(\lambda)$
- Gives the Cohen-Gallavotti fluctuation relations (see Takato’s talk)
Ballistic macroscopic fluctuation theory

In particular, the theory implies that in interacting models with at least two different hydrodynamic velocities, from non-stationary state, there are long range correlations:

$$\lim_{\ell \to \infty} \ell \langle \bar{q}_i(\ell x, \ell t) \bar{q}_j(0, \ell t) \rangle^c_{\ell} = f(x, t) \neq 0$$

The density matrix does not take the exponential form at later times even at the Euler approximation scale,

$$\rho(t) \propto e^{-\int dx \beta(x/\ell, t/\ell) q_i(x)}$$

as instead there are correlations between fluid cells.
Ballistic macroscopic fluctuation theory

Example: evolution of two-velocity $p = \pm 1$ hard rod gas, from bump initial condition

$$\ell \langle q_0(\ell x, \ell/2)q_0(0,\ell/2) \rangle^c$$
Conclusion

Hydrodynamics gives a lot of general principles that can predict / reproduce asymptotic of many types of correlation functions at large space-time separations.

To do (cf grant applications):

- revisit recent nonlinear response results in light of BMFT and the new type of long-range correlations we uncovered
- apply fluctuation formalism to twist fields for entanglement entropy (work in progress with V. Alba, G. Del Vecchio Del Vecchio, P. Ruggiero)
- generalise fluctuation formalism / BMFT of integrable systems to diffusive scale (and beyond?)
- apply BMFT to non-integrable systems and reproduce KPZ scaling
- prove rigorously the large-scale correlation function formula in integrable models (prove that space of conserved charges Q is the spanned by Bethe quasiparticles)