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in one-dimensional many-body systems with short-range interactions such as spin chains,
one-dimensional gases of quantum or classical particles, field theories, etc.
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of local observables

eg. a(z,t) = o2(t) := elade M or g, t) 25 x — x;(t
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\ Using ideas of hydrodynamics (understood in a general sense)

/
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Hydrodynamic linear response for two-point functions in stationary states.
[Spohn, BD - SciPost 2017; BD - SciPost 2018; Del Vecchio Del Vecchio, BD - 2021; BD - CMP 2021;

Ampelogiannis, BD - 2022]

Fluctuations: full counting statistics and twist field correlation functions in stationary states.
[Myers, Bhaseen, Harris, BD - SciPost 2019; BD, Myers - AHP 2020; Del Vecchio Del Vecchio, BD - 2021]

A general macroscopic fluctuation theory for the Euler scale: generic long-range
correlations in non-stationary states of interacting models.

[BD, Perfetto, Sasamoto, Yoshimura - in prep]




/ Basic correlation results

By Araki 1969 and Lieb & Robinson 1972:

(a(z,1)b(0,0)) = (a(,1)b(0,0)) — (a(z,1))(b(0,0))
In state (-) = Z~'Tre~". with W, H short range interaction
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/ Basic correlation results

Almost-everywhere ergodicity: take stationary state and translation invariance,
(W, H] =0

Theorem: then inside any correlation function, for any w € R,

I
lim —/ dte“ta(vt,t) = (a)16,0  foralmostallv € R
0

T — 00

[BD - CMP 2021; Ampelogiannis, BD - 2022]




/ Hydrodynamic linear response \

This is enough to give rise to the hydrodynamic structure inside the LR cone: the true relevant
eff

7

velocities for correlations are the hydrodynamic velocities v
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Hydrodynamic linear response

Hydrodynamic linear response:

leading large-scale correlations are due to travelling waves
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Hydrodynamic linear response

Hydrodynamic linear response:

leading large-scale correlations are due to travelling waves

Conserved densities (0, is “discrete derivative” in the case of quantum chains)

-

e.g. in XX model: qo(z) = 02, qi(z) = 0,0, + 0205, efc.

and their currents: jo ()

atQi + a:c.]z =0
11

o1 2 2 1
=2(o, 0, —05_,0,), etc.
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/ Hydrodynamic linear response

Hydrodynamics: from initial inhomogeneous states of £ micro <K< L

large wavelength £, e.g.

in “fluid cells” of mesoscopic sizes L much greater than
microscopic lengths £ icro,

gmicro < L < E
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/ Hydrodynamic linear response

Hydrodynamics: from initial inhomogeneous states of £ micro <K< L
large wavelength £, e.g.

LK?
in “fluid cells” of mesoscopic sizes L much greater than ]
microscopic lengths £ icro, /

gmicro < L < ﬁ

_

el

we have maximisation of entropy with respect to all available conservation laws

L
~ Wz, ) QW)
Trpy(px— 12,004 1/2) (L) = € 2 P @)@ * PB(x,t)> QEL) :/ dz q;(x)
0

-
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/ Hydrodynamic linear response

Then averages of densities and currents

qi(z,t) = Tr pg(e,n)qi, Ji(x,t) = Tr pga,0)Ji

satisfy continuity equation

This is an equation for g; using the bijection {q; } <+ {3"}.
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/ Hydrodynamic linear response \

Linear response theory: take a state that is nearly stationary, p o e~ W—J dz86*(z)qi(x)
then small disturbance propagates according to linearised hydrodynamics
0Ji

5qj stationary e—W

0r0q;(x,t) + A,L-jaﬁqj (x,t) =0, A,L.j =
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/ Hydrodynamic linear response

Linear response theory: take a state that is nearly stationary, p o e~ W—J dz86*(z)qi(x)
then small disturbance propagates according to linearised hydrodynamics
0Ji

5qj stationary e—W

0r0q;(x,t) + A,L-j&,ﬁqj (x,t) =0, Az.j =

~

which you can diagonalise to normal modes dn;(x, t) with velocities v$ € spec(A) C R,

i.e. 0;0n; + v,‘fﬁ@m(Sni =0 N
eff

~ 3
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/ Hydrodynamic linear response \

Linear response theory: take a state that is nearly stationary, p o e~ W[ dzdp (2)qi(z)
then small disturbance propagates according to linearised hydrodynamics
0]

(SClj stationary e=W

0,09 (x,t) + A7 0,0q;(z,t) =0, A =

which you can diagonalise to normal modes dn; (, t) with velocities v € spec(A) C R,

i.e. 0y0n; + vfﬁamc?ni =0 ‘A

peft

.
’
’

T
~ 5

This translates into a linear equation for correlation functions: reduction of degrees of
freedom for calculating correlation functions!

8t<Qi($> t)qj (07 O)>C + Aikax <Qk (xv t)qj (07 O)>C =0

" /
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/ Hydrodynamic linear response \

In integrable systems of fermionic type: use GHD to get [BD, Spohn - SciPost 2017; BD - SciPost 2018]

1 pp(p)(1 = n(p)) 5" (p) 15 (p)

<Qi(€tat)Qj(070)>C ~ / "Ueﬂ:/<p)‘ vetf (p)=¢

where p,,(p) is the Bethe root density, n(p) is the occupation function, 9 is the TBA dressing

operation, and h;(p) is the one-particle eigenvalue of the charge ();.
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/ Hydrodynamic linear response \

In integrable systems of fermionic type: use GHD to get [BD, Spohn - SciPost 2017; BD - SciPost 2018]

1 pp(p)(1 = n(p)) 5" (p) 15 (p)

<Qi(€tat)Qj(070)>C ~ / "Ueﬂ:/<p)‘ vetf (p)=¢

where p,,(p) is the Bethe root density, n(p) is the occupation function, 9 is the TBA dressing
operation, and h;(p) is the one-particle eigenvalue of the charge ();.

e the GHD effective velocities v°! (p) are identified with the hydrodynamic mode velocities

e the formula has been shown using / reproduces calculations from finite-density form factors
in integrable models [De Nardis, Panfil - JSTAT 2018; Cortés Cubero, Panfil 2019]
eff(

e in the XX model, free fermions, v p) = 4 sin p is the group velocity from the dispersion

relation, and the dressing is trivial.

For instance for go(z) = o3, we take hi* (p) = ho(p) = 1.

a’;!

" /
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/ Hydrodynamic linear response

The need for fluid-cell averaging:

But wait, in the XX model, by Wick’s theorem and saddle point analysis (£ € (—4,4))

3 3 c
oz, (t)or(0
(0g:(1)05(0))° ~ i@ 2 §
X Mg (1 — n, + al (1 — n_a)(_l)xe—Qai(:c arcsin(§/4)+t 16—52))
where

1

1—|—exp[iﬁ\/W}

n4 —

There is an oscillatory term!

-
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/ Hydrodynamic linear response

The need for fluid-cell averaging:

But wait, in the XX model, by Wick’s theorem and saddle point analysis (£ € (—4, 4))

(024 (£)a(0))° ~

m|t] /16 — &2 = Z

X Mg (1 — n, + al (1 — n_a)(_l)xe—Qai(x arcsin(§/4)+t\/@))

where
1

1+exp[:|:5\/W}

n4 —

There is an oscillatory term!

Hydrodynamic results for correlation functions are valid under fluid cell averaging:

L/2 T/2
(a(lx, lt)---)° fora(lx, (t) =TT / dy/ dsa(lx + y, lt + s)

L/2 T/2

-
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/ Hydrodynamic linear response

Rigorous result: the general form of linearised Euler equation holds for every

translation invariant quantum chains with short range interactions.

Fluid-cell mean: time average, space average

. 1 g ik /)t C
Sap(k) = lim ﬁ/ dt Ze /t{a(z,t)b(0,0))

T — 00 TO el

Theorem: then linearised Euler equation holds

d :
&SQ’UQJ' (’i) — lAikSQk:,qg' (’f)

[BD - CMP 2021]

-

~
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/ Hydrodynamic linear response

Equal-time total connected correlator:

(a.0) == > {a(a)b(0))*

xEl

is unitary on &€ (by stationarity of the state and Lieb-Robinson bound).

~

Positive semidefinite (a, a) > 0 — inner product on equivalence classes {a(x,0) : x € Z}
— Hilbert space # of extensive observables. Time evolution 7 : {a(z,0)} — {a(x, 1)}

23



/ Hydrodynamic linear response \

Equal-time total connected correlator:

(a.b) :== ) _(a(2)b(0))°

xEl

Positive semidefinite (a, a) > 0 — inner product on equivalence classes {a(x,0) : x € Z}
— Hiloert space # of extensive observables. Time evolution 73 : {a(xz,0)} — {a(z,t)}
is unitary on &€ (by stationarity of the state and Lieb-Robinson bound).

Conserved quantities are all the extensive observables that are invariant under 7;
Q={Aec# : A=AV}
Then q;. are just a basis in the closed subspace Q

Z A Sy .q(K) = Spj 4, (k) : projection # — Q and sum over a basis.
k

" /
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/ Fluctuations

Fluctuations: consider the transport of conserved quantities from left to right

<€A IS dtji(O,t)> — oTF(N) (T — o0)

25



/ Fluctuations

Fluctuations: consider the transport of conserved quantities from left to right

<e>\ IS dtji(O,t)> — oTF(N) (T — o0)

F'()\) generates the scaled cumulants, which are time-integrated connected correlation
functions (with j; (t) = 4;(0,1))

F(X) = <jz'>+>\/_oo dt (5:(0)7 / dt1/ dta (5i(0)7i(t1)7: (¢2)) +- ..
!
T
[ dzj(0,1)
0
%X

26



/ Fluctuations \

Using hydrodynamic linear response, one finds that large-scale fluctuation of total currents is
controlled by linear waves passing through the point x = 0: each mode contributes positively
or negatively according to its velocity, in order to form a “new” GGE that knows about the

insertion of the time-integrated current in the exponential

new GGE ¢ ¢

b | |
F(X) = /0 dN'3i[By ], JilB] = S Tre A%k, d)\ﬁi = —sgn(A[B,\])iJ

[BD, Myers - AHP 2020 (AHP-Birkhauser prize 2020)]
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/ Fluctuations \

: 5]
Example: TASEP j[p] = p(1 —p), A(p) =1-2p, —55 = p(1—p)
we reproduce the known results (p < 1/2) [de Gier, Essler - PRL 2011; Lazarescu, Mallick - JPA 2011]

1—p)(e* = 1)
pler —1) +1

FOy =
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K Fluctuations \

: 5]
Example: TASEP j[p] = p(1 —p), A(p) =1-2p, —55 = p(1—p)
we reproduce the known results (p < 1/2) [de Gier, Essler - PRL 2011; Lazarescu, Mallick - JPA 2011]

(I =p)(e*-1)
F) = pler —1)+1

Example: energy transport in hard rods: GHD [Myers, Bhaseen, Harris, BD - SciPost 2019]

le-2 le-3

le-3 le-3
154 9.2514 | l | | 2.4 161, | l | 1
rr r 1 st b roo
9.001____ R
] [ SeR—— ) IR S S S S S e S0
0.5 1 0.8 -
C3 Ca

0.0t : : : : : 0.0+

00 01 02 03 04 05 06 00 01 02 03 04 05 06

Time
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/ Fluctuations \

Example: TASEP j[p] = p(1 — p), A(p) =1—2p, —22 =p(1—p)
we reproduce the known results (p < 1/2) [de Gier, Essler - PRL 2011; Lazarescu, Mallick - JPA 2011]

(1-p)(e* = 1)
pler —1) +1

Example: energy transport in hard rods: GHD [Myers, Bhaseen, Harris, BD - SciPost 2019]

F(\) =

le-2 le—-3

le-3 le-3
154 9.2514 | l | | 2.4 161, ] l | 1
rr r 1 st b roo
9.001____ R
] [ SeR—— ) IR S S S S S e S0
0.5 1 0.8 -
C3 Ca
0.0t : : : : : 0.0+
00 01 02 03 04 05 06 00 01 02 03 04 05 06
Time

Example: Free fermion: reproduces Levitov-Lesovik formula

Example: CFT energy transfer [Bernard, BD - JPA 2012] proven in [Gawedzki, Kozlowski - CMP 2020]

\Example: box-ball system, shown analytically [Kuniba, Misguich, Pasquier - 2020]

/
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/ Fluctuations \

More generally, one can obtain asymptotics of twist field correlation functions.

+ are expressed

XX model: written in terms of free fermions a,,(t), al (t), the spin variables o
using Jordan-Wigner strings. It is argued in [Del Vecchio Del Vecchio, BD - 2021] that this can be
recast into space-time Jordan Wigner strings

x,t

(o} (t)og (0)) < {al (t)ao(0))s_(exp iw/ ds,jy (5)), j&(x,t) : spin 2-current
0,0

31




/ Fluctuations \

More generally, one can obtain asymptotics of twist field correlation functions.

+

XX model: written in terms of free fermions a.. (t), al (t), the spin variables o= are expressed

using Jordan-Wigner strings. It is argued in [Del Vecchio Del Vecchio, BD - 2021] that this can be
recast into space-time Jordan Wigner strings

x,t

(o} (t)og (0)) < {al (t)ao(0))s_(exp iw/ ds,jy (5)), j&(x,t) : spin 2-current
0,0

The scaled cumulant generating function on an arbitrary ray is known, here:

x,t
(exp im / ds, jb (5)) =< ef"@b)
0,0

where

17 d . :
Fla.t)= [ 4N (GolBy] —alByl), 355 = —sen(tAl8,] — 1),

" /
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-

This reproduces the old results [its, Izergin, Korepin, Slavnov - PRL 1993; Jie.

gives new results (last line)

F(z,t) =

(f:c,t
\Jf\fl,o

Fluctuations

with Mg = arccosh(§/4) — /1 — |§|2 and

.

r — v(k)t|log ‘ tanh ———

- Ph.D. Thesis 1998] and

BE(E)
|

(1S

(1€
— || min(arccosh(h/Q), Mg) + |x|fio (

< 4)
>4, |h] <2)
>4, |h| > 2)

~
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/ Ballistic macroscopic fluctuation theory

[BD, Perfetto, Sasamoto, Yoshimura - in prep]
Take again long-wavelength initial state

We can reproduces all Euler-scale correlations:

hm E”_1<61 (&El, gtl) * e En(&En,Etn»E

£ — 00

~
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/ Ballistic macroscopic fluctuation theory

[BD, Perfetto, Sasamoto, Yoshimura - in prep]
Take again long-wavelength initial state

We can reproduces all Euler-scale correlations:

hm E”_1<al (&81, gtl) * e an(&tnaétn»i

£ — 00

replacing fluid-cell-averaged observables by random variables ¢;:
q;(lx, lt) — G;(x, 1)

with every observable functions of these given by their GGE values

1 3i %
(b, () = a(, 1) = ZTre™” 9% (at g; = ailB)

-
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/ Ballistic macroscopic fluctuation theory \

[BD, Perfetto, Sasamoto, Yoshimura - in prep]
Take again long-wavelength initial state

We can reproduces all Euler-scale correlations:

hm E”_1<El (&Ul, gtl) * e an(&vnaétn»i

£ — 00

replacing fluid-cell-averaged observables by random variables ¢;, using the BMFT measure

aP = [dg (")

X exp {_ g/dx (Bi(ﬂi)(%(%()) —qi(z)) + sla(z)] - S[Q(x’o)])}

x 6[0:q + 9.31d)]

" /
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/ Ballistic macroscopic fluctuation theory \

That is:
f— 00 {— 00

lim Kn_1<61 (&Cl,gtl) - En(ﬁxn,étn)ﬁ — lim gn—l /dIP> dl(xl,tl) ce CVLn(ZUn,tn)

with
dP = [dq(-,-)]

<oxp [~ ¢ [ do (5(0)(@(2,0) - ai(w) + sla@)] — sla(z. )]

x 6[0:q + 9.31d)]
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/ Ballistic macroscopic fluctuation theory \

That is:

lim En_1<61 (&Cl,gtl) e En(ﬁxn,étn)>§ = lim gn—l /dIED dl(xl,tl) s CVLn(ZUn,tn)

{— 00 {— 00

Main principle: separation of scales on fluctuations:

e average out “quick” fluctuations within the microcanonical shell due to all kinds of
non-conserving processes that happen in the bulk of the fluid cell

e keep “slow” fluctuations amongst different microcanonical shells due to fluctuations of
conserved quantities that happens at the surface of the fluid cell.

)
Q,
”%&\\ °.°°/'
A\
\ /}’/ /> , . 4 \’\\
o~ ¥ &
7
e ° &
A
N ® O
P ®
s® @ @
< . %, .
o <X
\ ”//
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/ Ballistic macroscopic fluctuation theory

¢ — 00: saddle point equations in terms of an auxiliary “Lagrange parameter” Hi(x, t) for
the delta function §[0;q + 0,j] = [[dH]e’ Jrd2 Jo dt H(9:q+0xj)
With source terms, here for conserved densities a,, = g,

Hi(w,0) = 5~ f
H'(z,T) = 0
ath_|_AJz xﬁvj = 0

OH' +AJO,HT = N MO S(x— m)5(t — L)
r=1

~
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/ Ballistic macroscopic fluctuation theory \

¢ — oo: saddle point equations in terms of an auxiliary “Lagrange parameter” H*(x, t) for
the delta function §[0;q + 0,j] = [[dH]e’ Jrd2 Jo dt H(9:q+0xj)
With source terms, here for conserved densities a,, = g,

Hi(z.0) = § -5
H'(z,T) = 0
ath_|_Ajz xﬁvj = 0

OH' +AJO,HT = N MO S(x— m)5(t — L)
r=1

e Reproduces linear response d; (q;(z,1)q;(0,0)) + A0, (qx(z,)q;(0,0)) =0
e Reproduces ¢, c3 and can be argued to reproduce the full F'(\)
e Gives the Cohen-Gallavotti fluctuation relations

(see Takato’s talk)

" /
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/ Ballistic macroscopic fluctuation theory

In particular, the theory implies that in interacting models with at least two different
hydrodynamic velocities, from non-stationary state, there are long range correlations:
gliglo €<qz (ng gt)gj (07 gt)ﬁ — f(CU, t) 7é 0

The density matrix does not take the exponential form at later times even at the Euler
approximation scale, |

p(t) ot e~ J dz B (x/L,t/£)q: (x)
as instead there are correlations between fluid cells.

correlated normal modes emitted by initial inhomogeneity
\/\ corr;eﬁtion 4‘
— £ e, t%

eff., o eff
vj ~~~*~ ,o"’ vi
4

\ large-wavelength initial state with central density bump
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/ Ballistic macroscopic fluctuation theory

Example: evolution of two-velocity p = 41 hard rod gas, from bump initial condition

0.02

£{qy(Cx,012)qy(0,£12))°

B \
_ . - N
1 I BMFT
I { numerics —e— |
!
I /¢ = 1000
i { a=1 i
| 1 L
{
| | | I ; |
—2 —1.5 —1 —0.5
I

0

~
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/ Conclusion \

Hydrodynamics gives a lot of general principles that can predict / reproduce asymptotic of
many types of correlation functions at large space-time separations.

To do (cf grant applications):

® revisit recent nonlinear response results in light of BMFT and the new type of long-range

correlations we uncovered

e apply fluctuation formalism to twist fields for entanglement entropy (work in progress with
V. Alba, G. Del Vecchio Del Vecchio, P. Ruggiero)

e generalise fluctuation formalism / BMFT of integrable systems to diffusive scale (and
beyond?)

e apply BMFT to non-integrable systems and reproduce KPZ scaling

e prove rigorously the large-scale correlation function formula in integrable models (prove

that space of conserved charges 2 is the spanned by Bethe quasiparticles)

- /
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