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We develop a first-principle approach to compute the counting statistics in the ground-state of N
noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1).
In a confining potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific
potentials, this system is related to standard random matrix ensembles. We study the quantum
fluctuations of the number of fermions ND in a domain D of macroscopic size in the bulk of the
support. We show that the variance of ND grows as N (d�1)/d(Ad logN + Bd) for large N , and
obtain the explicit dependence of Ad, Bd on the potential and on the size of D (for a spherical
domain in d > 1). This generalizes the free-fermion results for microscopic domains, given in d = 1
by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact
results for d = 1.

An important concept to study quantum noise and cor-
relations in many body fermionic systems is the counting
statistics (CS), which characterises the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2, 3], quan-
tum dots [4, 5], spin and fermionic chains [6–9], trapped
fermions [10, 11]. In the related context of randommatrix
theory (RMT), the statistics of the number of eigenval-
ues in an interval also generated a lot of interest [6, 12–
23]. The CS is particularly important for noninteracting
fermions because of its connection [24–27] to the bipar-
tite entanglement entropy (EE) of the subsystem D with
its complement D. The EE is a highly non local quan-
tity, much studied in the context of quantum informa-
tion [28, 29], conformal field theory [30–32], topological
phases [33], quantum phase transitions [34, 35], or quan-
tum spin chains [36, 37]. Both the CS and the EE are
di�cult to compute analytically, in particular in the pres-
ence of an external potential. There exist however stan-
dard results for free fermions, in the absence of external
potential. In this case, at zero temperature, both the
variance of ND and the EE grow as ⇠ Rd�1 logR with
the typical size R of the domain D [38–45].

In cold Fermi gases [46], the quantum microscopes [47–
49] allow to take an instantaneous “picture” and measure
the counting statistics. In experiments the fermions are
in a trapping potential, of tunable shape and interaction
[46, 50]. It is thus important to calculate both the CS
and the EE in an inhomogeneous background, for which
very few analytical results exist even for noninteracting
fermions, apart from the d = 1 harmonic oscillator [32,
51, 52], and the rotating harmonic trap in d=2 [53].

There has been recent progress to describe noninter-
acting spinless fermions in traps in d dimensions [11]. In

d = 1, for a single particle Hamiltonian Ĥ = p2

2 + V (x)
(in units ~ = m = 1), there is a useful connection with
random matrices for a few specific potentials V (x). The
many body ground state wavefunction  0 of N fermions
is a Slater determinant with all energy levels of Ĥ occu-
pied up to the Fermi energy µ, a function of N . The

quantum joint probability | 0|
2 of the positions {xj}

of the N fermions, maps onto the joint probability for
the eigenvalues {�j} of random matrices of size N ⇥N .

For the harmonic oscillator (HO), V (x) = x2

2 , the ran-
dom matrix is Hermitian from the Gaussian unitary en-
semble (GUE). At large N , the mean fermion density,
i.e., the quantum average ⇢(x) = h

P
i �(x � xi)i, has

support [x�, x+], with x±
' ±

p
2N . In the bulk, i.e.,

away from the edges x±, it takes the semi-circle form
⇢(x) ' ⇢bulk(x) = kF (x)/⇡, where kF (x) =

p
2µ� x2 is

the local Fermi momentum, and in this case µ'N . There
are two natural length scales, the microscopic one of or-
der the inter-particle distance ⇠1/kF (x), and the macro-
scopic one of order x+

� x�. For an interval D=[a, b] of
microscopic size, it is well known from standard results of
RMT [54, 55] that for

p
N |b� a|=O(1)�1 the variance

behaves as [6, 12–14, 17, 20–22]

VarN[a,b] '
1

⇡2

h
log

⇣p
2N � a2 |b� a|

⌘
+ c2

i
(1)

with c2 = �E+1+log 2, where �E is Euler’s constant. The
fermion/eigenvalue correlations can be expressed as de-
terminants of a central object called the kernel, which de-
pends on V (x), see below. At microscopic scales, the ker-
nel takes a universal scaling form, called the sine-kernel,
independent of the (smooth) potential, which leads to
(1). However, except for free fermions on the infinite
line, it does not apply when both a, b are well separated
in the bulk. For the HO, some results in that regime
were obtained in [20, 21] using a Coulomb gas method,
and for the GUE in the math literature [56–59].
Despite recent advances a general framework is still

lacking for computing the counting statistics and entan-
glement entropy for noninteracting fermions in general
potential and arbitrary dimension. In this Letter we pro-
vide a first principle approach to compute these quanti-
ties in d = 1 for a general potential V (x), and in d > 1
for a general central potential. Our method recovers the
existing results in various special cases, see below.
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counting statistics number of fermions in [a,b]

variance: microscopic, macroscopic scales, edge

semi-classical calculation => Gaussian free field

for some special V(x)

random matrix theory

1

C�E CUE

N[✓A,✓] � E(N[✓A,✓]) (1)

✓ ! (2)

� = 2 (3)

N⇢N =
kF
⇡

(4)

kF ! kF (x) (5)

~2
2m

kF (x)
2 = µ� V (x) (6)

Z
dyKN (x, y)KN (y, z) = KN (x, z) (7)

det�k(xi) det�`(xj) = det
1i,jN

KN (xi, xj) (8)

Z kF

�kF

dk

2⇡
eik(x�y) (9)

t1 (10)

t2 = (1 +�)t1 (11)

y (12)

0 (13)

t (14)

lim
t2
t1

!1
lim

t1,t2!+1
(15)

t2
t1

(16)

t2 = t1(1 +�) (17)
t2 � t1

t1
= � (18)

C+1 (19)

� ! 1 (20)

Zn1
1 ZnL

L ZnR
R (21)

Z ⇠ F2(s) (22)

V 00(xmin) > 0 (23)

xmin (24)

xi $ pi (25)

pe =
p
2mµ (26)

⇢(p) ⇠ (µ� p2

2m
)1/2 ⇠ (pe � p)1/2 (27)

pi � pe
pN

(28)

pN ⇠ p
� 1

3
e ⇠ N� 1

6 (29)

{p1, p2, · · · pN} (30)

application: variance sphere in higher dimension  d>1 for central potential V(r)  
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We develop a first-principle approach to compute the counting statistics in the ground-state of N
noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1).
In a confining potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific
potentials, this system is related to standard random matrix ensembles. We study the quantum
fluctuations of the number of fermions ND in a domain D of macroscopic size in the bulk of the
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obtain the explicit dependence of Ad, Bd on the potential and on the size of D (for a spherical
domain in d > 1). This generalizes the free-fermion results for microscopic domains, given in d = 1
by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact
results for d = 1.

An important concept to study quantum noise and cor-
relations in many body fermionic systems is the counting
statistics (CS), which characterises the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2, 3], quan-
tum dots [4, 5], spin and fermionic chains [6–9], trapped
fermions [10, 11]. In the related context of randommatrix
theory (RMT), the statistics of the number of eigenval-
ues in an interval also generated a lot of interest [6, 12–
23]. The CS is particularly important for noninteracting
fermions because of its connection [24–27] to the bipar-
tite entanglement entropy (EE) of the subsystem D with
its complement D. The EE is a highly non local quan-
tity, much studied in the context of quantum informa-
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di�cult to compute analytically, in particular in the pres-
ence of an external potential. There exist however stan-
dard results for free fermions, in the absence of external
potential. In this case, at zero temperature, both the
variance of ND and the EE grow as ⇠ Rd�1 logR with
the typical size R of the domain D [38–45].

In cold Fermi gases [46], the quantum microscopes [47–
49] allow to take an instantaneous “picture” and measure
the counting statistics. In experiments the fermions are
in a trapping potential, of tunable shape and interaction
[46, 50]. It is thus important to calculate both the CS
and the EE in an inhomogeneous background, for which
very few analytical results exist even for noninteracting
fermions, apart from the d = 1 harmonic oscillator [32,
51, 52], and the rotating harmonic trap in d=2 [53].

There has been recent progress to describe noninter-
acting spinless fermions in traps in d dimensions [11]. In

d = 1, for a single particle Hamiltonian Ĥ = p2

2 + V (x)
(in units ~ = m = 1), there is a useful connection with
random matrices for a few specific potentials V (x). The
many body ground state wavefunction  0 of N fermions
is a Slater determinant with all energy levels of Ĥ occu-
pied up to the Fermi energy µ, a function of N . The

quantum joint probability | 0|
2 of the positions {xj}

of the N fermions, maps onto the joint probability for
the eigenvalues {�j} of random matrices of size N ⇥N .

For the harmonic oscillator (HO), V (x) = x2

2 , the ran-
dom matrix is Hermitian from the Gaussian unitary en-
semble (GUE). At large N , the mean fermion density,
i.e., the quantum average ⇢(x) = h

P
i �(x � xi)i, has

support [x�, x+], with x±
' ±

p
2N . In the bulk, i.e.,

away from the edges x±, it takes the semi-circle form
⇢(x) ' ⇢bulk(x) = kF (x)/⇡, where kF (x) =

p
2µ� x2 is

the local Fermi momentum, and in this case µ'N . There
are two natural length scales, the microscopic one of or-
der the inter-particle distance ⇠1/kF (x), and the macro-
scopic one of order x+

� x�. For an interval D=[a, b] of
microscopic size, it is well known from standard results of
RMT [54, 55] that for

p
N |b� a|=O(1)�1 the variance

behaves as [6, 12–14, 17, 20–22]

VarN[a,b] '
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⇡2
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2N � a2 |b� a|

⌘
+ c2
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(1)

with c2 = �E+1+log 2, where �E is Euler’s constant. The
fermion/eigenvalue correlations can be expressed as de-
terminants of a central object called the kernel, which de-
pends on V (x), see below. At microscopic scales, the ker-
nel takes a universal scaling form, called the sine-kernel,
independent of the (smooth) potential, which leads to
(1). However, except for free fermions on the infinite
line, it does not apply when both a, b are well separated
in the bulk. For the HO, some results in that regime
were obtained in [20, 21] using a Coulomb gas method,
and for the GUE in the math literature [56–59].
Despite recent advances a general framework is still

lacking for computing the counting statistics and entan-
glement entropy for noninteracting fermions in general
potential and arbitrary dimension. In this Letter we pro-
vide a first principle approach to compute these quanti-
ties in d = 1 for a general potential V (x), and in d > 1
for a general central potential. Our method recovers the
existing results in various special cases, see below.
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 Extrema of counting staircases circular unitary ensemble

1

C�E CUE

N[✓A,✓] � E(N[✓A,✓]) (1)

N⇢N =
kF
⇡

(2)

kF ! kF (x) (3)

~2
2m

kF (x)
2 = µ� V (x) (4)

Z
dyKN (x, y)KN (y, z) = KN (x, z) (5)

det�k(xi) det�`(xj) = det
1i,jN

KN (xi, xj) (6)

Z kF

�kF

dk

2⇡
eik(x�y) (7)

t1 (8)

t2 = (1 +�)t1 (9)

y (10)

0 (11)

t (12)

lim
t2
t1

!1
lim

t1,t2!+1
(13)

t2
t1

(14)

t2 = t1(1 +�) (15)
t2 � t1

t1
= � (16)

C+1 (17)

� ! 1 (18)

Zn1
1 ZnL

L ZnR
R (19)

Z ⇠ F2(s) (20)

V 00(xmin) > 0 (21)

xmin (22)

xi $ pi (23)

pe =
p
2mµ (24)

⇢(p) ⇠ (µ� p2

2m
)1/2 ⇠ (pe � p)1/2 (25)

pi � pe
pN

(26)

pN ⇠ p
� 1

3
e ⇠ N� 1

6 (27)

{p1, p2, · · · pN} (28)

1

C�E CUE

N[✓A,✓] � E(N[✓A,✓]) (1)

N⇢N =
kF
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(2)

kF ! kF (x) (3)

~2
2m

kF (x)
2 = µ� V (x) (4)
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dyKN (x, y)KN (y, z) = KN (x, z) (5)
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Z kF

�kF

dk
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t2 = (1 +�)t1 (9)
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0 (11)

t (12)
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t2
t1

!1
lim

t1,t2!+1
(13)

t2
t1

(14)

t2 = t1(1 +�) (15)
t2 � t1

t1
= � (16)

C+1 (17)

� ! 1 (18)

Zn1
1 ZnL

L ZnR
R (19)

Z ⇠ F2(s) (20)

V 00(xmin) > 0 (21)

xmin (22)

xi $ pi (23)

pe =
p
2mµ (24)

⇢(p) ⇠ (µ� p2

2m
)1/2 ⇠ (pe � p)1/2 (25)

pi � pe
pN

(26)

pN ⇠ p
� 1

3
e ⇠ N� 1

6 (27)

{p1, p2, · · · pN} (28)
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L ZnR
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p
2mµ (24)
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(26)
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✓ ! (2)
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⇡
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2 = µ� V (x) (5)

Z
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Z kF

�kF
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2⇡
eik(x�y) (8)

t1 (9)
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t1

!1
lim

t1,t2!+1
(14)

t2
t1

(15)

t2 = t1(1 +�) (16)
t2 � t1

t1
= � (17)

C+1 (18)

� ! 1 (19)

Zn1
1 ZnL

L ZnR
R (20)

Z ⇠ F2(s) (21)
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N[✓A,✓] � E(N[✓A,✓]) (1)

✓ ! (2)
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N⇢N =
kF
⇡

(4)
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kF (x)
2 = µ� V (x) (6)

Z
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t1 (10)
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pN ⇠ p
� 1

3
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{p1, p2, · · · pN} (30)

pinned fBM H=0log-correlated field stat-mech 
freezing  

moments of partition sum = 
FCS of (interacting) fermions Q: statistics of maximum 

application: variance sphere in higher dimension  d>1 for central potential V(r)  



Outline
 Non-interacting fermions d=1 in external (confining) potential V(x)

mean density, bulk, edge

Counting statistics for noninteracting fermions in a d-dimensional potential

Naftali R. Smith,1 Pierre Le Doussal,2 Satya N. Majumdar,1 and Grégory Schehr1

1LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
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We develop a first-principle approach to compute the counting statistics in the ground-state of N
noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1).
In a confining potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific
potentials, this system is related to standard random matrix ensembles. We study the quantum
fluctuations of the number of fermions ND in a domain D of macroscopic size in the bulk of the
support. We show that the variance of ND grows as N (d�1)/d(Ad logN + Bd) for large N , and
obtain the explicit dependence of Ad, Bd on the potential and on the size of D (for a spherical
domain in d > 1). This generalizes the free-fermion results for microscopic domains, given in d = 1
by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact
results for d = 1.

An important concept to study quantum noise and cor-
relations in many body fermionic systems is the counting
statistics (CS), which characterises the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2, 3], quan-
tum dots [4, 5], spin and fermionic chains [6–9], trapped
fermions [10, 11]. In the related context of randommatrix
theory (RMT), the statistics of the number of eigenval-
ues in an interval also generated a lot of interest [6, 12–
23]. The CS is particularly important for noninteracting
fermions because of its connection [24–27] to the bipar-
tite entanglement entropy (EE) of the subsystem D with
its complement D. The EE is a highly non local quan-
tity, much studied in the context of quantum informa-
tion [28, 29], conformal field theory [30–32], topological
phases [33], quantum phase transitions [34, 35], or quan-
tum spin chains [36, 37]. Both the CS and the EE are
di�cult to compute analytically, in particular in the pres-
ence of an external potential. There exist however stan-
dard results for free fermions, in the absence of external
potential. In this case, at zero temperature, both the
variance of ND and the EE grow as ⇠ Rd�1 logR with
the typical size R of the domain D [38–45].

In cold Fermi gases [46], the quantum microscopes [47–
49] allow to take an instantaneous “picture” and measure
the counting statistics. In experiments the fermions are
in a trapping potential, of tunable shape and interaction
[46, 50]. It is thus important to calculate both the CS
and the EE in an inhomogeneous background, for which
very few analytical results exist even for noninteracting
fermions, apart from the d = 1 harmonic oscillator [32,
51, 52], and the rotating harmonic trap in d=2 [53].

There has been recent progress to describe noninter-
acting spinless fermions in traps in d dimensions [11]. In

d = 1, for a single particle Hamiltonian Ĥ = p2

2 + V (x)
(in units ~ = m = 1), there is a useful connection with
random matrices for a few specific potentials V (x). The
many body ground state wavefunction  0 of N fermions
is a Slater determinant with all energy levels of Ĥ occu-
pied up to the Fermi energy µ, a function of N . The

quantum joint probability | 0|
2 of the positions {xj}

of the N fermions, maps onto the joint probability for
the eigenvalues {�j} of random matrices of size N ⇥N .

For the harmonic oscillator (HO), V (x) = x2

2 , the ran-
dom matrix is Hermitian from the Gaussian unitary en-
semble (GUE). At large N , the mean fermion density,
i.e., the quantum average ⇢(x) = h

P
i �(x � xi)i, has

support [x�, x+], with x±
' ±

p
2N . In the bulk, i.e.,

away from the edges x±, it takes the semi-circle form
⇢(x) ' ⇢bulk(x) = kF (x)/⇡, where kF (x) =

p
2µ� x2 is

the local Fermi momentum, and in this case µ'N . There
are two natural length scales, the microscopic one of or-
der the inter-particle distance ⇠1/kF (x), and the macro-
scopic one of order x+

� x�. For an interval D=[a, b] of
microscopic size, it is well known from standard results of
RMT [54, 55] that for

p
N |b� a|=O(1)�1 the variance

behaves as [6, 12–14, 17, 20–22]

VarN[a,b] '
1

⇡2

h
log

⇣p
2N � a2 |b� a|

⌘
+ c2

i
(1)

with c2 = �E+1+log 2, where �E is Euler’s constant. The
fermion/eigenvalue correlations can be expressed as de-
terminants of a central object called the kernel, which de-
pends on V (x), see below. At microscopic scales, the ker-
nel takes a universal scaling form, called the sine-kernel,
independent of the (smooth) potential, which leads to
(1). However, except for free fermions on the infinite
line, it does not apply when both a, b are well separated
in the bulk. For the HO, some results in that regime
were obtained in [20, 21] using a Coulomb gas method,
and for the GUE in the math literature [56–59].
Despite recent advances a general framework is still

lacking for computing the counting statistics and entan-
glement entropy for noninteracting fermions in general
potential and arbitrary dimension. In this Letter we pro-
vide a first principle approach to compute these quanti-
ties in d = 1 for a general potential V (x), and in d > 1
for a general central potential. Our method recovers the
existing results in various special cases, see below.
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counting statistics number of fermions in [a,b]

variance: microscopic, macroscopic scales, edge

semi-classical calculation => Gaussian free field

for some special V(x)

random matrix theory

application: variance sphere in higher dimension  d>1 for central potential V(r)  
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Counting statistics for noninteracting fermions in a d-dimensional potential
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We develop a first-principle approach to compute the counting statistics in the ground-state of N
noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1).
In a confining potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific
potentials, this system is related to standard random matrix ensembles. We study the quantum
fluctuations of the number of fermions ND in a domain D of macroscopic size in the bulk of the
support. We show that the variance of ND grows as N (d�1)/d(Ad logN + Bd) for large N , and
obtain the explicit dependence of Ad, Bd on the potential and on the size of D (for a spherical
domain in d > 1). This generalizes the free-fermion results for microscopic domains, given in d = 1
by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact
results for d = 1.

An important concept to study quantum noise and cor-
relations in many body fermionic systems is the counting
statistics (CS), which characterises the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2, 3], quan-
tum dots [4, 5], spin and fermionic chains [6–9], trapped
fermions [10, 11]. In the related context of randommatrix
theory (RMT), the statistics of the number of eigenval-
ues in an interval also generated a lot of interest [6, 12–
23]. The CS is particularly important for noninteracting
fermions because of its connection [24–27] to the bipar-
tite entanglement entropy (EE) of the subsystem D with
its complement D. The EE is a highly non local quan-
tity, much studied in the context of quantum informa-
tion [28, 29], conformal field theory [30–32], topological
phases [33], quantum phase transitions [34, 35], or quan-
tum spin chains [36, 37]. Both the CS and the EE are
di�cult to compute analytically, in particular in the pres-
ence of an external potential. There exist however stan-
dard results for free fermions, in the absence of external
potential. In this case, at zero temperature, both the
variance of ND and the EE grow as ⇠ Rd�1 logR with
the typical size R of the domain D [38–45].

In cold Fermi gases [46], the quantum microscopes [47–
49] allow to take an instantaneous “picture” and measure
the counting statistics. In experiments the fermions are
in a trapping potential, of tunable shape and interaction
[46, 50]. It is thus important to calculate both the CS
and the EE in an inhomogeneous background, for which
very few analytical results exist even for noninteracting
fermions, apart from the d = 1 harmonic oscillator [32,
51, 52], and the rotating harmonic trap in d=2 [53].

There has been recent progress to describe noninter-
acting spinless fermions in traps in d dimensions [11]. In

d = 1, for a single particle Hamiltonian Ĥ = p2

2 + V (x)
(in units ~ = m = 1), there is a useful connection with
random matrices for a few specific potentials V (x). The
many body ground state wavefunction  0 of N fermions
is a Slater determinant with all energy levels of Ĥ occu-
pied up to the Fermi energy µ, a function of N . The

quantum joint probability | 0|
2 of the positions {xj}

of the N fermions, maps onto the joint probability for
the eigenvalues {�j} of random matrices of size N ⇥N .

For the harmonic oscillator (HO), V (x) = x2

2 , the ran-
dom matrix is Hermitian from the Gaussian unitary en-
semble (GUE). At large N , the mean fermion density,
i.e., the quantum average ⇢(x) = h

P
i �(x � xi)i, has

support [x�, x+], with x±
' ±

p
2N . In the bulk, i.e.,

away from the edges x±, it takes the semi-circle form
⇢(x) ' ⇢bulk(x) = kF (x)/⇡, where kF (x) =

p
2µ� x2 is

the local Fermi momentum, and in this case µ'N . There
are two natural length scales, the microscopic one of or-
der the inter-particle distance ⇠1/kF (x), and the macro-
scopic one of order x+

� x�. For an interval D=[a, b] of
microscopic size, it is well known from standard results of
RMT [54, 55] that for

p
N |b� a|=O(1)�1 the variance

behaves as [6, 12–14, 17, 20–22]

VarN[a,b] '
1

⇡2

h
log

⇣p
2N � a2 |b� a|

⌘
+ c2

i
(1)

with c2 = �E+1+log 2, where �E is Euler’s constant. The
fermion/eigenvalue correlations can be expressed as de-
terminants of a central object called the kernel, which de-
pends on V (x), see below. At microscopic scales, the ker-
nel takes a universal scaling form, called the sine-kernel,
independent of the (smooth) potential, which leads to
(1). However, except for free fermions on the infinite
line, it does not apply when both a, b are well separated
in the bulk. For the HO, some results in that regime
were obtained in [20, 21] using a Coulomb gas method,
and for the GUE in the math literature [56–59].
Despite recent advances a general framework is still

lacking for computing the counting statistics and entan-
glement entropy for noninteracting fermions in general
potential and arbitrary dimension. In this Letter we pro-
vide a first principle approach to compute these quanti-
ties in d = 1 for a general potential V (x), and in d > 1
for a general central potential. Our method recovers the
existing results in various special cases, see below.
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for some special V(x), interactions W(x,x’)
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entanglement entropy d=1 and d>1 in presence of V(x) and W=0 
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moments of partition sum = 
FCS of (interacting) fermions 



Counting statistics of non-interacting fermions 

in external potential V(x)
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Why the recent interest in non-interacting fermions ? 

Pauli exclusion principle
(effective repulsive interaction)

in a trap V(x): Fermi gas inhomogeneous and has an edge
at edge density vanishes: 


strong quantum and thermal fluctuations
=> LDA, linear bosonization fail

need other methods =>  universal edge correlations
bulk: inhomogeneous bosonisation

and to KPZ equation (edge finite T)relations to RMT (ground state) 



Experiments on ultra-cold atoms: confining potentials

Pauli exclusion principle
(effective repulsive interaction)

in a trap V(x): Fermi gas inhomogeneous and has an edge
at edge density vanishes: 


strong quantum and thermal fluctuations
=> LDA, linear bosonization fail

need other methods =>  universal edge correlations
bulk: inhomogeneous bosonisation

and to KPZ equation (edge finite T)relations to RMT (ground state) 

- can reach non-interacting limit for spinless fermions 

- harmonic trap but can tune arbitrary shape potential 

- can reach low temperature, low entropy 2D
1D

- can image position of each fermion in 2D or 1D (quantum microscope) 

- measure momentum distribution from time of flight 

Why the recent interest in non-interacting fermions ? 



 M. Greiner et al., PRL 2015

 Counting statistics of fermions

domain D

How many fermions 
  are there?ND

 Direct imaging of spatial fluctuations of the positions of fermions

Fermionic quantum gas 

microscope Omram et al. Phys. Rev. Lett. 115, 263001 (2015) 



spinless noninteracting fermions in a 1d harmonic trap at T=0N
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Connection with RMT HO - GUE(N)  
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Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
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obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit
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We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1
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and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain
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⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
p
2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1

 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
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and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel
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NX
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k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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We develop a first-principle approach to compute the counting statistics in the ground-state of N
noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1).
In a confining potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific
potentials, this system is related to standard random matrix ensembles. We study the quantum
fluctuations of the number of fermions ND in a domain D of macroscopic size in the bulk of the
support. We show that the variance of ND grows as N (d�1)/d(Ad logN + Bd) for large N , and
obtain the explicit dependence of Ad, Bd on the potential and on the size of D (for a spherical
domain in d > 1). This generalizes the free-fermion results for microscopic domains, given in d = 1
by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact
results for d = 1.

An important concept to study quantum noise and cor-
relations in many body fermionic systems is the counting
statistics (CS), which characterises the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2, 3], quan-
tum dots [4, 5], spin and fermionic chains [6–9], trapped
fermions [10, 11]. In the related context of randommatrix
theory (RMT), the statistics of the number of eigenval-
ues in an interval also generated a lot of interest [6, 12–
23]. The CS is particularly important for noninteracting
fermions because of its connection [24–27] to the bipar-
tite entanglement entropy (EE) of the subsystem D with
its complement D. The EE is a highly non local quan-
tity, much studied in the context of quantum informa-
tion [28, 29], conformal field theory [30–32], topological
phases [33], quantum phase transitions [34, 35], or quan-
tum spin chains [36, 37]. Both the CS and the EE are
di�cult to compute analytically, in particular in the pres-
ence of an external potential. There exist however stan-
dard results for free fermions, in the absence of external
potential. In this case, at zero temperature, both the
variance of ND and the EE grow as ⇠ Rd�1 logR with
the typical size R of the domain D [38–45].

In cold Fermi gases [46], the quantum microscopes [47–
49] allow to take an instantaneous “picture” and measure
the counting statistics. In experiments the fermions are
in a trapping potential, of tunable shape and interaction
[46, 50]. It is thus important to calculate both the CS
and the EE in an inhomogeneous background, for which
very few analytical results exist even for noninteracting
fermions, apart from the d = 1 harmonic oscillator [32,
51, 52], and the rotating harmonic trap in d=2 [53].

There has been recent progress to describe noninter-
acting spinless fermions in traps in d dimensions [11]. In

d = 1, for a single particle Hamiltonian Ĥ = p2

2 + V (x)
(in units ~ = m = 1), there is a useful connection with
random matrices for a few specific potentials V (x). The
many body ground state wavefunction  0 of N fermions
is a Slater determinant with all energy levels of Ĥ occu-
pied up to the Fermi energy µ, a function of N . The

quantum joint probability | 0|
2 of the positions {xj}

of the N fermions, maps onto the joint probability for
the eigenvalues {�j} of random matrices of size N ⇥N .

For the harmonic oscillator (HO), V (x) = x2

2 , the ran-
dom matrix is Hermitian from the Gaussian unitary en-
semble (GUE). At large N , the mean fermion density,
i.e., the quantum average ⇢(x) = h

P
i �(x � xi)i, has

support [x�, x+], with x±
' ±

p
2N . In the bulk, i.e.,

away from the edges x±, it takes the semi-circle form
⇢(x) ' ⇢bulk(x) = kF (x)/⇡, where kF (x) =

p
2µ� x2 is

the local Fermi momentum, and in this case µ'N . There
are two natural length scales, the microscopic one of or-
der the inter-particle distance ⇠1/kF (x), and the macro-
scopic one of order x+

� x�. For an interval D=[a, b] of
microscopic size, it is well known from standard results of
RMT [54, 55] that for

p
N |b� a|=O(1)�1 the variance

behaves as [6, 12–14, 17, 20–22]

VarN[a,b] '
1

⇡2

h
log

⇣p
2N � a2 |b� a|

⌘
+ c2

i
(1)

with c2 = �E+1+log 2, where �E is Euler’s constant. The
fermion/eigenvalue correlations can be expressed as de-
terminants of a central object called the kernel, which de-
pends on V (x), see below. At microscopic scales, the ker-
nel takes a universal scaling form, called the sine-kernel,
independent of the (smooth) potential, which leads to
(1). However, except for free fermions on the infinite
line, it does not apply when both a, b are well separated
in the bulk. For the HO, some results in that regime
were obtained in [20, 21] using a Coulomb gas method,
and for the GUE in the math literature [56–59].
Despite recent advances a general framework is still

lacking for computing the counting statistics and entan-
glement entropy for noninteracting fermions in general
potential and arbitrary dimension. In this Letter we pro-
vide a first principle approach to compute these quanti-
ties in d = 1 for a general potential V (x), and in d > 1
for a general central potential. Our method recovers the
existing results in various special cases, see below.
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We develop a first-principle approach to compute the counting statistics in the ground-state of N
noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1).
In a confining potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific
potentials, this system is related to standard random matrix ensembles. We study the quantum
fluctuations of the number of fermions ND in a domain D of macroscopic size in the bulk of the
support. We show that the variance of ND grows as N (d�1)/d(Ad logN + Bd) for large N , and
obtain the explicit dependence of Ad, Bd on the potential and on the size of D (for a spherical
domain in d > 1). This generalizes the free-fermion results for microscopic domains, given in d = 1
by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact
results for d = 1.

An important concept to study quantum noise and cor-
relations in many body fermionic systems is the counting
statistics (CS), which characterises the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2, 3], quan-
tum dots [4, 5], spin and fermionic chains [6–9], trapped
fermions [10, 11]. In the related context of randommatrix
theory (RMT), the statistics of the number of eigenval-
ues in an interval also generated a lot of interest [6, 12–
23]. The CS is particularly important for noninteracting
fermions because of its connection [24–27] to the bipar-
tite entanglement entropy (EE) of the subsystem D with
its complement D. The EE is a highly non local quan-
tity, much studied in the context of quantum informa-
tion [28, 29], conformal field theory [30–32], topological
phases [33], quantum phase transitions [34, 35], or quan-
tum spin chains [36, 37]. Both the CS and the EE are
di�cult to compute analytically, in particular in the pres-
ence of an external potential. There exist however stan-
dard results for free fermions, in the absence of external
potential. In this case, at zero temperature, both the
variance of ND and the EE grow as ⇠ Rd�1 logR with
the typical size R of the domain D [38–45].

In cold Fermi gases [46], the quantum microscopes [47–
49] allow to take an instantaneous “picture” and measure
the counting statistics. In experiments the fermions are
in a trapping potential, of tunable shape and interaction
[46, 50]. It is thus important to calculate both the CS
and the EE in an inhomogeneous background, for which
very few analytical results exist even for noninteracting
fermions, apart from the d = 1 harmonic oscillator [32,
51, 52], and the rotating harmonic trap in d=2 [53].

There has been recent progress to describe noninter-
acting spinless fermions in traps in d dimensions [11]. In

d = 1, for a single particle Hamiltonian Ĥ = p2

2 + V (x)
(in units ~ = m = 1), there is a useful connection with
random matrices for a few specific potentials V (x). The
many body ground state wavefunction  0 of N fermions
is a Slater determinant with all energy levels of Ĥ occu-
pied up to the Fermi energy µ, a function of N . The

quantum joint probability | 0|
2 of the positions {xj}

of the N fermions, maps onto the joint probability for
the eigenvalues {�j} of random matrices of size N ⇥N .

For the harmonic oscillator (HO), V (x) = x2

2 , the ran-
dom matrix is Hermitian from the Gaussian unitary en-
semble (GUE). At large N , the mean fermion density,
i.e., the quantum average ⇢(x) = h

P
i �(x � xi)i, has

support [x�, x+], with x±
' ±

p
2N . In the bulk, i.e.,

away from the edges x±, it takes the semi-circle form
⇢(x) ' ⇢bulk(x) = kF (x)/⇡, where kF (x) =

p
2µ� x2 is

the local Fermi momentum, and in this case µ'N . There
are two natural length scales, the microscopic one of or-
der the inter-particle distance ⇠1/kF (x), and the macro-
scopic one of order x+

� x�. For an interval D=[a, b] of
microscopic size, it is well known from standard results of
RMT [54, 55] that for

p
N |b� a|=O(1)�1 the variance

behaves as [6, 12–14, 17, 20–22]

VarN[a,b] '
1

⇡2

h
log

⇣p
2N � a2 |b� a|

⌘
+ c2

i
(1)

with c2 = �E+1+log 2, where �E is Euler’s constant. The
fermion/eigenvalue correlations can be expressed as de-
terminants of a central object called the kernel, which de-
pends on V (x), see below. At microscopic scales, the ker-
nel takes a universal scaling form, called the sine-kernel,
independent of the (smooth) potential, which leads to
(1). However, except for free fermions on the infinite
line, it does not apply when both a, b are well separated
in the bulk. For the HO, some results in that regime
were obtained in [20, 21] using a Coulomb gas method,
and for the GUE in the math literature [56–59].
Despite recent advances a general framework is still

lacking for computing the counting statistics and entan-
glement entropy for noninteracting fermions in general
potential and arbitrary dimension. In this Letter we pro-
vide a first principle approach to compute these quanti-
ties in d = 1 for a general potential V (x), and in d > 1
for a general central potential. Our method recovers the
existing results in various special cases, see below.
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m we obtain

Kµ(x, y) '
dµ/dN

2⇡
p

kF (x)kF (y)

X

�=±1

sin(�̃N (x)� ��̃N (y))

sin ((✓x � �✓y) /2)

(13)
with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ

dN
1

kF (x) , one recovers the sine-kernel

Kµ(x, y) '
sin (kF (x)|x� y|)

⇡|x� y|
(14)

valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to

Kµ(x, y)
2
'

(dµ/dN)2

2⇡2kF (x)kF (y)

1� cos (✓x) cos (✓y)

(cos ✓x � cos ✓y)
2 (15)

up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by

H(x, y)'
1

2⇡2

✓
log

����sin
✓x + ✓y

2

����� log

����sin
✓x � ✓y

2

����

◆
(16)

up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to

H(x, y)'
1

2⇡2


U(kF (x)|x� y|) + log

2kF (x) sin ✓x
d✓x/dx

�
(17)

where

U(z)=Ci(2z)+2zSi(2z)� log z+1�2 sin2(z)�⇡z, (18)

with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior

⇡2VarN[a,b] ' U(0)� U(kF (a)|a� b|)

' log kF (a)|a� b|+ c2. (19)

From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk

H(a, a) = VarN[a,+1[ '
1

2⇡2

✓
log

2kF (a)2 sin ✓a
dµ/dN

+ c2

◆
.

(20)
Expanding (20) for a ! x+, a < x+, one obtains [60]
H(a, a) '

1
2⇡2 (

3
2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
p

µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
p
µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/

p
2µ and �=↵/µ, one obtains from (20) in

the bulk |2ã2 � 1|<
p
1� �2

2⇡2VarNLUE
[0,a] ' log(µ)+log

0

B@4ã

⇣
1� ã2 � �2

4ã2

⌘3/2

(1� �2)1/2

1

CA+c2

(21)
with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum

=> sine kernel (universal)  - microscopic scales  
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We develop a first-principle approach to compute the counting statistics in the ground-state of N
noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1).
In a confining potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific
potentials, this system is related to standard random matrix ensembles. We study the quantum
fluctuations of the number of fermions ND in a domain D of macroscopic size in the bulk of the
support. We show that the variance of ND grows as N (d�1)/d(Ad logN + Bd) for large N , and
obtain the explicit dependence of Ad, Bd on the potential and on the size of D (for a spherical
domain in d > 1). This generalizes the free-fermion results for microscopic domains, given in d = 1
by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact
results for d = 1.

An important concept to study quantum noise and cor-
relations in many body fermionic systems is the counting
statistics (CS), which characterises the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2, 3], quan-
tum dots [4, 5], spin and fermionic chains [6–9], trapped
fermions [10, 11]. In the related context of randommatrix
theory (RMT), the statistics of the number of eigenval-
ues in an interval also generated a lot of interest [6, 12–
23]. The CS is particularly important for noninteracting
fermions because of its connection [24–27] to the bipar-
tite entanglement entropy (EE) of the subsystem D with
its complement D. The EE is a highly non local quan-
tity, much studied in the context of quantum informa-
tion [28, 29], conformal field theory [30–32], topological
phases [33], quantum phase transitions [34, 35], or quan-
tum spin chains [36, 37]. Both the CS and the EE are
di�cult to compute analytically, in particular in the pres-
ence of an external potential. There exist however stan-
dard results for free fermions, in the absence of external
potential. In this case, at zero temperature, both the
variance of ND and the EE grow as ⇠ Rd�1 logR with
the typical size R of the domain D [38–45].

In cold Fermi gases [46], the quantum microscopes [47–
49] allow to take an instantaneous “picture” and measure
the counting statistics. In experiments the fermions are
in a trapping potential, of tunable shape and interaction
[46, 50]. It is thus important to calculate both the CS
and the EE in an inhomogeneous background, for which
very few analytical results exist even for noninteracting
fermions, apart from the d = 1 harmonic oscillator [32,
51, 52], and the rotating harmonic trap in d=2 [53].

There has been recent progress to describe noninter-
acting spinless fermions in traps in d dimensions [11]. In

d = 1, for a single particle Hamiltonian Ĥ = p2

2 + V (x)
(in units ~ = m = 1), there is a useful connection with
random matrices for a few specific potentials V (x). The
many body ground state wavefunction  0 of N fermions
is a Slater determinant with all energy levels of Ĥ occu-
pied up to the Fermi energy µ, a function of N . The

quantum joint probability | 0|
2 of the positions {xj}

of the N fermions, maps onto the joint probability for
the eigenvalues {�j} of random matrices of size N ⇥N .

For the harmonic oscillator (HO), V (x) = x2

2 , the ran-
dom matrix is Hermitian from the Gaussian unitary en-
semble (GUE). At large N , the mean fermion density,
i.e., the quantum average ⇢(x) = h

P
i �(x � xi)i, has

support [x�, x+], with x±
' ±

p
2N . In the bulk, i.e.,

away from the edges x±, it takes the semi-circle form
⇢(x) ' ⇢bulk(x) = kF (x)/⇡, where kF (x) =

p
2µ� x2 is

the local Fermi momentum, and in this case µ'N . There
are two natural length scales, the microscopic one of or-
der the inter-particle distance ⇠1/kF (x), and the macro-
scopic one of order x+

� x�. For an interval D=[a, b] of
microscopic size, it is well known from standard results of
RMT [54, 55] that for

p
N |b� a|=O(1)�1 the variance

behaves as [6, 12–14, 17, 20–22]

VarN[a,b] '
1

⇡2

h
log

⇣p
2N � a2 |b� a|

⌘
+ c2

i
(1)

with c2 = �E+1+log 2, where �E is Euler’s constant. The
fermion/eigenvalue correlations can be expressed as de-
terminants of a central object called the kernel, which de-
pends on V (x), see below. At microscopic scales, the ker-
nel takes a universal scaling form, called the sine-kernel,
independent of the (smooth) potential, which leads to
(1). However, except for free fermions on the infinite
line, it does not apply when both a, b are well separated
in the bulk. For the HO, some results in that regime
were obtained in [20, 21] using a Coulomb gas method,
and for the GUE in the math literature [56–59].
Despite recent advances a general framework is still

lacking for computing the counting statistics and entan-
glement entropy for noninteracting fermions in general
potential and arbitrary dimension. In this Letter we pro-
vide a first principle approach to compute these quanti-
ties in d = 1 for a general potential V (x), and in d > 1
for a general central potential. Our method recovers the
existing results in various special cases, see below.
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We develop a first-principle approach to compute the counting statistics in the ground-state of N
noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1).
In a confining potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific
potentials, this system is related to standard random matrix ensembles. We study the quantum
fluctuations of the number of fermions ND in a domain D of macroscopic size in the bulk of the
support. We show that the variance of ND grows as N (d�1)/d(Ad logN + Bd) for large N , and
obtain the explicit dependence of Ad, Bd on the potential and on the size of D (for a spherical
domain in d > 1). This generalizes the free-fermion results for microscopic domains, given in d = 1
by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact
results for d = 1.

An important concept to study quantum noise and cor-
relations in many body fermionic systems is the counting
statistics (CS), which characterises the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2, 3], quan-
tum dots [4, 5], spin and fermionic chains [6–9], trapped
fermions [10, 11]. In the related context of randommatrix
theory (RMT), the statistics of the number of eigenval-
ues in an interval also generated a lot of interest [6, 12–
23]. The CS is particularly important for noninteracting
fermions because of its connection [24–27] to the bipar-
tite entanglement entropy (EE) of the subsystem D with
its complement D. The EE is a highly non local quan-
tity, much studied in the context of quantum informa-
tion [28, 29], conformal field theory [30–32], topological
phases [33], quantum phase transitions [34, 35], or quan-
tum spin chains [36, 37]. Both the CS and the EE are
di�cult to compute analytically, in particular in the pres-
ence of an external potential. There exist however stan-
dard results for free fermions, in the absence of external
potential. In this case, at zero temperature, both the
variance of ND and the EE grow as ⇠ Rd�1 logR with
the typical size R of the domain D [38–45].

In cold Fermi gases [46], the quantum microscopes [47–
49] allow to take an instantaneous “picture” and measure
the counting statistics. In experiments the fermions are
in a trapping potential, of tunable shape and interaction
[46, 50]. It is thus important to calculate both the CS
and the EE in an inhomogeneous background, for which
very few analytical results exist even for noninteracting
fermions, apart from the d = 1 harmonic oscillator [32,
51, 52], and the rotating harmonic trap in d=2 [53].

There has been recent progress to describe noninter-
acting spinless fermions in traps in d dimensions [11]. In

d = 1, for a single particle Hamiltonian Ĥ = p2

2 + V (x)
(in units ~ = m = 1), there is a useful connection with
random matrices for a few specific potentials V (x). The
many body ground state wavefunction  0 of N fermions
is a Slater determinant with all energy levels of Ĥ occu-
pied up to the Fermi energy µ, a function of N . The

quantum joint probability | 0|
2 of the positions {xj}

of the N fermions, maps onto the joint probability for
the eigenvalues {�j} of random matrices of size N ⇥N .

For the harmonic oscillator (HO), V (x) = x2

2 , the ran-
dom matrix is Hermitian from the Gaussian unitary en-
semble (GUE). At large N , the mean fermion density,
i.e., the quantum average ⇢(x) = h

P
i �(x � xi)i, has

support [x�, x+], with x±
' ±

p
2N . In the bulk, i.e.,

away from the edges x±, it takes the semi-circle form
⇢(x) ' ⇢bulk(x) = kF (x)/⇡, where kF (x) =

p
2µ� x2 is

the local Fermi momentum, and in this case µ'N . There
are two natural length scales, the microscopic one of or-
der the inter-particle distance ⇠1/kF (x), and the macro-
scopic one of order x+

� x�. For an interval D=[a, b] of
microscopic size, it is well known from standard results of
RMT [54, 55] that for

p
N |b� a|=O(1)�1 the variance

behaves as [6, 12–14, 17, 20–22]

VarN[a,b] '
1

⇡2

h
log

⇣p
2N � a2 |b� a|

⌘
+ c2

i
(1)

with c2 = �E+1+log 2, where �E is Euler’s constant. The
fermion/eigenvalue correlations can be expressed as de-
terminants of a central object called the kernel, which de-
pends on V (x), see below. At microscopic scales, the ker-
nel takes a universal scaling form, called the sine-kernel,
independent of the (smooth) potential, which leads to
(1). However, except for free fermions on the infinite
line, it does not apply when both a, b are well separated
in the bulk. For the HO, some results in that regime
were obtained in [20, 21] using a Coulomb gas method,
and for the GUE in the math literature [56–59].
Despite recent advances a general framework is still

lacking for computing the counting statistics and entan-
glement entropy for noninteracting fermions in general
potential and arbitrary dimension. In this Letter we pro-
vide a first principle approach to compute these quanti-
ties in d = 1 for a general potential V (x), and in d > 1
for a general central potential. Our method recovers the
existing results in various special cases, see below.
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5

� = 4

� = 2

Svegö theorem

smooth symbol

singular symbols

Fisher-Hartwig

general �

⇢(x) =
NX

i=1

h�(x� xi)i0 (92)

= KN (x, x) (93)

KN (x, y) =
NX

k=1

 ⇤
k(x) k(y) (94)

 0(x1, . . . , xN ) =
1p
N !

det
1i,jN

 i(xj) (95)

det
1i,kN

 ⇤
k(xi) det

1k,jN
 k(xj) = det

1i,jN
KN (xi, xj) (96)

Y

1i<jN

(xj � xi) (97)

↵ =

p
m!/~ (98)

) (99)

E := EC�E (100)

g(x) = e2⇡b
p

�
2

Pn
a=1 [xA,ya](x) (101)

H = �1

2

X

i

@2

@x2
i

+

X

i<j

�(� � 2)

16 sin
2 xi�xj

2

(102)

d

dx
�̃N (x) ' kF (x) (103)

d✓x
dx

=
dµ

dN

1

kF (x)
(104)

sin(�̃N (x)� �̃N (y))2 (105)

! 1

2
(106)

! 1/2 (107)

sin(�̃N (x)� �̃N (y)) sin(�̃N (x) + �̃N (y)) (108)

! (109)

cos(2�N (x))� cos(2�N (y)) (110)

! 0 (111)

� = 2 (112)

N⇢N =
kF
⇡

(113)

kF ! kF (x) (114)

~2
2m

kF (x)
2
= µ� V (x) (115)

Z
dyKN (x, y)KN (y, z) = KN (x, z) (116)

det�k(xi) det�`(xj) = det
1i,jN

KN (xi, xj) (117)

1

C�E CUE

N[✓A,✓] � E(N[✓A,✓]) (1)

✓ ! (2)

Kµ(x, y) =
N�1X

m=0

 ⇤
N�m(x) N�m(y) (3)

d�N
dN

=
d�N
d✏N

/
dN

d✏N
(4)

d�N
dN

=
d�N
dµ

/
dN

dµ
(5)

Z x

x�

dz

kF (z)
(6)

Z x+

x�

dz

⇡kF (z)
(7)

dN

dµ
(8)

✏N = µ (9)

kF (x) =
p

2(µ� V (x)) (10)

N =

Z x+

x�
dz

p
2(µ� V (z)) (11)

dkF (x)

dµ
=

1p
2(µ� V (x))

=
1

kF (x)
(12)

�N (x) =

Z x

x�
dx kF (x) (13)

kF (x±) = 0 (14)

N =

Z x+

x�
dzkF (z) (15)

Kµ(x, y) '
2dµ/dN

⇡
p

kF (x)kF (y)

X

m�0

sin(�N (x)�m✓x +
⇡

4
) sin(�N (y)�m✓y +

⇡

4
) (16)

C2
N =

2

⇡

dµ

dN
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Let us summarize our main results. For a confining
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central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)
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2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
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where the  k(x) are the eigenstates of Ĥ = p2
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will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
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from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of
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kF (a)|a� b| � 1 (80)

| 0(x1, . . . , xN )|2 =
1

N !
det

1i,jN
KN (xi, xj) (81)

Kµ(x, y) =
X

k�1

✓(µ� ✏k) 
⇤
k(x) k(y) (82)

kF (x) =
p

2(µ� V (x)) (83)

N ' 1

⇡

Z
dx

p
2(µ� V (x))+ (84)

⇢(x) ' kF (x)

⇡
(85)

N � 1 (86)

µ (87)

hNDi0 =

Z

D
dx⇢(x) (88)

V (x) < µ (89)

V (x±) = µ (90)

µ ' N (91)
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We develop a first-principle approach to compute the counting statistics in the ground-state of N
noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1).
In a confining potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific
potentials, this system is related to standard random matrix ensembles. We study the quantum
fluctuations of the number of fermions ND in a domain D of macroscopic size in the bulk of the
support. We show that the variance of ND grows as N (d�1)/d(Ad logN + Bd) for large N , and
obtain the explicit dependence of Ad, Bd on the potential and on the size of D (for a spherical
domain in d > 1). This generalizes the free-fermion results for microscopic domains, given in d = 1
by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact
results for d = 1.

An important concept to study quantum noise and cor-
relations in many body fermionic systems is the counting
statistics (CS), which characterises the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2, 3], quan-
tum dots [4, 5], spin and fermionic chains [6–9], trapped
fermions [10, 11]. In the related context of randommatrix
theory (RMT), the statistics of the number of eigenval-
ues in an interval also generated a lot of interest [6, 12–
23]. The CS is particularly important for noninteracting
fermions because of its connection [24–27] to the bipar-
tite entanglement entropy (EE) of the subsystem D with
its complement D. The EE is a highly non local quan-
tity, much studied in the context of quantum informa-
tion [28, 29], conformal field theory [30–32], topological
phases [33], quantum phase transitions [34, 35], or quan-
tum spin chains [36, 37]. Both the CS and the EE are
di�cult to compute analytically, in particular in the pres-
ence of an external potential. There exist however stan-
dard results for free fermions, in the absence of external
potential. In this case, at zero temperature, both the
variance of ND and the EE grow as ⇠ Rd�1 logR with
the typical size R of the domain D [38–45].

In cold Fermi gases [46], the quantum microscopes [47–
49] allow to take an instantaneous “picture” and measure
the counting statistics. In experiments the fermions are
in a trapping potential, of tunable shape and interaction
[46, 50]. It is thus important to calculate both the CS
and the EE in an inhomogeneous background, for which
very few analytical results exist even for noninteracting
fermions, apart from the d = 1 harmonic oscillator [32,
51, 52], and the rotating harmonic trap in d=2 [53].

There has been recent progress to describe noninter-
acting spinless fermions in traps in d dimensions [11]. In

d = 1, for a single particle Hamiltonian Ĥ = p2

2 + V (x)
(in units ~ = m = 1), there is a useful connection with
random matrices for a few specific potentials V (x). The
many body ground state wavefunction  0 of N fermions
is a Slater determinant with all energy levels of Ĥ occu-
pied up to the Fermi energy µ, a function of N . The

quantum joint probability | 0|
2 of the positions {xj}

of the N fermions, maps onto the joint probability for
the eigenvalues {�j} of random matrices of size N ⇥N .

For the harmonic oscillator (HO), V (x) = x2

2 , the ran-
dom matrix is Hermitian from the Gaussian unitary en-
semble (GUE). At large N , the mean fermion density,
i.e., the quantum average ⇢(x) = h

P
i �(x � xi)i, has

support [x�, x+], with x±
' ±

p
2N . In the bulk, i.e.,

away from the edges x±, it takes the semi-circle form
⇢(x) ' ⇢bulk(x) = kF (x)/⇡, where kF (x) =

p
2µ� x2 is

the local Fermi momentum, and in this case µ'N . There
are two natural length scales, the microscopic one of or-
der the inter-particle distance ⇠1/kF (x), and the macro-
scopic one of order x+

� x�. For an interval D=[a, b] of
microscopic size, it is well known from standard results of
RMT [54, 55] that for

p
N |b� a|=O(1)�1 the variance

behaves as [6, 12–14, 17, 20–22]

VarN[a,b] '
1

⇡2

h
log

⇣p
2N � a2 |b� a|

⌘
+ c2

i
(1)

with c2 = �E+1+log 2, where �E is Euler’s constant. The
fermion/eigenvalue correlations can be expressed as de-
terminants of a central object called the kernel, which de-
pends on V (x), see below. At microscopic scales, the ker-
nel takes a universal scaling form, called the sine-kernel,
independent of the (smooth) potential, which leads to
(1). However, except for free fermions on the infinite
line, it does not apply when both a, b are well separated
in the bulk. For the HO, some results in that regime
were obtained in [20, 21] using a Coulomb gas method,
and for the GUE in the math literature [56–59].
Despite recent advances a general framework is still

lacking for computing the counting statistics and entan-
glement entropy for noninteracting fermions in general
potential and arbitrary dimension. In this Letter we pro-
vide a first principle approach to compute these quanti-
ties in d = 1 for a general potential V (x), and in d > 1
for a general central potential. Our method recovers the
existing results in various special cases, see below.
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We develop a first-principle approach to compute the counting statistics in the ground-state of N
noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1).
In a confining potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific
potentials, this system is related to standard random matrix ensembles. We study the quantum
fluctuations of the number of fermions ND in a domain D of macroscopic size in the bulk of the
support. We show that the variance of ND grows as N (d�1)/d(Ad logN + Bd) for large N , and
obtain the explicit dependence of Ad, Bd on the potential and on the size of D (for a spherical
domain in d > 1). This generalizes the free-fermion results for microscopic domains, given in d = 1
by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact
results for d = 1.

An important concept to study quantum noise and cor-
relations in many body fermionic systems is the counting
statistics (CS), which characterises the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2, 3], quan-
tum dots [4, 5], spin and fermionic chains [6–9], trapped
fermions [10, 11]. In the related context of randommatrix
theory (RMT), the statistics of the number of eigenval-
ues in an interval also generated a lot of interest [6, 12–
23]. The CS is particularly important for noninteracting
fermions because of its connection [24–27] to the bipar-
tite entanglement entropy (EE) of the subsystem D with
its complement D. The EE is a highly non local quan-
tity, much studied in the context of quantum informa-
tion [28, 29], conformal field theory [30–32], topological
phases [33], quantum phase transitions [34, 35], or quan-
tum spin chains [36, 37]. Both the CS and the EE are
di�cult to compute analytically, in particular in the pres-
ence of an external potential. There exist however stan-
dard results for free fermions, in the absence of external
potential. In this case, at zero temperature, both the
variance of ND and the EE grow as ⇠ Rd�1 logR with
the typical size R of the domain D [38–45].

In cold Fermi gases [46], the quantum microscopes [47–
49] allow to take an instantaneous “picture” and measure
the counting statistics. In experiments the fermions are
in a trapping potential, of tunable shape and interaction
[46, 50]. It is thus important to calculate both the CS
and the EE in an inhomogeneous background, for which
very few analytical results exist even for noninteracting
fermions, apart from the d = 1 harmonic oscillator [32,
51, 52], and the rotating harmonic trap in d=2 [53].

There has been recent progress to describe noninter-
acting spinless fermions in traps in d dimensions [11]. In

d = 1, for a single particle Hamiltonian Ĥ = p2

2 + V (x)
(in units ~ = m = 1), there is a useful connection with
random matrices for a few specific potentials V (x). The
many body ground state wavefunction  0 of N fermions
is a Slater determinant with all energy levels of Ĥ occu-
pied up to the Fermi energy µ, a function of N . The

quantum joint probability | 0|
2 of the positions {xj}

of the N fermions, maps onto the joint probability for
the eigenvalues {�j} of random matrices of size N ⇥N .

For the harmonic oscillator (HO), V (x) = x2

2 , the ran-
dom matrix is Hermitian from the Gaussian unitary en-
semble (GUE). At large N , the mean fermion density,
i.e., the quantum average ⇢(x) = h

P
i �(x � xi)i, has

support [x�, x+], with x±
' ±

p
2N . In the bulk, i.e.,

away from the edges x±, it takes the semi-circle form
⇢(x) ' ⇢bulk(x) = kF (x)/⇡, where kF (x) =

p
2µ� x2 is

the local Fermi momentum, and in this case µ'N . There
are two natural length scales, the microscopic one of or-
der the inter-particle distance ⇠1/kF (x), and the macro-
scopic one of order x+

� x�. For an interval D=[a, b] of
microscopic size, it is well known from standard results of
RMT [54, 55] that for

p
N |b� a|=O(1)�1 the variance

behaves as [6, 12–14, 17, 20–22]

VarN[a,b] '
1

⇡2

h
log

⇣p
2N � a2 |b� a|

⌘
+ c2

i
(1)

with c2 = �E+1+log 2, where �E is Euler’s constant. The
fermion/eigenvalue correlations can be expressed as de-
terminants of a central object called the kernel, which de-
pends on V (x), see below. At microscopic scales, the ker-
nel takes a universal scaling form, called the sine-kernel,
independent of the (smooth) potential, which leads to
(1). However, except for free fermions on the infinite
line, it does not apply when both a, b are well separated
in the bulk. For the HO, some results in that regime
were obtained in [20, 21] using a Coulomb gas method,
and for the GUE in the math literature [56–59].
Despite recent advances a general framework is still

lacking for computing the counting statistics and entan-
glement entropy for noninteracting fermions in general
potential and arbitrary dimension. In this Letter we pro-
vide a first principle approach to compute these quanti-
ties in d = 1 for a general potential V (x), and in d > 1
for a general central potential. Our method recovers the
existing results in various special cases, see below.
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m we obtain

Kµ(x, y) '
dµ/dN

2⇡
p

kF (x)kF (y)

X

�=±1

sin(�̃N (x)� ��̃N (y))

sin ((✓x � �✓y) /2)

(13)
with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ

dN
1

kF (x) , one recovers the sine-kernel

Kµ(x, y) '
sin (kF (x)|x� y|)

⇡|x� y|
(14)

valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to

Kµ(x, y)
2
'

(dµ/dN)2

2⇡2kF (x)kF (y)

1� cos (✓x) cos (✓y)

(cos ✓x � cos ✓y)
2 (15)

up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by

H(x, y)'
1

2⇡2

✓
log

����sin
✓x + ✓y

2

����� log

����sin
✓x � ✓y

2

����

◆
(16)

up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to

H(x, y)'
1

2⇡2


U(kF (x)|x� y|) + log

2kF (x) sin ✓x
d✓x/dx

�
(17)

where

U(z)=Ci(2z)+2zSi(2z)� log z+1�2 sin2(z)�⇡z, (18)

with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior

⇡2VarN[a,b] ' U(0)� U(kF (a)|a� b|)

' log kF (a)|a� b|+ c2. (19)

From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk

H(a, a) = VarN[a,+1[ '
1

2⇡2

✓
log

2kF (a)2 sin ✓a
dµ/dN

+ c2

◆
.

(20)
Expanding (20) for a ! x+, a < x+, one obtains [60]
H(a, a) '

1
2⇡2 (

3
2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
p

µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
p
µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/

p
2µ and �=↵/µ, one obtains from (20) in

the bulk |2ã2 � 1|<
p
1� �2

2⇡2VarNLUE
[0,a] ' log(µ)+log

0

B@4ã

⇣
1� ã2 � �2

4ã2

⌘3/2

(1� �2)1/2

1

CA+c2

(21)
with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum

=> sine kernel (universal)  - microscopic scales  
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We develop a first-principle approach to compute the counting statistics in the ground-state of N
noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1).
In a confining potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific
potentials, this system is related to standard random matrix ensembles. We study the quantum
fluctuations of the number of fermions ND in a domain D of macroscopic size in the bulk of the
support. We show that the variance of ND grows as N (d�1)/d(Ad logN + Bd) for large N , and
obtain the explicit dependence of Ad, Bd on the potential and on the size of D (for a spherical
domain in d > 1). This generalizes the free-fermion results for microscopic domains, given in d = 1
by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact
results for d = 1.

An important concept to study quantum noise and cor-
relations in many body fermionic systems is the counting
statistics (CS), which characterises the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2, 3], quan-
tum dots [4, 5], spin and fermionic chains [6–9], trapped
fermions [10, 11]. In the related context of randommatrix
theory (RMT), the statistics of the number of eigenval-
ues in an interval also generated a lot of interest [6, 12–
23]. The CS is particularly important for noninteracting
fermions because of its connection [24–27] to the bipar-
tite entanglement entropy (EE) of the subsystem D with
its complement D. The EE is a highly non local quan-
tity, much studied in the context of quantum informa-
tion [28, 29], conformal field theory [30–32], topological
phases [33], quantum phase transitions [34, 35], or quan-
tum spin chains [36, 37]. Both the CS and the EE are
di�cult to compute analytically, in particular in the pres-
ence of an external potential. There exist however stan-
dard results for free fermions, in the absence of external
potential. In this case, at zero temperature, both the
variance of ND and the EE grow as ⇠ Rd�1 logR with
the typical size R of the domain D [38–45].

In cold Fermi gases [46], the quantum microscopes [47–
49] allow to take an instantaneous “picture” and measure
the counting statistics. In experiments the fermions are
in a trapping potential, of tunable shape and interaction
[46, 50]. It is thus important to calculate both the CS
and the EE in an inhomogeneous background, for which
very few analytical results exist even for noninteracting
fermions, apart from the d = 1 harmonic oscillator [32,
51, 52], and the rotating harmonic trap in d=2 [53].

There has been recent progress to describe noninter-
acting spinless fermions in traps in d dimensions [11]. In

d = 1, for a single particle Hamiltonian Ĥ = p2

2 + V (x)
(in units ~ = m = 1), there is a useful connection with
random matrices for a few specific potentials V (x). The
many body ground state wavefunction  0 of N fermions
is a Slater determinant with all energy levels of Ĥ occu-
pied up to the Fermi energy µ, a function of N . The

quantum joint probability | 0|
2 of the positions {xj}

of the N fermions, maps onto the joint probability for
the eigenvalues {�j} of random matrices of size N ⇥N .

For the harmonic oscillator (HO), V (x) = x2

2 , the ran-
dom matrix is Hermitian from the Gaussian unitary en-
semble (GUE). At large N , the mean fermion density,
i.e., the quantum average ⇢(x) = h

P
i �(x � xi)i, has

support [x�, x+], with x±
' ±

p
2N . In the bulk, i.e.,

away from the edges x±, it takes the semi-circle form
⇢(x) ' ⇢bulk(x) = kF (x)/⇡, where kF (x) =

p
2µ� x2 is

the local Fermi momentum, and in this case µ'N . There
are two natural length scales, the microscopic one of or-
der the inter-particle distance ⇠1/kF (x), and the macro-
scopic one of order x+

� x�. For an interval D=[a, b] of
microscopic size, it is well known from standard results of
RMT [54, 55] that for

p
N |b� a|=O(1)�1 the variance

behaves as [6, 12–14, 17, 20–22]

VarN[a,b] '
1

⇡2

h
log

⇣p
2N � a2 |b� a|

⌘
+ c2

i
(1)

with c2 = �E+1+log 2, where �E is Euler’s constant. The
fermion/eigenvalue correlations can be expressed as de-
terminants of a central object called the kernel, which de-
pends on V (x), see below. At microscopic scales, the ker-
nel takes a universal scaling form, called the sine-kernel,
independent of the (smooth) potential, which leads to
(1). However, except for free fermions on the infinite
line, it does not apply when both a, b are well separated
in the bulk. For the HO, some results in that regime
were obtained in [20, 21] using a Coulomb gas method,
and for the GUE in the math literature [56–59].
Despite recent advances a general framework is still

lacking for computing the counting statistics and entan-
glement entropy for noninteracting fermions in general
potential and arbitrary dimension. In this Letter we pro-
vide a first principle approach to compute these quanti-
ties in d = 1 for a general potential V (x), and in d > 1
for a general central potential. Our method recovers the
existing results in various special cases, see below.
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We develop a first-principle approach to compute the counting statistics in the ground-state of N
noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1).
In a confining potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific
potentials, this system is related to standard random matrix ensembles. We study the quantum
fluctuations of the number of fermions ND in a domain D of macroscopic size in the bulk of the
support. We show that the variance of ND grows as N (d�1)/d(Ad logN + Bd) for large N , and
obtain the explicit dependence of Ad, Bd on the potential and on the size of D (for a spherical
domain in d > 1). This generalizes the free-fermion results for microscopic domains, given in d = 1
by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact
results for d = 1.

An important concept to study quantum noise and cor-
relations in many body fermionic systems is the counting
statistics (CS), which characterises the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2, 3], quan-
tum dots [4, 5], spin and fermionic chains [6–9], trapped
fermions [10, 11]. In the related context of randommatrix
theory (RMT), the statistics of the number of eigenval-
ues in an interval also generated a lot of interest [6, 12–
23]. The CS is particularly important for noninteracting
fermions because of its connection [24–27] to the bipar-
tite entanglement entropy (EE) of the subsystem D with
its complement D. The EE is a highly non local quan-
tity, much studied in the context of quantum informa-
tion [28, 29], conformal field theory [30–32], topological
phases [33], quantum phase transitions [34, 35], or quan-
tum spin chains [36, 37]. Both the CS and the EE are
di�cult to compute analytically, in particular in the pres-
ence of an external potential. There exist however stan-
dard results for free fermions, in the absence of external
potential. In this case, at zero temperature, both the
variance of ND and the EE grow as ⇠ Rd�1 logR with
the typical size R of the domain D [38–45].

In cold Fermi gases [46], the quantum microscopes [47–
49] allow to take an instantaneous “picture” and measure
the counting statistics. In experiments the fermions are
in a trapping potential, of tunable shape and interaction
[46, 50]. It is thus important to calculate both the CS
and the EE in an inhomogeneous background, for which
very few analytical results exist even for noninteracting
fermions, apart from the d = 1 harmonic oscillator [32,
51, 52], and the rotating harmonic trap in d=2 [53].

There has been recent progress to describe noninter-
acting spinless fermions in traps in d dimensions [11]. In

d = 1, for a single particle Hamiltonian Ĥ = p2

2 + V (x)
(in units ~ = m = 1), there is a useful connection with
random matrices for a few specific potentials V (x). The
many body ground state wavefunction  0 of N fermions
is a Slater determinant with all energy levels of Ĥ occu-
pied up to the Fermi energy µ, a function of N . The

quantum joint probability | 0|
2 of the positions {xj}

of the N fermions, maps onto the joint probability for
the eigenvalues {�j} of random matrices of size N ⇥N .

For the harmonic oscillator (HO), V (x) = x2

2 , the ran-
dom matrix is Hermitian from the Gaussian unitary en-
semble (GUE). At large N , the mean fermion density,
i.e., the quantum average ⇢(x) = h

P
i �(x � xi)i, has

support [x�, x+], with x±
' ±

p
2N . In the bulk, i.e.,

away from the edges x±, it takes the semi-circle form
⇢(x) ' ⇢bulk(x) = kF (x)/⇡, where kF (x) =

p
2µ� x2 is

the local Fermi momentum, and in this case µ'N . There
are two natural length scales, the microscopic one of or-
der the inter-particle distance ⇠1/kF (x), and the macro-
scopic one of order x+

� x�. For an interval D=[a, b] of
microscopic size, it is well known from standard results of
RMT [54, 55] that for

p
N |b� a|=O(1)�1 the variance

behaves as [6, 12–14, 17, 20–22]

VarN[a,b] '
1

⇡2

h
log

⇣p
2N � a2 |b� a|

⌘
+ c2

i
(1)

with c2 = �E+1+log 2, where �E is Euler’s constant. The
fermion/eigenvalue correlations can be expressed as de-
terminants of a central object called the kernel, which de-
pends on V (x), see below. At microscopic scales, the ker-
nel takes a universal scaling form, called the sine-kernel,
independent of the (smooth) potential, which leads to
(1). However, except for free fermions on the infinite
line, it does not apply when both a, b are well separated
in the bulk. For the HO, some results in that regime
were obtained in [20, 21] using a Coulomb gas method,
and for the GUE in the math literature [56–59].
Despite recent advances a general framework is still

lacking for computing the counting statistics and entan-
glement entropy for noninteracting fermions in general
potential and arbitrary dimension. In this Letter we pro-
vide a first principle approach to compute these quanti-
ties in d = 1 for a general potential V (x), and in d > 1
for a general central potential. Our method recovers the
existing results in various special cases, see below.
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Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=

p
2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit

N�1 (i.e., µ�1) where N'
R x+

x�
dx
⇡ kF (x)

(2⇡2)VarN[a,b] = 2 log

 
2kF (a)kF (b)

Z x+

x�

dz

⇡kF (z)

!

+ log

 
sin2 ✓a�✓b

2

sin2 ✓a+✓b
2

| sin ✓a sin ✓b|

!
+ 2c2 + o(1) (2)

where ✓x = ⇡

R x
x� dz/kF (z)
R x+

x� dz/kF (z)
,

(
✓x� = 0

✓x+ = ⇡
. (3)

We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1

2r
2, the support of

the density is the ball of radius
p
2µ, and for a sphere

of macroscopic radius R= R̃
p
2µ we obtain for large µ,

with fixed R̃ 2 [0, 1[

VarND = µd�1
h
Ad

⇣
R̃
⌘
logµ+Bd

⇣
R̃
⌘
+ o(1)

i
(4)

Ad(R̃) =
1

⇡2�(d)

⇣
2R̃
p

1� R̃2
⌘d�1

(5)

and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain

VarND'
1

⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
p
2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term

bd = 2 log 2�
�E
2

+ 1�
3

2
 (0)

✓
d+ 1

2

◆
, (7)

 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1

 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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p
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2
⇡

d✏k
dk is a

normalization [66, 67]. Inserting (12) in (10), we rela-
bel k = N �m around the Fermi energy µ = ✏N . Not-
ing that the phase �N (x) at large N is also very large,
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us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)
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FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
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leading term A2(R̃)µ log µ being subtracted from the variance.
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nite interval [62].
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where the  k(x) are the eigenstates of Ĥ = p2
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order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]
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from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
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We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
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D. For instance, for the HO, V (r)= 1
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and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain
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where kF =
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1
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k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1

 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]

 k(x) '
Ck

[2 (✏k � V (x))]1/4
sin
⇣
�k(x) +

⇡

4

⌘
(12)

where �k(x) =
R x
x� dz

p
2(✏k � V (z)) and C2

k =
2
⇡

d✏k
dk is a

normalization [66, 67]. Inserting (12) in (10), we rela-
bel k = N �m around the Fermi energy µ = ✏N . Not-
ing that the phase �N (x) at large N is also very large,

we can expand �N�m(x) = �N (x) � md�N (x)
dN + o(1) =

�N (x) � m✓x + o(1), where ✓x is given in (3), using
dN
dµ '

R x+

x�
dx

⇡kF (x) . Performing the geometric sum over
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Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=

p
2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit

N�1 (i.e., µ�1) where N'
R x+

x�
dx
⇡ kF (x)

(2⇡2)VarN[a,b] = 2 log
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and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
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VarND'
1

⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
p
2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term

bd = 2 log 2�
�E
2

+ 1�
3

2
 (0)

✓
d+ 1

2

◆
, (7)

 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/
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2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
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leading term A2(R̃)µ log µ being subtracted from the variance.
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tions are obtained from the kernel
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will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]
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from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
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(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well
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[60] to the Wishart-Laguerre unitary ensemble (LUE) of
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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Kernel on macroscopic scales    

perform geometric sum over m  

approximate prefactors  

insert WKB form  
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1d HO with W=0: kernel at ! ≫ 1
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Harmonic oscillator
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sin(�̃N (x)� ��̃N (y))

sin ((✓x � �✓y) /2)

(13)
with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ

dN
1

kF (x) , one recovers the sine-kernel

Kµ(x, y) '
sin (kF (x)|x� y|)

⇡|x� y|
(14)

valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to

Kµ(x, y)
2
'

(dµ/dN)2

2⇡2kF (x)kF (y)

1� cos (✓x) cos (✓y)

(cos ✓x � cos ✓y)
2 (15)

up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by

H(x, y)'
1

2⇡2

✓
log

����sin
✓x + ✓y

2

����� log

����sin
✓x � ✓y

2

����

◆
(16)

up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to

H(x, y)'
1

2⇡2


U(kF (x)|x� y|) + log

2kF (x) sin ✓x
d✓x/dx

�
(17)

where

U(z)=Ci(2z)+2zSi(2z)� log z+1�2 sin2(z)�⇡z, (18)

with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior

⇡2VarN[a,b] ' U(0)� U(kF (a)|a� b|)

' log kF (a)|a� b|+ c2. (19)

From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk

H(a, a) = VarN[a,+1[ '
1

2⇡2

✓
log

2kF (a)2 sin ✓a
dµ/dN

+ c2

◆
.

(20)
Expanding (20) for a ! x+, a < x+, one obtains [60]
H(a, a) '

1
2⇡2 (

3
2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
p

µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
p
µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/

p
2µ and �=↵/µ, one obtains from (20) in

the bulk |2ã2 � 1|<
p
1� �2

2⇡2VarNLUE
[0,a] ' log(µ)+log

0

B@4ã

⇣
1� ã2 � �2

4ã2

⌘3/2

(1� �2)1/2

1

CA+c2

(21)
with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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more generally for the potentials related to RMT) one can use the equivalent Christo↵el-Darboux form of the kernel
[11, 14, 78] (a consequence of the recurrence relations of the Hermite polynomials)

Kµ (x, y) =

r
N

2

 N+1 (x) N (y)�  N (x) N+1 (y)

x� y
=

e�(x
2+y2)/2

p
⇡ 2N (N � 1)!

HN (x)HN�1 (y)�HN�1 (x)HN (y)

x� y
(S17)

with our conventions (see (S12) and above). Using the Plancherel-Rotach formula (S12) one then arrives at the same
result (13) of the main text. Since that method circumvents the summation over the eigenstates, it provides an
independent check of our results in some special cases.

The next step is to calculate Kµ(x, y)2 when the distance |x � y| is macroscopic. The direct square of (13) in
the main text leads to the sum of two parts. The first part is obtained from the sin2(�̃N (x) � ��̃N (y)) terms
and the replacement of each of them by 1/2 (ii) the second part is a linear combination of terms proportional to
cos 2(�̃N (x) � ��̃N (y)) and (from the product of the sine) cos 2�̃N (x) and cos 2�̃N (y). These terms oscillate on
microscopic scales O(1/kF (x), 1/kF (y)), hence any local average of them on macroscopic scales (e.g. upon integration
over x, y when computing the height correlator in (S7)) will give negligible contributions [113]. Retaining thus only

the first part, and using that
P

�=±1
1

sin2(
✓x��✓y

2 )
= 4 1�cos(✓x) cos(✓y)

(cos ✓x�cos ✓y)2
we obtain Eq. (15) of the text. Note that we

have performed a numerical check of the formula for K2
µ for the HO in Fig. 7 in Section XI.

Fermions on the circle. Consider now fermions on the circle x 2 [0, L], and a periodic potential of period L such
that V (x) < µ for all x, i.e., without turning points. Let us start with the case V (x) = 0 (i.e., the CUE) which is

quite pedagogical. The kernel reads Kµ(x, y) = 1
L

PpN
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e
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(we restrict ourselves here to the case where N is odd. In this case the many-body ground state is not degenerate).
For x � y ⌧ L, Kµ(x, y) reduces to the sine-kernel. For x � y = O(L) one has, discarding the fast oscillating term
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with ✓x = 2⇡x/L for free fermions. We now show that the last two identities extend to a general potential V (x) where
✓x is given below (by a di↵erent formula than the one for the confining well).

In the semi-classical approximation one can consider that the energy levels ✏k > maxx V (x) are doubly degenerate
on the circle [114]. The WKB states are  ±
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. Performing the same manipulations as in the
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where �n(x) =
R x
0 du

p
2(µ� V (u)) and �̃n(x) = �n(x) +

1
2✓x. Using that d✓x = 2 dµ

dN
dx

kF (x) and sin2 ! 1/2 up to fast

oscillating terms we arrive at (S18).

V. MORE DETAILS ON THE RESULTS FOR THE COUNTING STATISTICS IN d = 1

Consider fermions with Fermi energy µ in a general potential V (x) in d = 1, defined on the interval [c�, c+] (which
may be infinite or semi-infinite). In this section we explain the formula for the variance of the number of fermions
ND in a macroscopic interval in the large N,µ limit. These formula will di↵er slightly depending on whether the

3

m we obtain
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(13)
with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ

dN
1

kF (x) , one recovers the sine-kernel

Kµ(x, y) '
sin (kF (x)|x� y|)

⇡|x� y|
(14)

valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to

Kµ(x, y)
2
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(dµ/dN)2

2⇡2kF (x)kF (y)

1� cos (✓x) cos (✓y)
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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����� log
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(16)

up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to
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where

U(z)=Ci(2z)+2zSi(2z)� log z+1�2 sin2(z)�⇡z, (18)

with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior

⇡2VarN[a,b] ' U(0)� U(kF (a)|a� b|)

' log kF (a)|a� b|+ c2. (19)

From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk
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Expanding (20) for a ! x+, a < x+, one obtains [60]
H(a, a) '

1
2⇡2 (

3
2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
p

µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
p
µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/

p
2µ and �=↵/µ, one obtains from (20) in
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p
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(21)
with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
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dx = dµ
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kF (x) , one recovers the sine-kernel
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
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the delta function) and Kµ given by the sine kernel (14),
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leads to the Dyson Mehta behavior
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±
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2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
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p
1� �2

2⇡2VarNLUE
[0,a] ' log(µ)+log

0

B@4ã
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to

Kµ(x, y)
2
'

(dµ/dN)2

2⇡2kF (x)kF (y)

1� cos (✓x) cos (✓y)

(cos ✓x � cos ✓y)
2 (15)

up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
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H(x, y)'
1

2⇡2

✓
log

����sin
✓x + ✓y

2

����� log

����sin
✓x � ✓y

2

����

◆
(16)

up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
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�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±
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(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =
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. We focus on the interval [0, a] and scale
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scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
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along part of a circle z = ei✓x , thus extending the re-
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
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⇡2VarN[a,b] ' U(0)� U(kF (a)|a� b|)

' log kF (a)|a� b|+ c2. (19)

From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk

H(a, a) = VarN[a,+1[ '
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+ c2

◆
.

(20)
Expanding (20) for a ! x+, a < x+, one obtains [60]
H(a, a) '

1
2⇡2 (

3
2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
p

µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
p
µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/

p
2µ and �=↵/µ, one obtains from (20) in

the bulk |2ã2 � 1|<
p
1� �2

2⇡2VarNLUE
[0,a] ' log(µ)+log
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B@4ã
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1� ã2 � �2

4ã2

⌘3/2

(1� �2)1/2

1

CA+c2

(21)
with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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more generally for the potentials related to RMT) one can use the equivalent Christo↵el-Darboux form of the kernel
[11, 14, 78] (a consequence of the recurrence relations of the Hermite polynomials)

Kµ (x, y) =

r
N

2

 N+1 (x) N (y)�  N (x) N+1 (y)

x� y
=

e�(x
2+y2)/2

p
⇡ 2N (N � 1)!

HN (x)HN�1 (y)�HN�1 (x)HN (y)

x� y
(S17)

with our conventions (see (S12) and above). Using the Plancherel-Rotach formula (S12) one then arrives at the same
result (13) of the main text. Since that method circumvents the summation over the eigenstates, it provides an
independent check of our results in some special cases.

The next step is to calculate Kµ(x, y)2 when the distance |x � y| is macroscopic. The direct square of (13) in
the main text leads to the sum of two parts. The first part is obtained from the sin2(�̃N (x) � ��̃N (y)) terms
and the replacement of each of them by 1/2 (ii) the second part is a linear combination of terms proportional to
cos 2(�̃N (x) � ��̃N (y)) and (from the product of the sine) cos 2�̃N (x) and cos 2�̃N (y). These terms oscillate on
microscopic scales O(1/kF (x), 1/kF (y)), hence any local average of them on macroscopic scales (e.g. upon integration
over x, y when computing the height correlator in (S7)) will give negligible contributions [113]. Retaining thus only

the first part, and using that
P

�=±1
1

sin2(
✓x��✓y

2 )
= 4 1�cos(✓x) cos(✓y)

(cos ✓x�cos ✓y)2
we obtain Eq. (15) of the text. Note that we

have performed a numerical check of the formula for K2
µ for the HO in Fig. 7 in Section XI.

Fermions on the circle. Consider now fermions on the circle x 2 [0, L], and a periodic potential of period L such
that V (x) < µ for all x, i.e., without turning points. Let us start with the case V (x) = 0 (i.e., the CUE) which is

quite pedagogical. The kernel reads Kµ(x, y) = 1
L

PpN

p=�pN
e

2⇡ip(x�y)
L = sin(kF (x�y))

L sin⇡ x�y
L

with kF = N⇡
L and pN = N�1

2

(we restrict ourselves here to the case where N is odd. In this case the many-body ground state is not degenerate).
For x � y ⌧ L, Kµ(x, y) reduces to the sine-kernel. For x � y = O(L) one has, discarding the fast oscillating term
cos(2kF (x� y))

Kµ (x, y)
2
'

1

2L2 sin2
�
⇡ x�y

L

� =
1

8⇡2

d✓x
dx

d✓y
dy
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sin2 1
2 (✓y � ✓x)

= @x@y
1

2⇡2
log

����sin
✓x � ✓y

2

���� (S18)

with ✓x = 2⇡x/L for free fermions. We now show that the last two identities extend to a general potential V (x) where
✓x is given below (by a di↵erent formula than the one for the confining well).

In the semi-classical approximation one can consider that the energy levels ✏k > maxx V (x) are doubly degenerate
on the circle [114]. The WKB states are  ±

k (x) '
Ck

[2(✏k�V (x))]1/4
e±i�k(x) with �k(x) =

R x
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⇡kF (x) . In particular C2

n = 1
2⇡

d✏n
dn '

1
⇡

dµ
dN , with a

factor of 2 compared to the case of two turning points. Inserting the WKB wavefunctions in the kernel Kµ(x, y) 'P
�=±1

Pn
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�
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Since d✏n
dn ' 2 dµ

dN , one thus obtains that for the circle ✓x = 2⇡
R x
0

dz
kF (z)R L

0
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. Performing the same manipulations as in the

text we obtain
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(S19)

where �n(x) =
R x
0 du

p
2(µ� V (u)) and �̃n(x) = �n(x) +

1
2✓x. Using that d✓x = 2 dµ

dN
dx

kF (x) and sin2 ! 1/2 up to fast

oscillating terms we arrive at (S18).

V. MORE DETAILS ON THE RESULTS FOR THE COUNTING STATISTICS IN d = 1

Consider fermions with Fermi energy µ in a general potential V (x) in d = 1, defined on the interval [c�, c+] (which
may be infinite or semi-infinite). In this section we explain the formula for the variance of the number of fermions
ND in a macroscopic interval in the large N,µ limit. These formula will di↵er slightly depending on whether the

3

m we obtain
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X
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(13)
with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ

dN
1

kF (x) , one recovers the sine-kernel

Kµ(x, y) '
sin (kF (x)|x� y|)

⇡|x� y|
(14)

valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to

Kµ(x, y)
2
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2⇡2kF (x)kF (y)

1� cos (✓x) cos (✓y)
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by

H(x, y)'
1

2⇡2

✓
log
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2

����� log
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2

����

◆
(16)

up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to

H(x, y)'
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�
(17)

where

U(z)=Ci(2z)+2zSi(2z)� log z+1�2 sin2(z)�⇡z, (18)

with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior

⇡2VarN[a,b] ' U(0)� U(kF (a)|a� b|)

' log kF (a)|a� b|+ c2. (19)

From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk

H(a, a) = VarN[a,+1[ '
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Expanding (20) for a ! x+, a < x+, one obtains [60]
H(a, a) '

1
2⇡2 (

3
2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
p

µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
p
µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/

p
2µ and �=↵/µ, one obtains from (20) in

the bulk |2ã2 � 1|<
p
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ

dN
1

kF (x) , one recovers the sine-kernel

Kµ(x, y) '
sin (kF (x)|x� y|)

⇡|x� y|
(14)

valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to
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with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±
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(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2
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[60] to the Wishart-Laguerre unitary ensemble (LUE) of
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fermion positions xj and eigenvalues �j⇠x2
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum

2

Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=

p
2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit

N�1 (i.e., µ�1) where N'
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dx
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R x
x� dz/kF (z)
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,

(
✓x� = 0

✓x+ = ⇡
. (3)

We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1

2r
2, the support of

the density is the ball of radius
p
2µ, and for a sphere

of macroscopic radius R= R̃
p
2µ we obtain for large µ,

with fixed R̃ 2 [0, 1[
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(4)
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⇡2�(d)

⇣
2R̃
p

1� R̃2
⌘d�1

(5)

and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain

VarND'
1

⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
p
2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term

bd = 2 log 2�
�E
2

+ 1�
3

2
 (0)

✓
d+ 1

2

◆
, (7)

 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1

 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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2(✏k � V (z)) and C2

k =
2
⇡

d✏k
dk is a

normalization [66, 67]. Inserting (12) in (10), we rela-
bel k = N �m around the Fermi energy µ = ✏N . Not-
ing that the phase �N (x) at large N is also very large,

we can expand �N�m(x) = �N (x) � md�N (x)
dN + o(1) =
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
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well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
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2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
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µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
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µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum

3

m we obtain

Kµ(x, y) '
dµ/dN

2⇡
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kF (x)kF (y)

X

�=±1

sin(�̃N (x)� ��̃N (y))

sin ((✓x � �✓y) /2)

(13)
with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ

dN
1

kF (x) , one recovers the sine-kernel

Kµ(x, y) '
sin (kF (x)|x� y|)

⇡|x� y|
(14)

valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to

Kµ(x, y)
2
'

(dµ/dN)2

2⇡2kF (x)kF (y)

1� cos (✓x) cos (✓y)

(cos ✓x � cos ✓y)
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to
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U(z)=Ci(2z)+2zSi(2z)� log z+1�2 sin2(z)�⇡z, (18)

with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior

⇡2VarN[a,b] ' U(0)� U(kF (a)|a� b|)

' log kF (a)|a� b|+ c2. (19)

From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk
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Expanding (20) for a ! x+, a < x+, one obtains [60]
H(a, a) '

1
2⇡2 (

3
2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =
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µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
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µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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term � = 1 dominates [68]. Using �̃0
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taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to
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with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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1
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/
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2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =
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µ2�↵(↵�1)
. We focus on the interval [0, a] and scale
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ

dN
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kF (x) , one recovers the sine-kernel

Kµ(x, y) '
sin (kF (x)|x� y|)

⇡|x� y|
(14)

valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
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since kF (x) ' kF (y) on microscopic scales. Using (9), it
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From (16), (17) and (9), we obtain our result (2) as
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
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2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
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(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2
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2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
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fermion positions xj and eigenvalues �j⇠x2
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=

p
2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit

N�1 (i.e., µ�1) where N'
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We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1

2r
2, the support of

the density is the ball of radius
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2µ, and for a sphere

of macroscopic radius R= R̃
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and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain

VarND'
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⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
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the subleading term
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX
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k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]
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k � 1 [63]. One can thus use the WKB asymptotics
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
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dx = dµ
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kF (x) , one recovers the sine-kernel
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to
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2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior
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From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =
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. We focus on the interval [0, a] and scale

both a=O(
p
µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
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larger than microscopic. Note that Eq. (15) is valid for
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
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and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
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2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
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Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=
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2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit
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We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1

2r
2, the support of

the density is the ball of radius
p
2µ, and for a sphere

of macroscopic radius R= R̃
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2µ we obtain for large µ,

with fixed R̃ 2 [0, 1[
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and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain

VarND'
1

⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
p
2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term

bd = 2 log 2�
�E
2

+ 1�
3

2
 (0)

✓
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2

◆
, (7)

 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1

 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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normalization [66, 67]. Inserting (12) in (10), we rela-
bel k = N �m around the Fermi energy µ = ✏N . Not-
ing that the phase �N (x) at large N is also very large,

we can expand �N�m(x) = �N (x) � md�N (x)
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�N (x) � m✓x + o(1), where ✓x is given in (3), using
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two-point covariance function H(x, y), from which the
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2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
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with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
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k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
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2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1

2r
2, the support of

the density is the ball of radius
p
2µ, and for a sphere

of macroscopic radius R= R̃
p
2µ we obtain for large µ,

with fixed R̃ 2 [0, 1[

VarND = µd�1
h
Ad

⇣
R̃
⌘
logµ+Bd

⇣
R̃
⌘
+ o(1)

i
(4)

Ad(R̃) =
1

⇡2�(d)

⇣
2R̃
p

1� R̃2
⌘d�1

(5)

and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain

VarND'
1

⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
p
2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term

bd = 2 log 2�
�E
2

+ 1�
3

2
 (0)

✓
d+ 1

2

◆
, (7)

 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1

 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2
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well separated on macroscopic scales in the bulk ]x�, x+[,
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
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leads to the Dyson Mehta behavior
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Here the edge scaling variable is â = (a � x+)/wN ,
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was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
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(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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p
1� �2

2⇡2VarNLUE
[0,a] ' log(µ)+log

0

B@4ã
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Hamiltonian Ĥ commutes with the angular momentum
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We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1
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and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain
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(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
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2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1

 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.
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Applications: number variance in interval in d=1 
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Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=

p
2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit

N�1 (i.e., µ�1) where N'
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dx
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We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1

2r
2, the support of

the density is the ball of radius
p
2µ, and for a sphere

of macroscopic radius R= R̃
p
2µ we obtain for large µ,

with fixed R̃ 2 [0, 1[
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2R̃
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1� R̃2
⌘d�1

(5)

and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain

VarND'
1

⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
p
2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term

bd = 2 log 2�
�E
2

+ 1�
3

2
 (0)

✓
d+ 1

2

◆
, (7)

 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1

 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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where �k(x) =
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x� dz
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2(✏k � V (z)) and C2

k =
2
⇡

d✏k
dk is a

normalization [66, 67]. Inserting (12) in (10), we rela-
bel k = N �m around the Fermi energy µ = ✏N . Not-
ing that the phase �N (x) at large N is also very large,

we can expand �N�m(x) = �N (x) � md�N (x)
dN + o(1) =

�N (x) � m✓x + o(1), where ✓x is given in (3), using
dN
dµ '

R x+

x�
dx

⇡kF (x) . Performing the geometric sum over
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eral central potential in d dimension, with single particle
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3 in (27). As seen from the comparison to simulations
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel
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where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0
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kF (x) , one recovers the sine-kernel
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to
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with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior
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From (16), (17) and (9), we obtain our result (2) as
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Expanding (20) for a ! x+, a < x+, one obtains [60]
H(a, a) '

1
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3
2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±
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2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2
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2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
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fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =
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scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
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Here the edge scaling variable is â = (a � x+)/wN ,
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
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2 log(�â) + c2 + 2 log 2) for �â � 1.
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p
2µ and �=↵/µ, one obtains from (20) in

the bulk |2ã2 � 1|<
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and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX
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k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
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H(a, a) '

1
2⇡2 (

3
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±
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2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
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leading to

H(x, y)'
1

2⇡2


U(kF (x)|x� y|) + log

2kF (x) sin ✓x
d✓x/dx

�
(17)

where

U(z)=Ci(2z)+2zSi(2z)� log z+1�2 sin2(z)�⇡z, (18)

with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior

⇡2VarN[a,b] ' U(0)� U(kF (a)|a� b|)

' log kF (a)|a� b|+ c2. (19)

From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk

H(a, a) = VarN[a,+1[ '
1

2⇡2

✓
log

2kF (a)2 sin ✓a
dµ/dN

+ c2

◆
.

(20)
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
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term � = 1 dominates [68]. Using �̃0
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to
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where
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with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
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â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
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up to o(1) terms at large µ. One checks that (16) is
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tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
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and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
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4ã2

⌘3/2

(1� �2)1/2

1

CA+c2

(21)
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similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
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dx = dµ
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kF (x) , one recovers the sine-kernel
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valid on microscopic scales. On the other hand, for x, y
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taking the square of (13), one can neglect the cross term
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
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2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±
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2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well
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p
2µ and �=↵/µ, one obtains from (20) in

the bulk |2ã2 � 1|<
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⇣
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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Applications: number variance in interval in d=1 
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Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=

p
2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit

N�1 (i.e., µ�1) where N'
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dx
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R x
x� dz/kF (z)
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x� dz/kF (z)
,

(
✓x� = 0

✓x+ = ⇡
. (3)

We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1

2r
2, the support of

the density is the ball of radius
p
2µ, and for a sphere

of macroscopic radius R= R̃
p
2µ we obtain for large µ,

with fixed R̃ 2 [0, 1[

VarND = µd�1
h
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⌘
logµ+Bd
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(4)
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1

⇡2�(d)

⇣
2R̃
p

1� R̃2
⌘d�1

(5)

and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain

VarND'
1

⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
p
2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term

bd = 2 log 2�
�E
2

+ 1�
3

2
 (0)

✓
d+ 1

2

◆
, (7)

 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1

 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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normalization [66, 67]. Inserting (12) in (10), we rela-
bel k = N �m around the Fermi energy µ = ✏N . Not-
ing that the phase �N (x) at large N is also very large,

we can expand �N�m(x) = �N (x) � md�N (x)
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�N (x) � m✓x + o(1), where ✓x is given in (3), using
dN
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)
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to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
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with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
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nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel
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where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
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from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]

 k(x) '
Ck

[2 (✏k � V (x))]1/4
sin
⇣
�k(x) +

⇡

4

⌘
(12)

where �k(x) =
R x
x� dz

p
2(✏k � V (z)) and C2

k =
2
⇡

d✏k
dk is a

normalization [66, 67]. Inserting (12) in (10), we rela-
bel k = N �m around the Fermi energy µ = ✏N . Not-
ing that the phase �N (x) at large N is also very large,

we can expand �N�m(x) = �N (x) � md�N (x)
dN + o(1) =

�N (x) � m✓x + o(1), where ✓x is given in (3), using
dN
dµ '

R x+

x�
dx

⇡kF (x) . Performing the geometric sum over

also needs H(a,a) => 

needs H(a,b) for |a-b| microscopic

2

Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=

p
2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit

N�1 (i.e., µ�1) where N'
R x+

x�
dx
⇡ kF (x)

(2⇡2)VarN[a,b] = 2 log

 
2kF (a)kF (b)

Z x+

x�

dz

⇡kF (z)

!

+ log

 
sin2 ✓a�✓b

2

sin2 ✓a+✓b
2

| sin ✓a sin ✓b|

!
+ 2c2 + o(1) (2)

where ✓x = ⇡

R x
x� dz/kF (z)
R x+

x� dz/kF (z)
,

(
✓x� = 0

✓x+ = ⇡
. (3)

We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
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2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
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(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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2 log(�â) + c2 + 2 log 2) for �â � 1.
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uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to
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where
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with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior

⇡2VarN[a,b] ' U(0)� U(kF (a)|a� b|)
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From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
p

µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
p
µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/

p
2µ and �=↵/µ, one obtains from (20) in
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to

Kµ(x, y)
2
'

(dµ/dN)2

2⇡2kF (x)kF (y)

1� cos (✓x) cos (✓y)

(cos ✓x � cos ✓y)
2 (15)

up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
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the GFF also emerge in recent approaches using inhomo-
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±
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2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =
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. We focus on the interval [0, a] and scale
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µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ
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kF (x) , one recovers the sine-kernel
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
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leads to the Dyson Mehta behavior
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
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dx = dµ

dN
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kF (x) , one recovers the sine-kernel
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
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where
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�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior
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From (16), (17) and (9), we obtain our result (2) as
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
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Hamiltonian Ĥ commutes with the angular momentum

-> 1) number variance for microscopic interval 

4

Zb =
N

2⇡

Z xB

xA

dy e2⇡b
p

�
2 �NxA

(y)
(59)

E[Zn
b ] = (

N

2⇡
)
n

Z xB

xA

dy1 . . . dyne
�b
p

�
2

Pn
a=1 N(ya�xA) ⇥ E[e2⇡b

p
�
2

Pn
a=1 �N[xA,ya] ] (60)

E[
NY

j=1

g(xj)] (61)

g(x) = e2⇡b
p

�
2

Pn
a=1 [xA,ya](x) (62)

log g(x) =
X

p2Z
cpe

ipx
(63)

det
N⇥N

gj�k (64)

= eNc0e
P

p�1 pcpc�p+o(1)
(65)

� (66)

E(e2⇡b
p

�
2 �NxA

(x)
) (67)

' N2b2A�(b)
2A�(�b)2

✓
4 sin

2 x� xA

2

◆b2

(68)

' (
N

2⇡
)
nN b2(n+n2)|A�(b)|2n|A�(bn)|2 (69)

Z xB

xA

nY

a=1

dya|1� ei(ya�xA)|2nb
2 Y

1acn

|1� ei(ya�yc)|�2b2
(70)

N ! +1 (71)

nb2 < 1 (72)
Z ⇡

�⇡
(73)

G1(z) = G(z) (74)

gb(y) = E(e�ebyZb) (75)

Fb � b�1G (76)

F+1 ⌘ F1 �G (77)

P(xm) = lim
b!1

E(pb(x)) (78)

U 0
(0) = �⇡ (79)

kF (a)|a� b| � 1 (80)

� = 4

� = 2
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Applications: number variance in interval in d=1 

2

Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=

p
2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit

N�1 (i.e., µ�1) where N'
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dx
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,

(
✓x� = 0

✓x+ = ⇡
. (3)

We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1

2r
2, the support of

the density is the ball of radius
p
2µ, and for a sphere

of macroscopic radius R= R̃
p
2µ we obtain for large µ,

with fixed R̃ 2 [0, 1[
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1� R̃2
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and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain

VarND'
1

⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
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2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1
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k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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normalization [66, 67]. Inserting (12) in (10), we rela-
bel k = N �m around the Fermi energy µ = ✏N . Not-
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We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1
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and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX
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 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
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leads to the Dyson Mehta behavior
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1
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was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
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In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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2 log(�â) + c2 + 2 log 2) for �â � 1.
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
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Here the edge scaling variable is â = (a � x+)/wN ,
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smooth potential [60]. The matching with the bulk for
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
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these results to other cases related to RMT [60].
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
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From (16), (17) and (9), we obtain our result (2) as
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
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µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
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scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum

3

m we obtain
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ

dN
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kF (x) , one recovers the sine-kernel
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valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
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the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior
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Expanding (20) for a ! x+, a < x+, one obtains [60]
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±
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2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
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4ã2

⌘3/2

(1� �2)1/2

1

CA+c2

(21)
with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0
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d✓x
dx = dµ
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kF (x) , one recovers the sine-kernel
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⇡|x� y|
(14)

valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to
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since kF (x) ' kF (y) on microscopic scales. Using (9), it
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Expanding (20) for a ! x+, a < x+, one obtains [60]
H(a, a) '
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Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1
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was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±
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2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =
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. We focus on the interval [0, a] and scale
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µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
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up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
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up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
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â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
p

µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
p
µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/

p
2µ and �=↵/µ, one obtains from (20) in

the bulk |2ã2 � 1|<
p
1� �2

2⇡2VarNLUE
[0,a] ' log(µ)+log

0

B@4ã

⇣
1� ã2 � �2

4ã2

⌘3/2

(1� �2)1/2

1

CA+c2

(21)
with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum

1

C�E CUE

N[✓A,✓] � E(N[✓A,✓]) (1)

✓ ! (2)

Kµ(x, y) =
N�1X

m=0

 ⇤
N�m(x) N�m(y) (3)

d�N

dN
=

d�N

d✏N
/
dN

d✏N
(4)

Z x

x�

dz

kF (z)
(5)

Z x+

x�

dz

⇡kF (z)
(6)

dN

dµ
(7)

✏N = µ (8)

kF (x) =
p
2(µ� V (x)) (9)

N =

Z x+

x�
dz

p
2(µ� V (z)) (10)

dkF (x)

dµ
=

1p
2(µ� V (x))

=
1

kF (x)
(11)

�N (x) =

Z x

x�
dx kF (x) (12)

kF (x±) = 0 (13)

� = 2 (14)

N⇢N =
kF
⇡

(15)

kF ! kF (x) (16)

~2
2m

kF (x)
2 = µ� V (x) (17)

Z
dyKN (x, y)KN (y, z) = KN (x, z) (18)

det�k(xi) det�`(xj) = det
1i,jN

KN (xi, xj) (19)

Z kF

�kF

dk

2⇡
eik(x�y) (20)

-> 2) number variance for macroscopic interval attention: a,b are in bulk !

a,b near edge => 
edge regime is different !
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Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=

p
2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit

N�1 (i.e., µ�1) where N'
R x+

x�
dx
⇡ kF (x)

(2⇡2)VarN[a,b] = 2 log

 
2kF (a)kF (b)

Z x+

x�

dz

⇡kF (z)

!

+ log

 
sin2 ✓a�✓b

2

sin2 ✓a+✓b
2

| sin ✓a sin ✓b|

!
+ 2c2 + o(1) (2)

where ✓x = ⇡

R x
x� dz/kF (z)
R x+

x� dz/kF (z)
,

(
✓x� = 0

✓x+ = ⇡
. (3)

We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1

2r
2, the support of

the density is the ball of radius
p
2µ, and for a sphere

of macroscopic radius R= R̃
p
2µ we obtain for large µ,

with fixed R̃ 2 [0, 1[

VarND = µd�1
h
Ad

⇣
R̃
⌘
logµ+Bd

⇣
R̃
⌘
+ o(1)

i
(4)

Ad(R̃) =
1

⇡2�(d)

⇣
2R̃
p

1� R̃2
⌘d�1

(5)

and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain

VarND'
1

⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
p
2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term

bd = 2 log 2�
�E
2

+ 1�
3

2
 (0)

✓
d+ 1

2

◆
, (7)

 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1

 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]

 k(x) '
Ck

[2 (✏k � V (x))]1/4
sin
⇣
�k(x) +

⇡

4

⌘
(12)

where �k(x) =
R x
x� dz

p
2(✏k � V (z)) and C2

k =
2
⇡

d✏k
dk is a

normalization [66, 67]. Inserting (12) in (10), we rela-
bel k = N �m around the Fermi energy µ = ✏N . Not-
ing that the phase �N (x) at large N is also very large,

we can expand �N�m(x) = �N (x) � md�N (x)
dN + o(1) =

�N (x) � m✓x + o(1), where ✓x is given in (3), using
dN
dµ '

R x+

x�
dx

⇡kF (x) . Performing the geometric sum over
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1d HO results: Var '[",$)

Var $[),+) ≃ 1
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2+ + 0 + 1 + 3 ln 2
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Blue markers – numerics (N=100), red line – our prediction, 
green line – previously known edge prediction

Subleading term is important at large (but not huge) N
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- # = #%
2 + J J − 1

2#%
(LUE	random	matrices)

Var E #,- ≃ &
./) ln @ + ln 4 JK

&% 0-)% *)
+,-)

./)

&%1) + L + 1 + ln 2 ,

Where A = 2# + D + "
# , EF =

$
#% , G =

&
%

Var 1 !,# ≃ $
%&! ln5 + ln sin &#' + 9 + 1 + 2 ln 2

- # = particle in a box 0, K
(JUE	random	matrices)
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bulk density, ⇢(x) = kF (x)/⇡, has e.g. (i) a bounded support on a single interval [x�, x+] with V (x±) = µ, (ii) a
semi-infinite support [x�,+1[ (iii) no edge such as fermions on the circle with V (x) < µ for all x. Other cases, such
as multiple interval supports can also be studied.

(i) Confining potentials: two turning points. The case (i) relevant for a confining trap was detailed in the
main text, leading to formula (2) in the text for the variance of N[a,b] and formula (16), (20) in the text for the height
field correlator. They are expressed in terms of the semi-classical variable ✓x defined in (3) in the text, which reaches
values 0 and ⇡ at x� and x+, and has the interpretation of the time along the classical trajectories (normalized by
the period). This case corresponds to two turning points at energy µ at positions x� and x+. For the potentials V (x)
related to RMT introduced in Section II, ✓x has a simple expression. One finds, from the definition in (3) in the text

✓x =

8
>><

>>:

arccos( �xp
2µ

) , V (x) = 1
2x

2 , x± = ±
p
2µ

arccos( µ�x2
p

µ2�↵(↵�1)
) , V (x) = x2

2 + ↵(↵�1)
2x2 , (x±)2 = µ±

p
µ2 � ↵(↵� 1)

arccos( cos(⇡x/L)�A
B ) , V (x) = ⇡2

L2 (
a2� 1

4

8 sin2(⇡x/2L) +
b2� 1

4
8 cos2(⇡x/2L) ) , cos(⇡x±/L) = A⌥B

(S20)

with A = b2�a2

8µ and B =
q
1 +A2 �

1�2a2�2b2
8µ . We now discuss each potential separately. The following formula are

useful in all cases [115]

dµ

dN
'

⇡
R x+

x� dz/kF (z)
, ✓x '

dµ

dN

Z x

x�

dz/kF (z) , 2(sin
1

2
(arccos p±arccos q))2 = 1�pq±

p
(1� p2)(1� q2) . (S21)

• For the HO (first line in (S20)) one has dµ/dN ' 1 and from (S20) | sin ✓a| =
q
1� a2

2µ = kF (a)p
2µ

. Inserting in

(20) in the text it leads to the explicit expression for the variance for the semi-infinite interval

VarN[a,+1[ = VarN]�1,a] =
1

2⇡2

✓
logµ+

3

2
log(1� ã2) + c2 + 2 log 2 + o(1)

◆
. (S22)

Using in addition the trigonometric relation (S21) one can check that the general formula (2) in the text leads
to the expression

2⇡2VarN[a,b] = 2 log µ+
3

2
log
h�
1� ã2

� ⇣
1� b̃2

⌘i
+ 2 log

������
4|ã� b̃|

1� ãb̃+
q

(1� ã2)(1� b̃2)

������
+ 2c2 + o(1) (S23)

in the limit µ ! +1 with ã = ap
2µ

, b̃ = bp
2µ

fixed, �1 < ã 6= b̃ < 1. For a = �b the leading-order term in (S23)

agrees with the Coulomb gas calculations in [20, 21]. The O(1) term also agrees with some exact results by
other methods in the RMT context: 1) Eq. (S22) for a = 0 agrees with the calculation of the “index” in [15, 16],
see also [108] where higher order corrections in 1/N where obtained using Painlevé equations. In particular
the leading corrections to (S22) are O( logN

N ); 2) a study of Fisher-Hartwig asymptotics using Riemann Hilbert
methods in [58] (for the comparison with this work see Section XA). Our results (S23) and (S22) are compared
with numerical simulations in Fig. 4 in Section XI.

• For the inverse square well (second line in (S20)) one has dµ/dN ' 2 and from (S20), | sin ✓a| =
akF (a)

p
µ2�↵(↵�1)

.

Formula (20) in the text then leads to

VarN[0,a] = VarN[a,+1[ =
1

2⇡2

"
log

 
akF (a)3p

µ2 � ↵(↵� 1)

!
+ c2

#
+ o(1) (S24)

which leads to the equation (21) in the text with �2 = ↵(↵�1)
µ2 and ã = a/

p
2µ. In addition, using the above

relations we find that (2) in the text leads to

(2⇡2)VarN[a,b] = 2 log µ+ log(16ãb̃3
ã

3
b̃
) + 2 log

|ã2 � b̃2|

ã2 + b̃2 � 2ã2b̃2 � �2

2 + 2ãb̃ãb̃

+ 2c2 + o(1) (S25)

with ã =
⇣
1� ã2 � �2

4ã2

⌘1/2
and b̃ =

⇣
1� b̃2 � �2

4b̃2

⌘1/2
. Eq. (S25) is obtained in the limit of large µ with ã, b̃

fixed and � = O(1) fixed, i.e., ↵ ⇠ µ. For � = 0 our result (S25) agrees with the Fisher-Hartwig asymptotics



Applications : d>1 central potential V(r)  
Results: R in the bulk
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• E.g., H > 1 harmonic oscillator:
Var E+ ≃ @8%& V8

W
2@

ln @ + X8
W
2@

,

where + ∝ =./O ≫ 1,

BO # = %E .GE7
P7 OG. !

and

number of fermions in sphere 
of radius R centered at r=|x|=0    

4

L̂, and with L̂2 of eigenvalues `(` + d � 2), ` = 0, 1, . . . ,
defining the sector of angular momentum `. The eigen-
states of Ĥ are obtained from those of a collection of 1D
radial problems Ĥ`=�

1
2@

2
r +V`(r), r�0, with potentials

[80, 87]

V`(r) = V (r) +

�
`+ d�3

2

� �
`+ d�1

2

�

2r2
(22)

and eigenenergies ✏n,`, each with degeneracy gd(`), which

behaves as gd(` � 1) '
2`d�2

�(d�1) . We consider the N
fermion ground state where all levels with ✏n,`  µ are
filled. In each sector `, the levels n = 1, . . . ,m` are occu-
pied, withN =

P
` gd(`)m`, withm` = 0 for ` > `max(µ).

Remarkably, we show [60] that the quantum joint proba-
bility of the radial positions {ri}i=1,...,N of the fermions
decouples into a symmetrized product over the angular
sectors. As a consequence, the cumulants hN p

Ri
c for p � 1

are simply sums over the angular sectors as

hN
p
Ri

c
=

`max(µ)X

`=0

gd(`)
D
N

p
[0,R]

Ec
`

(23)

where hN
p
[0,R]i

c
` are the cumulants of N[0,R] for the 1d

potential V`(r) in (22) with m` fermions. In the large µ
limit, the sum in (23) is dominated by large values of `
and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].

We discuss here the HO V (r) = r2/2, for which
the density has a spherical support, with ⇢bulk(r) ⇠�
2µ� r2

�d/2
, and an edge at r = re =

p
2µ [88]. In

this case V`(r) in (22) is the inverse square well studied
above with ↵ = `+ d�1

2 . For large µ, the occupation num-
bers m` are determined by ✏m`,` ' 2m` + ` ' µ. Hence,
defining � = `/µ, one has m` '

µ
2 (1 � �) for � < 1 and

m` = 0 for � > 1. The total number of fermions is thus

N'
µd

�(d� 1)

Z 1

0
d�(1� �)�d�2=

µd

�(d+ 1)
. (24)

Substituting the result (21) with a = R, i.e., ã = R̃ =
R/

p
2µ, into (23) with p = 2, and approximating the

sum by an integral, one obtains, using `c(µ,R)/µ =

2R̃
p
1� R̃2

VarNR '
2µd�1

�(d� 1)

Z 2R̃
p

1�R̃2

0
d��d�2VarNLUE

[0,R] . (25)

Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
Ad(R̃) has a maximum at R̃ = 1/

p
2 for any d > 1, and

vanishes at the edge as Ad(R̃) ⇠ (1 � R̃)(d�1)/2. The
O(µd�1) term Bd is obtained in [60] for general d. For

d = 2 and d = 3 it reads
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and
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respectively. Bd(x) has a singularity (1�x)
d�1
2 log(1�x)

near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN
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Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]
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c = o(1), where ⇣(x) is the Riemann zeta
function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
`2

2r2 even when ` ⇠ µ. Using
our Eq. (23) we obtain [60] the cumulants of NR for free
fermions in dimension d > 1, with kFR � 1
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=

(kFR)d�1

�(d)
(2n + o(1)) , n � 2. (30)

Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to
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�(d) (2n + o(1)), a natural extension of our re-

sult for free fermions (30), where kF (R) now depends on

4

L̂, and with L̂2 of eigenvalues `(` + d � 2), ` = 0, 1, . . . ,
defining the sector of angular momentum `. The eigen-
states of Ĥ are obtained from those of a collection of 1D
radial problems Ĥ`=�

1
2@

2
r +V`(r), r�0, with potentials

[80, 87]

V`(r) = V (r) +

�
`+ d�3

2

� �
`+ d�1

2

�

2r2
(22)

and eigenenergies ✏n,`, each with degeneracy gd(`), which

behaves as gd(` � 1) '
2`d�2

�(d�1) . We consider the N
fermion ground state where all levels with ✏n,`  µ are
filled. In each sector `, the levels n = 1, . . . ,m` are occu-
pied, withN =

P
` gd(`)m`, withm` = 0 for ` > `max(µ).

Remarkably, we show [60] that the quantum joint proba-
bility of the radial positions {ri}i=1,...,N of the fermions
decouples into a symmetrized product over the angular
sectors. As a consequence, the cumulants hN p
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c for p � 1

are simply sums over the angular sectors as
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where hN
p
[0,R]i

c
` are the cumulants of N[0,R] for the 1d

potential V`(r) in (22) with m` fermions. In the large µ
limit, the sum in (23) is dominated by large values of `
and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].

We discuss here the HO V (r) = r2/2, for which
the density has a spherical support, with ⇢bulk(r) ⇠�
2µ� r2

�d/2
, and an edge at r = re =

p
2µ [88]. In

this case V`(r) in (22) is the inverse square well studied
above with ↵ = `+ d�1

2 . For large µ, the occupation num-
bers m` are determined by ✏m`,` ' 2m` + ` ' µ. Hence,
defining � = `/µ, one has m` '

µ
2 (1 � �) for � < 1 and

m` = 0 for � > 1. The total number of fermions is thus
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. (24)

Substituting the result (21) with a = R, i.e., ã = R̃ =
R/

p
2µ, into (23) with p = 2, and approximating the

sum by an integral, one obtains, using `c(µ,R)/µ =

2R̃
p
1� R̃2
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Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
Ad(R̃) has a maximum at R̃ = 1/

p
2 for any d > 1, and

vanishes at the edge as Ad(R̃) ⇠ (1 � R̃)(d�1)/2. The
O(µd�1) term Bd is obtained in [60] for general d. For

d = 2 and d = 3 it reads
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and
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respectively. Bd(x) has a singularity (1�x)
d�1
2 log(1�x)

near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN
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Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]

D
N

2n
[a,b]

Ec
=2n+o(1) , 2n=(�1)n+1(2n)!

2⇣(2n�1)

n (2⇡)2n
(29)

and hN
2n+1
[a,b] i

c = o(1), where ⇣(x) is the Riemann zeta
function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
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2r2 even when ` ⇠ µ. Using
our Eq. (23) we obtain [60] the cumulants of NR for free
fermions in dimension d > 1, with kFR � 1
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Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to
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sult for free fermions (30), where kF (R) now depends on

4

L̂, and with L̂2 of eigenvalues `(` + d � 2), ` = 0, 1, . . . ,
defining the sector of angular momentum `. The eigen-
states of Ĥ are obtained from those of a collection of 1D
radial problems Ĥ`=�

1
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r +V`(r), r�0, with potentials

[80, 87]

V`(r) = V (r) +
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2r2
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and eigenenergies ✏n,`, each with degeneracy gd(`), which

behaves as gd(` � 1) '
2`d�2

�(d�1) . We consider the N
fermion ground state where all levels with ✏n,`  µ are
filled. In each sector `, the levels n = 1, . . . ,m` are occu-
pied, withN =

P
` gd(`)m`, withm` = 0 for ` > `max(µ).

Remarkably, we show [60] that the quantum joint proba-
bility of the radial positions {ri}i=1,...,N of the fermions
decouples into a symmetrized product over the angular
sectors. As a consequence, the cumulants hN p

Ri
c for p � 1

are simply sums over the angular sectors as
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where hN
p
[0,R]i

c
` are the cumulants of N[0,R] for the 1d

potential V`(r) in (22) with m` fermions. In the large µ
limit, the sum in (23) is dominated by large values of `
and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].

We discuss here the HO V (r) = r2/2, for which
the density has a spherical support, with ⇢bulk(r) ⇠�
2µ� r2

�d/2
, and an edge at r = re =

p
2µ [88]. In

this case V`(r) in (22) is the inverse square well studied
above with ↵ = `+ d�1

2 . For large µ, the occupation num-
bers m` are determined by ✏m`,` ' 2m` + ` ' µ. Hence,
defining � = `/µ, one has m` '

µ
2 (1 � �) for � < 1 and

m` = 0 for � > 1. The total number of fermions is thus
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Substituting the result (21) with a = R, i.e., ã = R̃ =
R/

p
2µ, into (23) with p = 2, and approximating the

sum by an integral, one obtains, using `c(µ,R)/µ =

2R̃
p
1� R̃2
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Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
Ad(R̃) has a maximum at R̃ = 1/

p
2 for any d > 1, and

vanishes at the edge as Ad(R̃) ⇠ (1 � R̃)(d�1)/2. The
O(µd�1) term Bd is obtained in [60] for general d. For

d = 2 and d = 3 it reads
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and
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respectively. Bd(x) has a singularity (1�x)
d�1
2 log(1�x)

near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN
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Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]
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c = o(1), where ⇣(x) is the Riemann zeta
function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
`2

2r2 even when ` ⇠ µ. Using
our Eq. (23) we obtain [60] the cumulants of NR for free
fermions in dimension d > 1, with kFR � 1
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Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to
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defining the sector of angular momentum `. The eigen-
states of Ĥ are obtained from those of a collection of 1D
radial problems Ĥ`=�
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V`(r) = V (r) +
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(22)

and eigenenergies ✏n,`, each with degeneracy gd(`), which

behaves as gd(` � 1) '
2`d�2

�(d�1) . We consider the N
fermion ground state where all levels with ✏n,`  µ are
filled. In each sector `, the levels n = 1, . . . ,m` are occu-
pied, withN =

P
` gd(`)m`, withm` = 0 for ` > `max(µ).

Remarkably, we show [60] that the quantum joint proba-
bility of the radial positions {ri}i=1,...,N of the fermions
decouples into a symmetrized product over the angular
sectors. As a consequence, the cumulants hN p
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where hN
p
[0,R]i

c
` are the cumulants of N[0,R] for the 1d

potential V`(r) in (22) with m` fermions. In the large µ
limit, the sum in (23) is dominated by large values of `
and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].

We discuss here the HO V (r) = r2/2, for which
the density has a spherical support, with ⇢bulk(r) ⇠�
2µ� r2
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, and an edge at r = re =
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2µ [88]. In

this case V`(r) in (22) is the inverse square well studied
above with ↵ = `+ d�1

2 . For large µ, the occupation num-
bers m` are determined by ✏m`,` ' 2m` + ` ' µ. Hence,
defining � = `/µ, one has m` '
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Substituting the result (21) with a = R, i.e., ã = R̃ =
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2µ, into (23) with p = 2, and approximating the

sum by an integral, one obtains, using `c(µ,R)/µ =
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Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
Ad(R̃) has a maximum at R̃ = 1/

p
2 for any d > 1, and

vanishes at the edge as Ad(R̃) ⇠ (1 � R̃)(d�1)/2. The
O(µd�1) term Bd is obtained in [60] for general d. For

d = 2 and d = 3 it reads
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respectively. Bd(x) has a singularity (1�x)
d�1
2 log(1�x)

near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN
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Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]
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function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
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Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to

⌦
N

2n
R

↵c
=

(kF (R)R)d�1

�(d) (2n + o(1)), a natural extension of our re-

sult for free fermions (30), where kF (R) now depends on

4

L̂, and with L̂2 of eigenvalues `(` + d � 2), ` = 0, 1, . . . ,
defining the sector of angular momentum `. The eigen-
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1
2@

2
r +V`(r), r�0, with potentials

[80, 87]

V`(r) = V (r) +

�
`+ d�3

2

� �
`+ d�1

2

�

2r2
(22)
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fermion ground state where all levels with ✏n,`  µ are
filled. In each sector `, the levels n = 1, . . . ,m` are occu-
pied, withN =

P
` gd(`)m`, withm` = 0 for ` > `max(µ).

Remarkably, we show [60] that the quantum joint proba-
bility of the radial positions {ri}i=1,...,N of the fermions
decouples into a symmetrized product over the angular
sectors. As a consequence, the cumulants hN p
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where hN
p
[0,R]i

c
` are the cumulants of N[0,R] for the 1d

potential V`(r) in (22) with m` fermions. In the large µ
limit, the sum in (23) is dominated by large values of `
and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].

We discuss here the HO V (r) = r2/2, for which
the density has a spherical support, with ⇢bulk(r) ⇠�
2µ� r2

�d/2
, and an edge at r = re =

p
2µ [88]. In

this case V`(r) in (22) is the inverse square well studied
above with ↵ = `+ d�1

2 . For large µ, the occupation num-
bers m` are determined by ✏m`,` ' 2m` + ` ' µ. Hence,
defining � = `/µ, one has m` '

µ
2 (1 � �) for � < 1 and

m` = 0 for � > 1. The total number of fermions is thus

N'
µd
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µd
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. (24)

Substituting the result (21) with a = R, i.e., ã = R̃ =
R/

p
2µ, into (23) with p = 2, and approximating the

sum by an integral, one obtains, using `c(µ,R)/µ =

2R̃
p
1� R̃2
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Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
Ad(R̃) has a maximum at R̃ = 1/

p
2 for any d > 1, and

vanishes at the edge as Ad(R̃) ⇠ (1 � R̃)(d�1)/2. The
O(µd�1) term Bd is obtained in [60] for general d. For

d = 2 and d = 3 it reads
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and

2⇡2B3(x) = (1� 2x2)2 log |1� 2x2
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n
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respectively. Bd(x) has a singularity (1�x)
d�1
2 log(1�x)

near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN
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Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]

D
N

2n
[a,b]

Ec
=2n+o(1) , 2n=(�1)n+1(2n)!

2⇣(2n�1)

n (2⇡)2n
(29)
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c = o(1), where ⇣(x) is the Riemann zeta
function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
`2

2r2 even when ` ⇠ µ. Using
our Eq. (23) we obtain [60] the cumulants of NR for free
fermions in dimension d > 1, with kFR � 1
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Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to

⌦
N

2n
R

↵c
=

(kF (R)R)d�1

�(d) (2n + o(1)), a natural extension of our re-
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L̂, and with L̂2 of eigenvalues `(` + d � 2), ` = 0, 1, . . . ,
defining the sector of angular momentum `. The eigen-
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fermion ground state where all levels with ✏n,`  µ are
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pied, withN =
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Remarkably, we show [60] that the quantum joint proba-
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and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].
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Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
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respectively. Bd(x) has a singularity (1�x)
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near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN
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Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]
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c = o(1), where ⇣(x) is the Riemann zeta
function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
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2r2 even when ` ⇠ µ. Using
our Eq. (23) we obtain [60] the cumulants of NR for free
fermions in dimension d > 1, with kFR � 1
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=
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(2n + o(1)) , n � 2. (30)

Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to

⌦
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2n
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=

(kF (R)R)d�1

�(d) (2n + o(1)), a natural extension of our re-

sult for free fermions (30), where kF (R) now depends on
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m we obtain

Kµ(x, y) '
dµ/dN
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p

kF (x)kF (y)

X

�=±1

sin(�̃N (x)� ��̃N (y))

sin ((✓x � �✓y) /2)

(13)
with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ

dN
1

kF (x) , one recovers the sine-kernel

Kµ(x, y) '
sin (kF (x)|x� y|)

⇡|x� y|
(14)

valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to

Kµ(x, y)
2
'

(dµ/dN)2

2⇡2kF (x)kF (y)

1� cos (✓x) cos (✓y)

(cos ✓x � cos ✓y)
2 (15)

up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by

H(x, y)'
1

2⇡2

✓
log

����sin
✓x + ✓y

2

����� log

����sin
✓x � ✓y

2

����

◆
(16)

up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to

H(x, y)'
1

2⇡2


U(kF (x)|x� y|) + log

2kF (x) sin ✓x
d✓x/dx

�
(17)

where

U(z)=Ci(2z)+2zSi(2z)� log z+1�2 sin2(z)�⇡z, (18)

with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior

⇡2VarN[a,b] ' U(0)� U(kF (a)|a� b|)

' log kF (a)|a� b|+ c2. (19)

From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk

H(a, a) = VarN[a,+1[ '
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dµ/dN

+ c2
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.

(20)
Expanding (20) for a ! x+, a < x+, one obtains [60]
H(a, a) '

1
2⇡2 (

3
2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
p

µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
p
µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/
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2µ and �=↵/µ, one obtains from (20) in
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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• E.g., H > 1 harmonic oscillator:
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and

number of fermions in sphere 
of radius R centered at r=|x|=0    
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L̂, and with L̂2 of eigenvalues `(` + d � 2), ` = 0, 1, . . . ,
defining the sector of angular momentum `. The eigen-
states of Ĥ are obtained from those of a collection of 1D
radial problems Ĥ`=�
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and eigenenergies ✏n,`, each with degeneracy gd(`), which

behaves as gd(` � 1) '
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�(d�1) . We consider the N
fermion ground state where all levels with ✏n,`  µ are
filled. In each sector `, the levels n = 1, . . . ,m` are occu-
pied, withN =
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` gd(`)m`, withm` = 0 for ` > `max(µ).

Remarkably, we show [60] that the quantum joint proba-
bility of the radial positions {ri}i=1,...,N of the fermions
decouples into a symmetrized product over the angular
sectors. As a consequence, the cumulants hN p
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where hN
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c
` are the cumulants of N[0,R] for the 1d

potential V`(r) in (22) with m` fermions. In the large µ
limit, the sum in (23) is dominated by large values of `
and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].

We discuss here the HO V (r) = r2/2, for which
the density has a spherical support, with ⇢bulk(r) ⇠�
2µ� r2

�d/2
, and an edge at r = re =

p
2µ [88]. In

this case V`(r) in (22) is the inverse square well studied
above with ↵ = `+ d�1

2 . For large µ, the occupation num-
bers m` are determined by ✏m`,` ' 2m` + ` ' µ. Hence,
defining � = `/µ, one has m` '

µ
2 (1 � �) for � < 1 and

m` = 0 for � > 1. The total number of fermions is thus

N'
µd

�(d� 1)

Z 1

0
d�(1� �)�d�2=

µd

�(d+ 1)
. (24)

Substituting the result (21) with a = R, i.e., ã = R̃ =
R/

p
2µ, into (23) with p = 2, and approximating the

sum by an integral, one obtains, using `c(µ,R)/µ =

2R̃
p
1� R̃2
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Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
Ad(R̃) has a maximum at R̃ = 1/

p
2 for any d > 1, and

vanishes at the edge as Ad(R̃) ⇠ (1 � R̃)(d�1)/2. The
O(µd�1) term Bd is obtained in [60] for general d. For

d = 2 and d = 3 it reads

2⇡2B2 (x) = log
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and

2⇡2B3(x) = (1� 2x2)2 log |1� 2x2
|

+4x2(1� x2)
n
log
h
8x(1� x2)3/2

i
+ �E

o
. (27)

respectively. Bd(x) has a singularity (1�x)
d�1
2 log(1�x)

near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN

VarNR '

✓
re
wN

◆d�1 Z 1

0

d⇠ ⇠
d�3
2

2�(d� 1)
V2(R̂+ ⇠) . (28)

Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]
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2⇣(2n�1)

n (2⇡)2n
(29)

and hN
2n+1
[a,b] i

c = o(1), where ⇣(x) is the Riemann zeta
function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
`2

2r2 even when ` ⇠ µ. Using
our Eq. (23) we obtain [60] the cumulants of NR for free
fermions in dimension d > 1, with kFR � 1

⌦
N

2n
R

↵c
=

(kFR)d�1

�(d)
(2n + o(1)) , n � 2. (30)

Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to

⌦
N

2n
R

↵c
=

(kF (R)R)d�1

�(d) (2n + o(1)), a natural extension of our re-

sult for free fermions (30), where kF (R) now depends on

4

L̂, and with L̂2 of eigenvalues `(` + d � 2), ` = 0, 1, . . . ,
defining the sector of angular momentum `. The eigen-
states of Ĥ are obtained from those of a collection of 1D
radial problems Ĥ`=�

1
2@

2
r +V`(r), r�0, with potentials

[80, 87]

V`(r) = V (r) +

�
`+ d�3

2

� �
`+ d�1

2

�

2r2
(22)

and eigenenergies ✏n,`, each with degeneracy gd(`), which

behaves as gd(` � 1) '
2`d�2

�(d�1) . We consider the N
fermion ground state where all levels with ✏n,`  µ are
filled. In each sector `, the levels n = 1, . . . ,m` are occu-
pied, withN =

P
` gd(`)m`, withm` = 0 for ` > `max(µ).

Remarkably, we show [60] that the quantum joint proba-
bility of the radial positions {ri}i=1,...,N of the fermions
decouples into a symmetrized product over the angular
sectors. As a consequence, the cumulants hN p

Ri
c for p � 1

are simply sums over the angular sectors as

hN
p
Ri

c
=

`max(µ)X

`=0

gd(`)
D
N

p
[0,R]

Ec
`

(23)

where hN
p
[0,R]i

c
` are the cumulants of N[0,R] for the 1d

potential V`(r) in (22) with m` fermions. In the large µ
limit, the sum in (23) is dominated by large values of `
and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].

We discuss here the HO V (r) = r2/2, for which
the density has a spherical support, with ⇢bulk(r) ⇠�
2µ� r2

�d/2
, and an edge at r = re =

p
2µ [88]. In

this case V`(r) in (22) is the inverse square well studied
above with ↵ = `+ d�1

2 . For large µ, the occupation num-
bers m` are determined by ✏m`,` ' 2m` + ` ' µ. Hence,
defining � = `/µ, one has m` '

µ
2 (1 � �) for � < 1 and

m` = 0 for � > 1. The total number of fermions is thus

N'
µd

�(d� 1)

Z 1

0
d�(1� �)�d�2=

µd

�(d+ 1)
. (24)

Substituting the result (21) with a = R, i.e., ã = R̃ =
R/

p
2µ, into (23) with p = 2, and approximating the

sum by an integral, one obtains, using `c(µ,R)/µ =

2R̃
p
1� R̃2
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Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
Ad(R̃) has a maximum at R̃ = 1/

p
2 for any d > 1, and

vanishes at the edge as Ad(R̃) ⇠ (1 � R̃)(d�1)/2. The
O(µd�1) term Bd is obtained in [60] for general d. For

d = 2 and d = 3 it reads

2⇡2B2 (x) = log
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and

2⇡2B3(x) = (1� 2x2)2 log |1� 2x2
|

+4x2(1� x2)
n
log
h
8x(1� x2)3/2

i
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. (27)

respectively. Bd(x) has a singularity (1�x)
d�1
2 log(1�x)

near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN
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Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]
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c = o(1), where ⇣(x) is the Riemann zeta
function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
`2

2r2 even when ` ⇠ µ. Using
our Eq. (23) we obtain [60] the cumulants of NR for free
fermions in dimension d > 1, with kFR � 1

⌦
N

2n
R

↵c
=

(kFR)d�1

�(d)
(2n + o(1)) , n � 2. (30)

Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to

⌦
N

2n
R

↵c
=

(kF (R)R)d�1

�(d) (2n + o(1)), a natural extension of our re-

sult for free fermions (30), where kF (R) now depends on

4

L̂, and with L̂2 of eigenvalues `(` + d � 2), ` = 0, 1, . . . ,
defining the sector of angular momentum `. The eigen-
states of Ĥ are obtained from those of a collection of 1D
radial problems Ĥ`=�

1
2@

2
r +V`(r), r�0, with potentials

[80, 87]

V`(r) = V (r) +

�
`+ d�3

2

� �
`+ d�1

2

�

2r2
(22)

and eigenenergies ✏n,`, each with degeneracy gd(`), which

behaves as gd(` � 1) '
2`d�2

�(d�1) . We consider the N
fermion ground state where all levels with ✏n,`  µ are
filled. In each sector `, the levels n = 1, . . . ,m` are occu-
pied, withN =

P
` gd(`)m`, withm` = 0 for ` > `max(µ).

Remarkably, we show [60] that the quantum joint proba-
bility of the radial positions {ri}i=1,...,N of the fermions
decouples into a symmetrized product over the angular
sectors. As a consequence, the cumulants hN p

Ri
c for p � 1

are simply sums over the angular sectors as

hN
p
Ri

c
=

`max(µ)X

`=0

gd(`)
D
N

p
[0,R]

Ec
`

(23)

where hN
p
[0,R]i

c
` are the cumulants of N[0,R] for the 1d

potential V`(r) in (22) with m` fermions. In the large µ
limit, the sum in (23) is dominated by large values of `
and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].

We discuss here the HO V (r) = r2/2, for which
the density has a spherical support, with ⇢bulk(r) ⇠�
2µ� r2

�d/2
, and an edge at r = re =

p
2µ [88]. In

this case V`(r) in (22) is the inverse square well studied
above with ↵ = `+ d�1

2 . For large µ, the occupation num-
bers m` are determined by ✏m`,` ' 2m` + ` ' µ. Hence,
defining � = `/µ, one has m` '

µ
2 (1 � �) for � < 1 and

m` = 0 for � > 1. The total number of fermions is thus

N'
µd

�(d� 1)

Z 1

0
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µd

�(d+ 1)
. (24)

Substituting the result (21) with a = R, i.e., ã = R̃ =
R/

p
2µ, into (23) with p = 2, and approximating the

sum by an integral, one obtains, using `c(µ,R)/µ =

2R̃
p
1� R̃2
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Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
Ad(R̃) has a maximum at R̃ = 1/

p
2 for any d > 1, and

vanishes at the edge as Ad(R̃) ⇠ (1 � R̃)(d�1)/2. The
O(µd�1) term Bd is obtained in [60] for general d. For

d = 2 and d = 3 it reads

2⇡2B2 (x) = log
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and

2⇡2B3(x) = (1� 2x2)2 log |1� 2x2
|

+4x2(1� x2)
n
log
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8x(1� x2)3/2

i
+ �E

o
. (27)

respectively. Bd(x) has a singularity (1�x)
d�1
2 log(1�x)

near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN
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Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]
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and hN
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c = o(1), where ⇣(x) is the Riemann zeta
function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
`2

2r2 even when ` ⇠ µ. Using
our Eq. (23) we obtain [60] the cumulants of NR for free
fermions in dimension d > 1, with kFR � 1

⌦
N

2n
R

↵c
=

(kFR)d�1

�(d)
(2n + o(1)) , n � 2. (30)

Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to

⌦
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R
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=

(kF (R)R)d�1

�(d) (2n + o(1)), a natural extension of our re-

sult for free fermions (30), where kF (R) now depends on

4

L̂, and with L̂2 of eigenvalues `(` + d � 2), ` = 0, 1, . . . ,
defining the sector of angular momentum `. The eigen-
states of Ĥ are obtained from those of a collection of 1D
radial problems Ĥ`=�

1
2@

2
r +V`(r), r�0, with potentials

[80, 87]

V`(r) = V (r) +

�
`+ d�3

2

� �
`+ d�1

2

�

2r2
(22)

and eigenenergies ✏n,`, each with degeneracy gd(`), which

behaves as gd(` � 1) '
2`d�2

�(d�1) . We consider the N
fermion ground state where all levels with ✏n,`  µ are
filled. In each sector `, the levels n = 1, . . . ,m` are occu-
pied, withN =

P
` gd(`)m`, withm` = 0 for ` > `max(µ).

Remarkably, we show [60] that the quantum joint proba-
bility of the radial positions {ri}i=1,...,N of the fermions
decouples into a symmetrized product over the angular
sectors. As a consequence, the cumulants hN p

Ri
c for p � 1

are simply sums over the angular sectors as
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`=0
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where hN
p
[0,R]i

c
` are the cumulants of N[0,R] for the 1d

potential V`(r) in (22) with m` fermions. In the large µ
limit, the sum in (23) is dominated by large values of `
and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].

We discuss here the HO V (r) = r2/2, for which
the density has a spherical support, with ⇢bulk(r) ⇠�
2µ� r2

�d/2
, and an edge at r = re =

p
2µ [88]. In

this case V`(r) in (22) is the inverse square well studied
above with ↵ = `+ d�1

2 . For large µ, the occupation num-
bers m` are determined by ✏m`,` ' 2m` + ` ' µ. Hence,
defining � = `/µ, one has m` '

µ
2 (1 � �) for � < 1 and

m` = 0 for � > 1. The total number of fermions is thus
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Substituting the result (21) with a = R, i.e., ã = R̃ =
R/

p
2µ, into (23) with p = 2, and approximating the

sum by an integral, one obtains, using `c(µ,R)/µ =

2R̃
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1� R̃2
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Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
Ad(R̃) has a maximum at R̃ = 1/

p
2 for any d > 1, and

vanishes at the edge as Ad(R̃) ⇠ (1 � R̃)(d�1)/2. The
O(µd�1) term Bd is obtained in [60] for general d. For

d = 2 and d = 3 it reads
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and
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respectively. Bd(x) has a singularity (1�x)
d�1
2 log(1�x)

near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN
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Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]
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c = o(1), where ⇣(x) is the Riemann zeta
function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
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2r2 even when ` ⇠ µ. Using
our Eq. (23) we obtain [60] the cumulants of NR for free
fermions in dimension d > 1, with kFR � 1
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Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to

⌦
N

2n
R

↵c
=

(kF (R)R)d�1
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4

L̂, and with L̂2 of eigenvalues `(` + d � 2), ` = 0, 1, . . . ,
defining the sector of angular momentum `. The eigen-
states of Ĥ are obtained from those of a collection of 1D
radial problems Ĥ`=�
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r +V`(r), r�0, with potentials
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and eigenenergies ✏n,`, each with degeneracy gd(`), which

behaves as gd(` � 1) '
2`d�2

�(d�1) . We consider the N
fermion ground state where all levels with ✏n,`  µ are
filled. In each sector `, the levels n = 1, . . . ,m` are occu-
pied, withN =

P
` gd(`)m`, withm` = 0 for ` > `max(µ).

Remarkably, we show [60] that the quantum joint proba-
bility of the radial positions {ri}i=1,...,N of the fermions
decouples into a symmetrized product over the angular
sectors. As a consequence, the cumulants hN p

Ri
c for p � 1

are simply sums over the angular sectors as
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where hN
p
[0,R]i

c
` are the cumulants of N[0,R] for the 1d

potential V`(r) in (22) with m` fermions. In the large µ
limit, the sum in (23) is dominated by large values of `
and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].

We discuss here the HO V (r) = r2/2, for which
the density has a spherical support, with ⇢bulk(r) ⇠�
2µ� r2

�d/2
, and an edge at r = re =

p
2µ [88]. In

this case V`(r) in (22) is the inverse square well studied
above with ↵ = `+ d�1

2 . For large µ, the occupation num-
bers m` are determined by ✏m`,` ' 2m` + ` ' µ. Hence,
defining � = `/µ, one has m` '

µ
2 (1 � �) for � < 1 and

m` = 0 for � > 1. The total number of fermions is thus
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Substituting the result (21) with a = R, i.e., ã = R̃ =
R/

p
2µ, into (23) with p = 2, and approximating the

sum by an integral, one obtains, using `c(µ,R)/µ =
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1� R̃2
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Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
Ad(R̃) has a maximum at R̃ = 1/

p
2 for any d > 1, and

vanishes at the edge as Ad(R̃) ⇠ (1 � R̃)(d�1)/2. The
O(µd�1) term Bd is obtained in [60] for general d. For

d = 2 and d = 3 it reads
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respectively. Bd(x) has a singularity (1�x)
d�1
2 log(1�x)

near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN
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Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]
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c = o(1), where ⇣(x) is the Riemann zeta
function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
`2

2r2 even when ` ⇠ µ. Using
our Eq. (23) we obtain [60] the cumulants of NR for free
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Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
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Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
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Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to
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�(d) (2n + o(1)), a natural extension of our re-

sult for free fermions (30), where kF (R) now depends on
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m we obtain
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dµ/dN
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kF (x)kF (y)

X

�=±1

sin(�̃N (x)� ��̃N (y))

sin ((✓x � �✓y) /2)

(13)
with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ

dN
1

kF (x) , one recovers the sine-kernel

Kµ(x, y) '
sin (kF (x)|x� y|)

⇡|x� y|
(14)

valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to

Kµ(x, y)
2
'

(dµ/dN)2

2⇡2kF (x)kF (y)

1� cos (✓x) cos (✓y)

(cos ✓x � cos ✓y)
2 (15)

up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by

H(x, y)'
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2⇡2

✓
log

����sin
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2

����� log

����sin
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2

����

◆
(16)

up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to

H(x, y)'
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where

U(z)=Ci(2z)+2zSi(2z)� log z+1�2 sin2(z)�⇡z, (18)

with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior

⇡2VarN[a,b] ' U(0)� U(kF (a)|a� b|)

' log kF (a)|a� b|+ c2. (19)

From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk
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Expanding (20) for a ! x+, a < x+, one obtains [60]
H(a, a) '

1
2⇡2 (

3
2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
p

µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
p
µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/
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2µ and �=↵/µ, one obtains from (20) in
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with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum

angular modes fluctuate independently   

with Fermi energy   

6

µ (95)

kF (x) (96)

|x� y| ⇠ 1/kF (x) (97)

|x� y| � 1/kF (x) (98)

⇢(x) =
NX

i=1

h�(x� xi)i0 (99)

= KN (x, x) (100)

KN (x, y) =
NX

k=1

 ⇤
k(x) k(y) (101)

 0(x1, . . . , xN ) =
1p
N !

det
1i,jN

 i(xj) (102)

det
1i,kN

 ⇤
k(xi) det

1k,jN
 k(xj) = det

1i,jN
KN (xi, xj) (103)

Y

1i<jN

(xj � xi) (104)

↵ =

p
m!/~ (105)

) (106)

E := EC�E (107)

g(x) = e2⇡b
p

�
2

Pn
a=1 [xA,ya](x) (108)

H = �1

2

X

i

@2

@x2
i

+

X

i<j

�(� � 2)

16 sin
2 xi�xj

2

(109)

d

dx
�̃N (x) ' kF (x) (110)

d✓x
dx

=
dµ

dN

1

kF (x)
(111)

sin(�̃N (x)� �̃N (y))2 (112)

! 1

2
(113)

! 1/2 (114)

sin(�̃N (x)� �̃N (y)) sin(�̃N (x) + �̃N (y)) (115)

! (116)

cos(2�N (x))� cos(2�N (y)) (117)

! 0 (118)

� = 2 (119)

N⇢N =
kF
⇡

(120)

kF ! kF (x) (121)

~2
2m

kF (x)
2
= µ� V (x) (122)

Z
dyKN (x, y)KN (y, z) = KN (x, z) (123)

det�k(xi) det�`(xj) = det
1i,jN

KN (xi, xj) (124)

number of fermions in [0,R] for 1d problem    

5

VarNR =

X

`�0

gd(`)VarN 1d,V`

[0,R] (94)

H = �1

2
�+ V (r) (95)

r = |x| (96)

µ (97)

� = 4

� = 2
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1) free fermions V(r)=0  

2

Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=

p
2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit

N�1 (i.e., µ�1) where N'
R x+

x�
dx
⇡ kF (x)

(2⇡2)VarN[a,b] = 2 log
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where ✓x = ⇡

R x
x� dz/kF (z)
R x+

x� dz/kF (z)
,

(
✓x� = 0

✓x+ = ⇡
. (3)

We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1

2r
2, the support of

the density is the ball of radius
p
2µ, and for a sphere

of macroscopic radius R= R̃
p
2µ we obtain for large µ,

with fixed R̃ 2 [0, 1[
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h
Ad

⇣
R̃
⌘
logµ+Bd

⇣
R̃
⌘
+ o(1)

i
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⇣
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p

1� R̃2
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(5)

and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX
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 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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• Free fermions 2 3 = 0:

Var $* ≃ <+= ,-#

>% 4 − 1 ! ln <+= + D, , <+= ≫ 1,

where 5N = 26 and 7O is a constant which we 
obtained explicitly
– Leading-order term was known previously 

[Gioev and Klich, PRL 2006]
• In fact, we obtained an exact result

Var $* = F, <+=
by using the free-fermion kernel from 
[Dean, Le Doussal, Majumdar and Schehr, PRA (2016)]
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3 in (27). As seen from the comparison to simulations
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prediction in (4) for a disk in d= 2 is already excellent
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in (26), and near the edge R̃ = 1, with the scaling form (28)
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3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
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two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)
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show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
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will denote {✏k}k=1,2,... the eigenenergies in increasing
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from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
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 2) d>1 harmonic oscillator  
Results: R in the bulk
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• E.g., H > 1 harmonic oscillator:
Var E+ ≃ @8%& V8

W
2@

ln @ + X8
W
2@

,

where + ∝ =./O ≫ 1,

BO # = %E .GE7
P7 OG. !

and

number of fermions in sphere 
of radius R centered at r=|x|=0    

4

L̂, and with L̂2 of eigenvalues `(` + d � 2), ` = 0, 1, . . . ,
defining the sector of angular momentum `. The eigen-
states of Ĥ are obtained from those of a collection of 1D
radial problems Ĥ`=�

1
2@

2
r +V`(r), r�0, with potentials

[80, 87]

V`(r) = V (r) +

�
`+ d�3

2

� �
`+ d�1

2

�

2r2
(22)

and eigenenergies ✏n,`, each with degeneracy gd(`), which

behaves as gd(` � 1) '
2`d�2

�(d�1) . We consider the N
fermion ground state where all levels with ✏n,`  µ are
filled. In each sector `, the levels n = 1, . . . ,m` are occu-
pied, withN =

P
` gd(`)m`, withm` = 0 for ` > `max(µ).

Remarkably, we show [60] that the quantum joint proba-
bility of the radial positions {ri}i=1,...,N of the fermions
decouples into a symmetrized product over the angular
sectors. As a consequence, the cumulants hN p

Ri
c for p � 1

are simply sums over the angular sectors as
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Ec
`
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where hN
p
[0,R]i

c
` are the cumulants of N[0,R] for the 1d

potential V`(r) in (22) with m` fermions. In the large µ
limit, the sum in (23) is dominated by large values of `
and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].

We discuss here the HO V (r) = r2/2, for which
the density has a spherical support, with ⇢bulk(r) ⇠�
2µ� r2

�d/2
, and an edge at r = re =

p
2µ [88]. In

this case V`(r) in (22) is the inverse square well studied
above with ↵ = `+ d�1

2 . For large µ, the occupation num-
bers m` are determined by ✏m`,` ' 2m` + ` ' µ. Hence,
defining � = `/µ, one has m` '

µ
2 (1 � �) for � < 1 and

m` = 0 for � > 1. The total number of fermions is thus

N'
µd

�(d� 1)

Z 1

0
d�(1� �)�d�2=

µd

�(d+ 1)
. (24)

Substituting the result (21) with a = R, i.e., ã = R̃ =
R/

p
2µ, into (23) with p = 2, and approximating the

sum by an integral, one obtains, using `c(µ,R)/µ =
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1� R̃2
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Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
Ad(R̃) has a maximum at R̃ = 1/

p
2 for any d > 1, and

vanishes at the edge as Ad(R̃) ⇠ (1 � R̃)(d�1)/2. The
O(µd�1) term Bd is obtained in [60] for general d. For

d = 2 and d = 3 it reads

2⇡2B2 (x) = log

 ��1� 2x
p
1� x2

��

1 + 2x
p
1� x2

!

+2x
p
1� x2

(
log

"✓
64x

1� 2x2

◆2 �
1� x2

�3
#
+ 2�E � 2

)

(26)

and
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respectively. Bd(x) has a singularity (1�x)
d�1
2 log(1�x)

near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN
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Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]
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c = o(1), where ⇣(x) is the Riemann zeta
function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
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2r2 even when ` ⇠ µ. Using
our Eq. (23) we obtain [60] the cumulants of NR for free
fermions in dimension d > 1, with kFR � 1
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Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to
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sult for free fermions (30), where kF (R) now depends on

3

m we obtain

Kµ(x, y) '
dµ/dN

2⇡
p

kF (x)kF (y)

X

�=±1

sin(�̃N (x)� ��̃N (y))

sin ((✓x � �✓y) /2)

(13)
with �̃N (x) =�N (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x� y|⇠1/kF (x) the
term � = 1 dominates [68]. Using �̃0

N (x) ' kF (x) and
d✓x
dx = dµ

dN
1

kF (x) , one recovers the sine-kernel

Kµ(x, y) '
sin (kF (x)|x� y|)

⇡|x� y|
(14)

valid on microscopic scales. On the other hand, for x, y
well separated on macroscopic scales in the bulk ]x�, x+[,
taking the square of (13), one can neglect the cross term
and replace the sin2 by 1/2, leading to

Kµ(x, y)
2
'

(dµ/dN)2

2⇡2kF (x)kF (y)

1� cos (✓x) cos (✓y)

(cos ✓x � cos ✓y)
2 (15)

up to fast oscillating terms averaging to zero on scales
larger than microscopic. Note that Eq. (15) is valid for
any smooth potential: for the HO we also derived these
estimates using the Plancherel-Rotach asymptotics for
the Hermite polynomials [60]. Having obtainedKµ(x, y)2

in the two regimes, we use (11) to compute the height
correlator.

(i) For x, y well separated in the bulk, i.e., |x� y| �
1/kF (x), the 2-point height covariance is given by

H(x, y)'
1

2⇡2

✓
log

����sin
✓x + ✓y

2

����� log

����sin
✓x � ✓y

2

����

◆
(16)

up to o(1) terms at large µ. One checks that (16) is
consistent with (15) and (11) (in this regime the � func-
tion does not contribute). Using (3), the right hand
side (r.h.s.) in (16) vanishes when x is in the bulk
and y reaches an edge y = x±, and for y /2]x�, x+[,
H(x, y) ' o(1) [60]. The r.h.s. in (16) coincides with
the correlator of the 2D Gaussian free field (GFF) in the
upper-half plane (with Dirichlet boundary conditions)
along part of a circle z = ei✓x , thus extending the re-
sult of [57] for the GUE/HO [69]. Similar connections to
the GFF also emerge in recent approaches using inhomo-
geneous bosonization [32, 72–74].

(ii) On microscopic scales, |x� y| ⇠ 1/kF (x), one
uses the sine kernel (14) in the left hand side of (11).
The integration constants are fixed so that H(x, y) for
|x� y|�1/kF (x) matches with the limit y ! x in (16)
leading to

H(x, y)'
1

2⇡2


U(kF (x)|x� y|) + log

2kF (x) sin ✓x
d✓x/dx

�
(17)

where

U(z)=Ci(2z)+2zSi(2z)� log z+1�2 sin2(z)�⇡z, (18)

with U(z � 1) = � log z+ o(1) and U(z ⌧ 1) = 1 +
�E + log 2� ⇡z + z2 + o(z2). One checks, using U 00(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kµ given by the sine kernel (14),
since kF (x) ' kF (y) on microscopic scales. Using (9), it
leads to the Dyson Mehta behavior

⇡2VarN[a,b] ' U(0)� U(kF (a)|a� b|)

' log kF (a)|a� b|+ c2. (19)

From (16), (17) and (9), we obtain our result (2) as
well as, for any a in the bulk

H(a, a) = VarN[a,+1[ '
1

2⇡2

✓
log

2kF (a)2 sin ✓a
dµ/dN

+ c2

◆
.

(20)
Expanding (20) for a ! x+, a < x+, one obtains [60]
H(a, a) '

1
2⇡2 (

3
2 log(�â) + c2 + 2 log 2) for �â � 1.

Here the edge scaling variable is â = (a � x+)/wN ,
and wN = (2V 0(x+))�1/3, the width of the edge regime
[11], appears naturally. Inside the edge regime, i.e., for
â=O(1), H(a, a)' 1

2V2(â), where the scaling function V2

was defined in [20, 21] for the HO, but is universal for a
smooth potential [60]. The matching with the bulk for
â ! �1 obtained above agrees with known results for
the HO/GUE [20, 75, 77].
For the HO x± = ±

p
2µ, ✓x = arccos(�x/

p
2µ) and

(16) agrees with the rigorous results for the GUE [57].
In this case (2) gives a general result [60] which agrees
with known results in special cases [15, 16, 20, 21, 58].
Another important example is the inverse square well

V (x)= x2

2 + ↵(↵�1)
2x2 for x>0 and ↵�1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of
random matrices [78] with the correspondence between
fermion positions xj and eigenvalues �j⇠x2

j [79–81]. One
has µ = 2N + ↵ + 1/2, hence dµ/dN ' 2 and cos ✓x =

µ�x2
p

µ2�↵(↵�1)
. We focus on the interval [0, a] and scale

both a=O(
p
µ) and ↵=O(µ) in the large µ limit. This

scaling, used below for d-dimensional central potentials,
is also the standard large-N limit for Wishart matrices.
Setting ã=a/

p
2µ and �=↵/µ, one obtains from (20) in

the bulk |2ã2 � 1|<
p
1� �2

2⇡2VarNLUE
[0,a] ' log(µ)+log

0

B@4ã

⇣
1� ã2 � �2

4ã2

⌘3/2

(1� �2)1/2

1

CA+c2

(21)
with the superscript LUE added for later convenience. A
similar result was recently reported in the mathematics
literature [82, 83]. The result (16) also agrees with rigor-
ous GFF results for the LUE [85, 86]. We have extended
these results to other cases related to RMT [60].
We now address a central potential V (r) in d> 1 and

focus on the number of fermionsNR in a spherical domain
D of radius R centered at the origin. The single particle
Hamiltonian Ĥ commutes with the angular momentum
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Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=

p
2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit

N�1 (i.e., µ�1) where N'
R x+

x�
dx
⇡ kF (x)

(2⇡2)VarN[a,b] = 2 log

 
2kF (a)kF (b)

Z x+

x�

dz

⇡kF (z)

!

+ log

 
sin2 ✓a�✓b

2

sin2 ✓a+✓b
2

| sin ✓a sin ✓b|

!
+ 2c2 + o(1) (2)

where ✓x = ⇡

R x
x� dz/kF (z)
R x+

x� dz/kF (z)
,

(
✓x� = 0

✓x+ = ⇡
. (3)

We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1

2r
2, the support of

the density is the ball of radius
p
2µ, and for a sphere

of macroscopic radius R= R̃
p
2µ we obtain for large µ,

with fixed R̃ 2 [0, 1[

VarND = µd�1
h
Ad

⇣
R̃
⌘
logµ+Bd

⇣
R̃
⌘
+ o(1)

i
(4)

Ad(R̃) =
1

⇡2�(d)

⇣
2R̃
p

1� R̃2
⌘d�1

(5)

and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain

VarND'
1

⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
p
2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term

bd = 2 log 2�
�E
2

+ 1�
3

2
 (0)

✓
d+ 1

2

◆
, (7)

 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.

with VarN]�1,a]=VarN[a,+1[=H(a, a), for a semi infi-
nite interval [62].
For N noninteracting fermions the correlation func-

tions are obtained from the kernel

Kµ(x, y) =
NX

k=1

 ⇤
k(x) k(y) (10)

where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]

 k(x) '
Ck

[2 (✏k � V (x))]1/4
sin
⇣
�k(x) +

⇡

4

⌘
(12)

where �k(x) =
R x
x� dz

p
2(✏k � V (z)) and C2

k =
2
⇡

d✏k
dk is a

normalization [66, 67]. Inserting (12) in (10), we rela-
bel k = N �m around the Fermi energy µ = ✏N . Not-
ing that the phase �N (x) at large N is also very large,

we can expand �N�m(x) = �N (x) � md�N (x)
dN + o(1) =

�N (x) � m✓x + o(1), where ✓x is given in (3), using
dN
dµ '

R x+

x�
dx

⇡kF (x) . Performing the geometric sum over

4

L̂, and with L̂2 of eigenvalues `(` + d � 2), ` = 0, 1, . . . ,
defining the sector of angular momentum `. The eigen-
states of Ĥ are obtained from those of a collection of 1D
radial problems Ĥ`=�

1
2@

2
r +V`(r), r�0, with potentials

[80, 87]

V`(r) = V (r) +

�
`+ d�3

2

� �
`+ d�1

2

�

2r2
(22)

and eigenenergies ✏n,`, each with degeneracy gd(`), which

behaves as gd(` � 1) '
2`d�2

�(d�1) . We consider the N
fermion ground state where all levels with ✏n,`  µ are
filled. In each sector `, the levels n = 1, . . . ,m` are occu-
pied, withN =

P
` gd(`)m`, withm` = 0 for ` > `max(µ).

Remarkably, we show [60] that the quantum joint proba-
bility of the radial positions {ri}i=1,...,N of the fermions
decouples into a symmetrized product over the angular
sectors. As a consequence, the cumulants hN p

Ri
c for p � 1

are simply sums over the angular sectors as

hN
p
Ri

c
=

`max(µ)X

`=0

gd(`)
D
N

p
[0,R]

Ec
`

(23)

where hN
p
[0,R]i

c
` are the cumulants of N[0,R] for the 1d

potential V`(r) in (22) with m` fermions. In the large µ
limit, the sum in (23) is dominated by large values of `
and m`, and, for p > 1, is e↵ectively cut-o↵ at `c(µ,R) '
RkF (R)  `max, where kF (r) =

p
2(µ� V (r)). This al-

lows us to use our results in 1d and to obtain the variance
of NR for a general central potential, see [60].

We discuss here the HO V (r) = r2/2, for which
the density has a spherical support, with ⇢bulk(r) ⇠�
2µ� r2

�d/2
, and an edge at r = re =

p
2µ [88]. In

this case V`(r) in (22) is the inverse square well studied
above with ↵ = `+ d�1

2 . For large µ, the occupation num-
bers m` are determined by ✏m`,` ' 2m` + ` ' µ. Hence,
defining � = `/µ, one has m` '

µ
2 (1 � �) for � < 1 and

m` = 0 for � > 1. The total number of fermions is thus

N'
µd

�(d� 1)

Z 1

0
d�(1� �)�d�2=

µd

�(d+ 1)
. (24)

Substituting the result (21) with a = R, i.e., ã = R̃ =
R/

p
2µ, into (23) with p = 2, and approximating the

sum by an integral, one obtains, using `c(µ,R)/µ =

2R̃
p
1� R̃2

VarNR '
2µd�1

�(d� 1)

Z 2R̃
p

1�R̃2

0
d��d�2VarNLUE

[0,R] . (25)

Performing the integral over � yields the result in (4)
and (5) for the HO in the large µ limit. The coe�cient
Ad(R̃) has a maximum at R̃ = 1/

p
2 for any d > 1, and

vanishes at the edge as Ad(R̃) ⇠ (1 � R̃)(d�1)/2. The
O(µd�1) term Bd is obtained in [60] for general d. For

d = 2 and d = 3 it reads

2⇡2B2 (x) = log

 ��1� 2x
p
1� x2

��

1 + 2x
p
1� x2

!

+2x
p
1� x2

(
log

"✓
64x

1� 2x2

◆2 �
1� x2

�3
#
+ 2�E � 2

)

(26)

and

2⇡2B3(x) = (1� 2x2)2 log |1� 2x2
|

+4x2(1� x2)
n
log
h
8x(1� x2)3/2

i
+ �E

o
. (27)

respectively. Bd(x) has a singularity (1�x)
d�1
2 log(1�x)

near the edge at x = 1. As in d = 1, there is an edge
region of width wN = (2V 0(re))�1/3 where the variance
becomes a universal function of R̂ = (R� re)/wN

VarNR '

✓
re
wN

◆d�1 Z 1

0

d⇠ ⇠
d�3
2

2�(d� 1)
V2(R̂+ ⇠) . (28)

Here (re/wN )d�1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in [20, 21]. For the HO, Eq. (28) matches,
for R̂ ! �1, the behavior of Bd(x) for x ! 1� [60].
Finally, the small R limit corresponding to free fermions,
given in the introduction, can also be obtained directly
[60] using the sine-kernel analog in d dimensions [11, 42].
One can ask about higher cumulants of ND. In d =

1, for potentials related to RMT they can be extracted
from known Fisher-Hartwig asymptotics of Hankel and
Toeplitz determinants [17, 58, 82, 89]. In all cases we
find for n � 2 [90]

D
N

2n
[a,b]

Ec
=2n+o(1) , 2n=(�1)n+1(2n)!

2⇣(2n�1)

n (2⇡)2n
(29)

and hN
2n+1
[a,b] i

c = o(1), where ⇣(x) is the Riemann zeta
function. This leads to two important observations.
First, from very recent results [84], Eq. (29) also holds

for the potential V`(r) '
`2

2r2 even when ` ⇠ µ. Using
our Eq. (23) we obtain [60] the cumulants of NR for free
fermions in dimension d > 1, with kFR � 1

⌦
N

2n
R

↵c
=

(kFR)d�1

�(d)
(2n + o(1)) , n � 2. (30)

Second, since (29) coincides with the results from the
sine-kernel (and the Circular Unitary Ensemble) [6, 17,
22, 27], it is natural to conjecture that these higher
cumulants arise solely from fluctuations on microscopic
scales and that (29) actually holds in d = 1 for any
smooth potential V (x) [91]. For d > 1, using `c(µ,R) '
RkF (R) in Eq. (23), our conjecture leads to

⌦
N

2n
R

↵c
=

(kF (R)R)d�1

�(d) (2n + o(1)), a natural extension of our re-

sult for free fermions (30), where kF (R) now depends on
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Let us summarize our main results. For a confining
potential in d= 1, such that the bulk density kF (x)/⇡,
kF (x)=

p
2(µ� V (x)), has a single support [x�, x+], we

obtain an explicit formula for VarN[a,b], with a, b well
separated in the bulk, |a � b| � 1/kF (a). In the limit

N�1 (i.e., µ�1) where N'
R x+

x�
dx
⇡ kF (x)

(2⇡2)VarN[a,b] = 2 log

 
2kF (a)kF (b)

Z x+

x�

dz

⇡kF (z)

!

+ log

 
sin2 ✓a�✓b

2

sin2 ✓a+✓b
2

| sin ✓a sin ✓b|

!
+ 2c2 + o(1) (2)

where ✓x = ⇡

R x
x� dz/kF (z)
R x+

x� dz/kF (z)
,

(
✓x� = 0

✓x+ = ⇡
. (3)

We then consider noninteracting fermions in a gen-
eral central potential in d dimension, with single particle

Hamiltonian Ĥ = p2

2 + V (r), where r = |x|. We obtain
the variance VarND for any rotationally invariant domain
D. For instance, for the HO, V (r)= 1

2r
2, the support of

the density is the ball of radius
p
2µ, and for a sphere

of macroscopic radius R= R̃
p
2µ we obtain for large µ,

with fixed R̃ 2 [0, 1[

VarND = µd�1
h
Ad

⇣
R̃
⌘
logµ+Bd

⇣
R̃
⌘
+ o(1)

i
(4)

Ad(R̃) =
1

⇡2�(d)

⇣
2R̃
p

1� R̃2
⌘d�1

(5)

and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
for µ=100 (it is crucial to include the sub-leading term
Bd(R̃)). In the microscopic limit R̃ ! 0 we obtain

VarND'
1

⇡2�(d)
(kFR)d�1 [log (kFR) + bd] , (6)

where kF =
p
2µ. The leading term reproduces the free

fermion result [38–43] for a sphere and we further obtain
the subleading term

bd = 2 log 2�
�E
2

+ 1�
3

2
 (0)

✓
d+ 1

2

◆
, (7)

 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)
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d = 2, plotted vs R̃ = R/
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2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.
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nite interval [62].
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tions are obtained from the kernel
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where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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and Bd(R̃) is given below for d = 2 in (26) and for d =
3 in (27). As seen from the comparison to simulations
in Fig. 1 (see [60] for details on the simulations), the
prediction in (4) for a disk in d= 2 is already excellent
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 (0)(x) being the di-gamma function. These results lead
us to the conjecture (34) for the entanglement entropy of
the subsystem D in any dimension for arbitrary smooth
central potential, corroborated by exact results in d=1.

Let us start with fermions on the infinite line in d =
1. It is useful to introduce the height field h(x) [61],
also called the “index” in RMT [15, 16, 18, 19], and its
two-point covariance function H(x, y), from which the
variance of ND for any interval D=[a, b] is obtained as

h(x) = N]�1,x] , H(x, y) = Cov[h(x), h(y)], (8)

VarN[a,b] = H (a, a) +H (b, b)� 2H (a, b) (9)

FIG. 1. Variance of ND = NR for a disk of radius R in
d = 2, plotted vs R̃ = R/

p
2µ for µ = 100 corresponding

to N = µ (µ+ 1) /2 = 5050. The simulations (symbols) [60]
show excellent agreement with our predictions: In the bulk,
with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
in (26), and near the edge R̃ = 1, with the scaling form (28)
(dotted line). Inset: the sub-leading term B2(R̃) plotted vs
R̃ (dashed line), compared to the simulations (symbols), the
leading term A2(R̃)µ log µ being subtracted from the variance.
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For N noninteracting fermions the correlation func-

tions are obtained from the kernel
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where the  k(x) are the eigenstates of Ĥ = p2

2 +V (x). We
will denote {✏k}k=1,2,... the eigenenergies in increasing
order. The mean density is ⇢(x) = Kµ(x, x), and the n-
point correlation is given by detn⇥n Kµ(xi, xj) (see e.g.
[11]). This leads to the exact relation [60]

Kµ(x, y)
2 = �@x@yH(x, y) + �(x� y)⇢(x) (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kµ(x, y)2, and of

H(x, y), valid anywhere in the bulk in the large N limit.
In this regime, the sum over k in (10) is dominated by
k � 1 [63]. One can thus use the WKB asymptotics
[64, 65]
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also called the “index” in RMT [15, 16, 18, 19], and its
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2µ for µ = 100 corresponding
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with (4) (solid line), where A2(R̃) is given in (5) and B2(R̃)
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leading term A2(R̃)µ log µ being subtracted from the variance.
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We consider the number N✓A(✓) of eigenvalues e
i✓j of a random unitary matrix, drawn from

CUE�(N), in the interval ✓j 2 [✓A, ✓]. The deviations from its mean, N✓A(✓) � E(N✓A(✓)), form a
random process as function of ✓. We study the maximum of this process, by exploiting the mapping
onto the statistical mechanics of log-correlated random landscapes. By using an extended Fisher-
Hartwig conjecture supplemented with the freezing duality conjecture for log-correlated fields, we
obtain the cumulants of the distribution of that maximum for any � > 0. It exhibits combined
features of standard counting statistics of fermions (free for � = 2 and with Sutherland-type inter-
action for � 6= 2) in an interval and extremal statistics of the fractional Brownian motion with Hurst
index H = 0. The � = 2 results are expected to apply to the statistics of zeroes of the Riemann
Zeta function.

PACS numbers:

Characterizing the full counting statistics of the fluc-
tuations of the number N of 1d fermions in an inter-
val is important in numerous physical contexts, both for
ground state and dynamical properties. It appears e.g.
in shot noise [1], in fermion chains [2, 3], in interacting
Bose gases [4], in non-equilibrium Luttinger liquids [5],
in trapped fermions [6–8], and for studying related ob-
servables, such as the entanglement entropy [9–11] or the
statistics of local magnetization in quantum spin chains
[12]. An equivalent problem can be formulated as count-
ing eigenvalues of large random matrices (RM). As is well
known since Dyson’s work [13], such eigenvalues behave
as classical particles with 1-d Coulomb repulsion at in-
verse temperature � > 0. Namely, consider a unitary
N ⇥N matrix U and denote the corresponding unimod-
ular eigenvalues as zj = ei✓j , j = 1, . . . , N , with phases
✓i 2]�⇡,⇡]. Then for any given � > 0 one can construct
the so-called Circular �-Ensemble CUE�(N) in such a
way that the expectation of a function depending only
on the eigenvalues of U will be given by

E(F ) = cN

NY

j=1

Z ⇡

�⇡
d✓i

Y

1j<kN

|ei✓j � ei✓k |� F (1)

where F ⌘ F (✓1, . . . , ✓n). For � = 2 such matrices
can be thought of as drawn uniformly according to the
corresponding Haar’s measure on U(N), whereas for a
generic � > 0 the explicit construction is more involved,
see [14]. For any � > 1, the r.h.s of (1) equals the
quantum expectation value of F in the ground state of
N spinless fermions, of coordinates ✓i on the unit cir-
cle, described by the Sutherland Hamiltonian [15] H =

�
P

i
@2

@✓2
i
+

P
i<j

�(��2)

8 sin2
⇣

✓i�✓j
2

⌘ . For � = 2, Eq (1) thus

describes non-interacting fermions, while for � 6= 2 the
fermions interact, via an inverse square distance pairwise
potential.

Let us now define the number of eigenvalues/fermions,
N✓A(✓), in the interval ✓j 2 [✓A, ✓] as

N✓A(✓) =
NX

j=1

(�(✓ � ✓j)� �(✓A � ✓j)) , �(u) =

(
1 , u > 0

0 , u < 0

(2)
As a function of ✓ this is a staircase with unit jumps
upwards at random positions ✓j 2 [✓A, ✓]. The mean
slope (i.e. the mean density of eigenvalues/fermions) be-
ing constant, the mean profile is E(N✓A(✓)) =

N(✓�✓A)
2⇡ .

In a given random matrix realization/sample one can de-
fine the deviation to the mean, �N✓A(✓) = N✓A(✓) �
E(N✓A(✓)), and study it as a random process as a func-
tion of ✓, i.e. as a function of the length of the inter-
val ✓ � ✓A, see Fig. 1 and 2. From the view of such a
process, the standard results on fermion counting statis-
tics [2], encoding the full distribution of �N✓A(✓) for a
fixed value of ✓, is a very local information. Such infor-
mation is clearly insufficient for understanding various
non-local properties of the process, such as characteriz-
ing maximal deviation of the staircase from its mean, i.e.
max✓2[✓A,✓B ] |N✓A(✓) � E(N✓A(✓))|. After normalization
this is the Kolmogorov-Smirnov (KS) statistics, an out-
standing open problem for spectra of random matrices
[16], [17].

In this Letter we study the value distribution sepa-
rately for the maximum (and equivalently the minimum)
of the centered process by explicitly calculating the cu-
mulants of the probability density function (PDF) for the
maximum value defined as

�Nm = max
✓2[✓A,✓B ]

{N✓A(✓)� E(N✓A(✓))} (3)

on an interval [✓A, ✓B ] ⇢] � ⇡,⇡], of a fixed length
` = ✓B � ✓A. To derive the PDF of �Nm in the limit
N � 1 we will show that for scales larger than 1/N
the process �N✓A(✓) is very close to a special version of
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We consider the number N✓A(✓) of eigenvalues e
i✓j of a random unitary matrix, drawn from

CUE�(N), in the interval ✓j 2 [✓A, ✓]. The deviations from its mean, N✓A(✓) � E(N✓A(✓)), form a
random process as function of ✓. We study the maximum of this process, by exploiting the mapping
onto the statistical mechanics of log-correlated random landscapes. By using an extended Fisher-
Hartwig conjecture supplemented with the freezing duality conjecture for log-correlated fields, we
obtain the cumulants of the distribution of that maximum for any � > 0. It exhibits combined
features of standard counting statistics of fermions (free for � = 2 and with Sutherland-type inter-
action for � 6= 2) in an interval and extremal statistics of the fractional Brownian motion with Hurst
index H = 0. The � = 2 results are expected to apply to the statistics of zeroes of the Riemann
Zeta function.

PACS numbers:

Characterizing the full counting statistics of the fluc-
tuations of the number N of 1d fermions in an inter-
val is important in numerous physical contexts, both for
ground state and dynamical properties. It appears e.g.
in shot noise [1], in fermion chains [2, 3], in interacting
Bose gases [4], in non-equilibrium Luttinger liquids [5],
in trapped fermions [6–8], and for studying related ob-
servables, such as the entanglement entropy [9–11] or the
statistics of local magnetization in quantum spin chains
[12]. An equivalent problem can be formulated as count-
ing eigenvalues of large random matrices (RM). As is well
known since Dyson’s work [13], such eigenvalues behave
as classical particles with 1-d Coulomb repulsion at in-
verse temperature � > 0. Namely, consider a unitary
N ⇥N matrix U and denote the corresponding unimod-
ular eigenvalues as zj = ei✓j , j = 1, . . . , N , with phases
✓i 2]�⇡,⇡]. Then for any given � > 0 one can construct
the so-called Circular �-Ensemble CUE�(N) in such a
way that the expectation of a function depending only
on the eigenvalues of U will be given by

E(F ) = cN

NY
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Z ⇡

�⇡
d✓i

Y

1j<kN

|ei✓j � ei✓k |� F (1)

where F ⌘ F (✓1, . . . , ✓n). For � = 2 such matrices
can be thought of as drawn uniformly according to the
corresponding Haar’s measure on U(N), whereas for a
generic � > 0 the explicit construction is more involved,
see [14]. For any � > 1, the r.h.s of (1) equals the
quantum expectation value of F in the ground state of
N spinless fermions, of coordinates ✓i on the unit cir-
cle, described by the Sutherland Hamiltonian [15] H =

�
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i
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@✓2
i
+

P
i<j

�(��2)

8 sin2
⇣

✓i�✓j
2

⌘ . For � = 2, Eq (1) thus

describes non-interacting fermions, while for � 6= 2 the
fermions interact, via an inverse square distance pairwise
potential.

Let us now define the number of eigenvalues/fermions,
N✓A(✓), in the interval ✓j 2 [✓A, ✓] as

N✓A(✓) =
NX

j=1

(�(✓ � ✓j)� �(✓A � ✓j)) , �(u) =

(
1 , u > 0

0 , u < 0

(2)
As a function of ✓ this is a staircase with unit jumps
upwards at random positions ✓j 2 [✓A, ✓]. The mean
slope (i.e. the mean density of eigenvalues/fermions) be-
ing constant, the mean profile is E(N✓A(✓)) =

N(✓�✓A)
2⇡ .

In a given random matrix realization/sample one can de-
fine the deviation to the mean, �N✓A(✓) = N✓A(✓) �
E(N✓A(✓)), and study it as a random process as a func-
tion of ✓, i.e. as a function of the length of the inter-
val ✓ � ✓A, see Fig. 1 and 2. From the view of such a
process, the standard results on fermion counting statis-
tics [2], encoding the full distribution of �N✓A(✓) for a
fixed value of ✓, is a very local information. Such infor-
mation is clearly insufficient for understanding various
non-local properties of the process, such as characteriz-
ing maximal deviation of the staircase from its mean, i.e.
max✓2[✓A,✓B ] |N✓A(✓) � E(N✓A(✓))|. After normalization
this is the Kolmogorov-Smirnov (KS) statistics, an out-
standing open problem for spectra of random matrices
[16], [17].

In this Letter we study the value distribution sepa-
rately for the maximum (and equivalently the minimum)
of the centered process by explicitly calculating the cu-
mulants of the probability density function (PDF) for the
maximum value defined as

�Nm = max
✓2[✓A,✓B ]

{N✓A(✓)� E(N✓A(✓))} (3)

on an interval [✓A, ✓B ] ⇢] � ⇡,⇡], of a fixed length
` = ✓B � ✓A. To derive the PDF of �Nm in the limit
N � 1 we will show that for scales larger than 1/N
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We consider the number N✓A(✓) of eigenvalues e
i✓j of a random unitary matrix, drawn from

CUE�(N), in the interval ✓j 2 [✓A, ✓]. The deviations from its mean, N✓A(✓) � E(N✓A(✓)), form a
random process as function of ✓. We study the maximum of this process, by exploiting the mapping
onto the statistical mechanics of log-correlated random landscapes. By using an extended Fisher-
Hartwig conjecture supplemented with the freezing duality conjecture for log-correlated fields, we
obtain the cumulants of the distribution of that maximum for any � > 0. It exhibits combined
features of standard counting statistics of fermions (free for � = 2 and with Sutherland-type inter-
action for � 6= 2) in an interval and extremal statistics of the fractional Brownian motion with Hurst
index H = 0. The � = 2 results are expected to apply to the statistics of zeroes of the Riemann
Zeta function.

PACS numbers:

Characterizing the full counting statistics of the fluc-
tuations of the number N of 1d fermions in an inter-
val is important in numerous physical contexts, both for
ground state and dynamical properties. It appears e.g.
in shot noise [1], in fermion chains [2, 3], in interacting
Bose gases [4], in non-equilibrium Luttinger liquids [5],
in trapped fermions [6–8], and for studying related ob-
servables, such as the entanglement entropy [9–11] or the
statistics of local magnetization in quantum spin chains
[12]. An equivalent problem can be formulated as count-
ing eigenvalues of large random matrices (RM). As is well
known since Dyson’s work [13], such eigenvalues behave
as classical particles with 1-d Coulomb repulsion at in-
verse temperature � > 0. Namely, consider a unitary
N ⇥N matrix U and denote the corresponding unimod-
ular eigenvalues as zj = ei✓j , j = 1, . . . , N , with phases
✓i 2]�⇡,⇡]. Then for any given � > 0 one can construct
the so-called Circular �-Ensemble CUE�(N) in such a
way that the expectation of a function depending only
on the eigenvalues of U will be given by

E(F ) = cN

NY

j=1

Z ⇡

�⇡
d✓i

Y

1j<kN

|ei✓j � ei✓k |� F (1)

where F ⌘ F (✓1, . . . , ✓n). For � = 2 such matrices
can be thought of as drawn uniformly according to the
corresponding Haar’s measure on U(N), whereas for a
generic � > 0 the explicit construction is more involved,
see [14]. For any � > 1, the r.h.s of (1) equals the
quantum expectation value of F in the ground state of
N spinless fermions, of coordinates ✓i on the unit cir-
cle, described by the Sutherland Hamiltonian [15] H =

�
P

i
@2

@✓2
i
+

P
i<j

�(��2)

8 sin2
⇣

✓i�✓j
2

⌘ . For � = 2, Eq (1) thus

describes non-interacting fermions, while for � 6= 2 the
fermions interact, via an inverse square distance pairwise
potential.

Let us now define the number of eigenvalues/fermions,
N✓A(✓), in the interval ✓j 2 [✓A, ✓] as

N✓A(✓) =
NX

j=1

(�(✓ � ✓j)� �(✓A � ✓j)) , �(u) =

(
1 , u > 0

0 , u < 0

(2)
As a function of ✓ this is a staircase with unit jumps
upwards at random positions ✓j 2 [✓A, ✓]. The mean
slope (i.e. the mean density of eigenvalues/fermions) be-
ing constant, the mean profile is E(N✓A(✓)) =

N(✓�✓A)
2⇡ .

In a given random matrix realization/sample one can de-
fine the deviation to the mean, �N✓A(✓) = N✓A(✓) �
E(N✓A(✓)), and study it as a random process as a func-
tion of ✓, i.e. as a function of the length of the inter-
val ✓ � ✓A, see Fig. 1 and 2. From the view of such a
process, the standard results on fermion counting statis-
tics [2], encoding the full distribution of �N✓A(✓) for a
fixed value of ✓, is a very local information. Such infor-
mation is clearly insufficient for understanding various
non-local properties of the process, such as characteriz-
ing maximal deviation of the staircase from its mean, i.e.
max✓2[✓A,✓B ] |N✓A(✓) � E(N✓A(✓))|. After normalization
this is the Kolmogorov-Smirnov (KS) statistics, an out-
standing open problem for spectra of random matrices
[16], [17].

In this Letter we study the value distribution sepa-
rately for the maximum (and equivalently the minimum)
of the centered process by explicitly calculating the cu-
mulants of the probability density function (PDF) for the
maximum value defined as

�Nm = max
✓2[✓A,✓B ]

{N✓A(✓)� E(N✓A(✓))} (3)

on an interval [✓A, ✓B ] ⇢] � ⇡,⇡], of a fixed length
` = ✓B � ✓A. To derive the PDF of �Nm in the limit
N � 1 we will show that for scales larger than 1/N
the process �N✓A(✓) is very close to a special version of
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Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e

i✓i . Right:
counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where

A�(t) = r�t2/2
r�1Y
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s�1Y

p=0

G(1� p
s +
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q

2
�

r )

G
�
1� p
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r

� (8)

Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
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�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
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(11)

This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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We consider the number N✓A(✓) of eigenvalues e
i✓j of a random unitary matrix, drawn from

CUE�(N), in the interval ✓j 2 [✓A, ✓]. The deviations from its mean, N✓A(✓) � E(N✓A(✓)), form a
random process as function of ✓. We study the maximum of this process, by exploiting the mapping
onto the statistical mechanics of log-correlated random landscapes. By using an extended Fisher-
Hartwig conjecture supplemented with the freezing duality conjecture for log-correlated fields, we
obtain the cumulants of the distribution of that maximum for any � > 0. It exhibits combined
features of standard counting statistics of fermions (free for � = 2 and with Sutherland-type inter-
action for � 6= 2) in an interval and extremal statistics of the fractional Brownian motion with Hurst
index H = 0. The � = 2 results are expected to apply to the statistics of zeroes of the Riemann
Zeta function.

PACS numbers:

Characterizing the full counting statistics of the fluc-
tuations of the number N of 1d fermions in an inter-
val is important in numerous physical contexts, both for
ground state and dynamical properties. It appears e.g.
in shot noise [1], in fermion chains [2, 3], in interacting
Bose gases [4], in non-equilibrium Luttinger liquids [5],
in trapped fermions [6–8], and for studying related ob-
servables, such as the entanglement entropy [9–11] or the
statistics of local magnetization in quantum spin chains
[12]. An equivalent problem can be formulated as count-
ing eigenvalues of large random matrices (RM). As is well
known since Dyson’s work [13], such eigenvalues behave
as classical particles with 1-d Coulomb repulsion at in-
verse temperature � > 0. Namely, consider a unitary
N ⇥N matrix U and denote the corresponding unimod-
ular eigenvalues as zj = ei✓j , j = 1, . . . , N , with phases
✓i 2]�⇡,⇡]. Then for any given � > 0 one can construct
the so-called Circular �-Ensemble CUE�(N) in such a
way that the expectation of a function depending only
on the eigenvalues of U will be given by

E(F ) = cN

NY

j=1

Z ⇡

�⇡
d✓i

Y

1j<kN

|ei✓j � ei✓k |� F (1)

where F ⌘ F (✓1, . . . , ✓n). For � = 2 such matrices
can be thought of as drawn uniformly according to the
corresponding Haar’s measure on U(N), whereas for a
generic � > 0 the explicit construction is more involved,
see [14]. For any � > 1, the r.h.s of (1) equals the
quantum expectation value of F in the ground state of
N spinless fermions, of coordinates ✓i on the unit cir-
cle, described by the Sutherland Hamiltonian [15] H =

�
P

i
@2

@✓2
i
+

P
i<j

�(��2)

8 sin2
⇣

✓i�✓j
2

⌘ . For � = 2, Eq (1) thus

describes non-interacting fermions, while for � 6= 2 the
fermions interact, via an inverse square distance pairwise
potential.

Let us now define the number of eigenvalues/fermions,
N✓A(✓), in the interval ✓j 2 [✓A, ✓] as

N✓A(✓) =
NX

j=1

(�(✓ � ✓j)� �(✓A � ✓j)) , �(u) =

(
1 , u > 0

0 , u < 0

(2)
As a function of ✓ this is a staircase with unit jumps
upwards at random positions ✓j 2 [✓A, ✓]. The mean
slope (i.e. the mean density of eigenvalues/fermions) be-
ing constant, the mean profile is E(N✓A(✓)) =

N(✓�✓A)
2⇡ .

In a given random matrix realization/sample one can de-
fine the deviation to the mean, �N✓A(✓) = N✓A(✓) �
E(N✓A(✓)), and study it as a random process as a func-
tion of ✓, i.e. as a function of the length of the inter-
val ✓ � ✓A, see Fig. 1 and 2. From the view of such a
process, the standard results on fermion counting statis-
tics [2], encoding the full distribution of �N✓A(✓) for a
fixed value of ✓, is a very local information. Such infor-
mation is clearly insufficient for understanding various
non-local properties of the process, such as characteriz-
ing maximal deviation of the staircase from its mean, i.e.
max✓2[✓A,✓B ] |N✓A(✓) � E(N✓A(✓))|. After normalization
this is the Kolmogorov-Smirnov (KS) statistics, an out-
standing open problem for spectra of random matrices
[16], [17].

In this Letter we study the value distribution sepa-
rately for the maximum (and equivalently the minimum)
of the centered process by explicitly calculating the cu-
mulants of the probability density function (PDF) for the
maximum value defined as

�Nm = max
✓2[✓A,✓B ]

{N✓A(✓)� E(N✓A(✓))} (3)

on an interval [✓A, ✓B ] ⇢] � ⇡,⇡], of a fixed length
` = ✓B � ✓A. To derive the PDF of �Nm in the limit
N � 1 we will show that for scales larger than 1/N
the process �N✓A(✓) is very close to a special version of
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ground state for fermions on the circle 

2

Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e

i✓i . Right:
counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where

A�(t) = r�t2/2
r�1Y

⌫=0

s�1Y

p=0

G(1� p
s +

⌫+it
q

2
�

r )

G
�
1� p

s + ⌫
r

� (8)

Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
|t=0


2�(1 + t)2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)

�
(11)

This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e

i✓i . Right:
counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
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2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
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(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:
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�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =
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dtk
|t=0 log(A�(t)A�(�t)) (7)

where
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2
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which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)
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dk

dtk
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This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e

i✓i . Right:
counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where

A�(t) = r�t2/2
r�1Y

⌫=0

s�1Y

p=0

G(1� p
s +

⌫+it
q

2
�

r )

G
�
1� p

s + ⌫
r

� (8)

Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
|t=0


2�(1 + t)2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)

�
(11)

This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e

i✓i . Right:
counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :
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where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:
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` of the interval and will be given below in two limiting
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2
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which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime
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This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e

i✓i . Right:
counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =
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|t=0 log(A�(t)A�(�t)) (7)
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
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This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
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4 = �12⇣(3). Notably, using (7), (8), we were able to
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k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
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k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
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higher cumulants have limits as ` ! 0. Note that l !
0 limit is expected to provide the L � 1 asymptotic
for statistics of the maximum of N✓A(✓) in intervals of
the order 2⇡L/N , comparable with the mean eigenvalue
spacing. The universal statistics of CUE� eigenvalues
at such local scales is described by the so called sine-
� process [25] and the associated counting function has
been studied in [26].

Finally, addressing the question of the location of the
maximum in (3), ✓m 2 [✓A, ✓B ], let us define ym =
(✓m � ✓A)/`. For the mesoscopic interval, we predict the
PDF of ym to be symmetric around 1

2 , with E(y2m) = 17
50

and E(y4m) = 311
1470 , thus deviating from the uniform dis-

tribution. For the full circle we find a uniform distribu-
tion for ✓m [28]. However, joint moments for the position
and value of the maximum show the effect of pinning at
✓ = ✓A (see details in [27]).

To elucidate the relation to fBm0, let us recall that the
process �N✓A(✓) is exactly given by the difference [27]

�N✓A(✓) =
1

⇡
Im log ⇠N (✓)� 1

⇡
Im log ⇠N (✓A) (12)

where ⇠N (✓) = det(1� e�i✓U) is the characteristic poly-
nomial (CP). As shown in [29] for � = 2 (see [30] for gen-
eral � > 0) the joint probability density of Im log ⇠N (✓)
at two distinct points ✓1 6= ✓2 converges as N ! +1
to that of a Gaussian process W�(✓) of zero mean and
covariance

E(W�(✓1)W�(✓2)) = � 1

2�
log


4 sin2

✓
✓1 � ✓2

2

◆�
(13)

a particular instance of the 1D log-correlated Gaussian
field. Since (12) implies that �N✓A(✓ = ✓A) = 0 in any re-
alization, the relevant object is the pinned log-correlated
process closely related to fBm0. The log-correlated fields
being highly singular always require a regularization to
study their value distribution. The imaginary parts
of the log ⇠N (✓) for N � 1 provides such a natural
regularization [30, 52–54], being asymptotically a ran-
dom process W which shares the covariance (13) but
with a finite variance E(W (✓)2) = ��1 logN + O(1).
Via (12) this provides the well-known asymptotic of
the eigenvalues/fermions number variance: E(�N 2(✓)) '
2

�⇡2 logN . We shall see however [27] that naively replac-
ing the difference �N✓A(✓) with its Gaussian approxima-
tion 1

⇡ [W�(✓)�W�(✓A)] (related to the bosonization of
the fermionic problem) is not sufficient for characterizing
the maximum of the process.

Gaussian fields characterized by a logarithmic covari-
ance appear in chaos and turbulence [31], branching ran-
dom walks and polymers on trees [21, 22], multifrac-
tal disordered systems [32, 33], two-dimensional grav-
ity [34, 35]. Early works on their extrema revealed a con-
nection to a remarkable freezing transition [21, 22, 32].
Through exact solutions, it led to predictions for the PDF
of the maximum value of a log-correlated field on the cir-

cle and on the interval [36, 37], involving the freezing
duality conjecture (FDC) (see [20] for an extensive discus-
sion). This led to further results in theoretical and math-
ematical physics [23, 38–42] and probability [24, 43–51].
A log-correlated context of random CP attracting a lot
of attention [30, 45–47, 55–62], none of these studies yet
addressed the eigenvalue/zeros counting function in the
intervals ` = O(1).

To study the maximum of the random field �N (✓) we
follow [20, 36, 37, 55, 56] and introduce a statistical me-
chanics problem of partition sum:

Zb =
N

2⇡

Z ✓B

✓A

d� e2⇡b
p

�/2 �N✓A
(�), (14)

The “ inverse temperature" is equal to �2⇡b
p

�/2, and
we choose b > 0 since we are studying here the maximum
retrieved from the free energy F for b ! +1 as

�Nm = lim
b!+1

F , F =
1

2⇡b
p
�/2

logZb (15)

To study the statistics of the associated free energy we
start with considering the integer moments of Zb given
by

E[Zn
b ] =

✓
N

2⇡

◆n Z ✓B

✓A

e�b
p

�/2
Pn

a=1 N(�a�✓A)
nY

a=1

d�a

⇥E[
NY

j=1

e2⇡b
p

�/2
Pn

a=1(�(�a�✓j)��(✓A�✓j))] (16)

The expectation value in (16) over the CUE�(N) com-
puted using (1) has the form E[

QN
j=1 g(✓j)] where we de-

fined

log g(✓) = 2⇡b
p
�/2

nX

a=1

(�(�a � ✓)� �(✓A � ✓)) (17)

This can be further rewritten for any �a, ✓, ✓A 2]� ⇡,⇡]
with �a > ✓A as

log g(✓) = b
p

�/2[
nX

a=1

�a � n✓A (18)

+n arg ei(✓A�✓+⇡) �
nX

a=1

arg ei(�a�✓+⇡)]

where we define the arg function as

argei� =

(
� � ⇡ < �  ⇡

�� 2⇡ ⇡ < �  3⇡
(19)

For � = 2, E[
QN

j=1 g(✓j)] = det1j,kN [gj�k] is a
Toeplitz determinant, where gp =

R ⇡
�⇡

d✓
2⇡ e

�ip✓g(✓) is the
associated symbol, and g(✓) according to (18)-(19) has
jump singularities. The corresponding asymptotics as
N ! 1 is given by the famous Fisher-Hartwig (FH)
formula [64] proved rigorously in [65]. For a general
rational � extension of FH formula has been conjectured
in [63]. Specifying the expressions in [63] to our case
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higher cumulants have limits as ` ! 0. Note that l !
0 limit is expected to provide the L � 1 asymptotic
for statistics of the maximum of N✓A(✓) in intervals of
the order 2⇡L/N , comparable with the mean eigenvalue
spacing. The universal statistics of CUE� eigenvalues
at such local scales is described by the so called sine-
� process [25] and the associated counting function has
been studied in [26].

Finally, addressing the question of the location of the
maximum in (3), ✓m 2 [✓A, ✓B ], let us define ym =
(✓m � ✓A)/`. For the mesoscopic interval, we predict the
PDF of ym to be symmetric around 1

2 , with E(y2m) = 17
50

and E(y4m) = 311
1470 , thus deviating from the uniform dis-

tribution. For the full circle we find a uniform distribu-
tion for ✓m [28]. However, joint moments for the position
and value of the maximum show the effect of pinning at
✓ = ✓A (see details in [27]).

To elucidate the relation to fBm0, let us recall that the
process �N✓A(✓) is exactly given by the difference [27]
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a particular instance of the 1D log-correlated Gaussian
field. Since (12) implies that �N✓A(✓ = ✓A) = 0 in any re-
alization, the relevant object is the pinned log-correlated
process closely related to fBm0. The log-correlated fields
being highly singular always require a regularization to
study their value distribution. The imaginary parts
of the log ⇠N (✓) for N � 1 provides such a natural
regularization [30, 52–54], being asymptotically a ran-
dom process W which shares the covariance (13) but
with a finite variance E(W (✓)2) = ��1 logN + O(1).
Via (12) this provides the well-known asymptotic of
the eigenvalues/fermions number variance: E(�N 2(✓)) '
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�⇡2 logN . We shall see however [27] that naively replac-
ing the difference �N✓A(✓) with its Gaussian approxima-
tion 1

⇡ [W�(✓)�W�(✓A)] (related to the bosonization of
the fermionic problem) is not sufficient for characterizing
the maximum of the process.

Gaussian fields characterized by a logarithmic covari-
ance appear in chaos and turbulence [31], branching ran-
dom walks and polymers on trees [21, 22], multifrac-
tal disordered systems [32, 33], two-dimensional grav-
ity [34, 35]. Early works on their extrema revealed a con-
nection to a remarkable freezing transition [21, 22, 32].
Through exact solutions, it led to predictions for the PDF
of the maximum value of a log-correlated field on the cir-

cle and on the interval [36, 37], involving the freezing
duality conjecture (FDC) (see [20] for an extensive discus-
sion). This led to further results in theoretical and math-
ematical physics [23, 38–42] and probability [24, 43–51].
A log-correlated context of random CP attracting a lot
of attention [30, 45–47, 55–62], none of these studies yet
addressed the eigenvalue/zeros counting function in the
intervals ` = O(1).

To study the maximum of the random field �N (✓) we
follow [20, 36, 37, 55, 56] and introduce a statistical me-
chanics problem of partition sum:
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Toeplitz determinant, where gp =
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�ip✓g(✓) is the
associated symbol, and g(✓) according to (18)-(19) has
jump singularities. The corresponding asymptotics as
N ! 1 is given by the famous Fisher-Hartwig (FH)
formula [64] proved rigorously in [65]. For a general
rational � extension of FH formula has been conjectured
in [63]. Specifying the expressions in [63] to our case
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higher cumulants have limits as ` ! 0. Note that l !
0 limit is expected to provide the L � 1 asymptotic
for statistics of the maximum of N✓A(✓) in intervals of
the order 2⇡L/N , comparable with the mean eigenvalue
spacing. The universal statistics of CUE� eigenvalues
at such local scales is described by the so called sine-
� process [25] and the associated counting function has
been studied in [26].

Finally, addressing the question of the location of the
maximum in (3), ✓m 2 [✓A, ✓B ], let us define ym =
(✓m � ✓A)/`. For the mesoscopic interval, we predict the
PDF of ym to be symmetric around 1

2 , with E(y2m) = 17
50

and E(y4m) = 311
1470 , thus deviating from the uniform dis-

tribution. For the full circle we find a uniform distribu-
tion for ✓m [28]. However, joint moments for the position
and value of the maximum show the effect of pinning at
✓ = ✓A (see details in [27]).

To elucidate the relation to fBm0, let us recall that the
process �N✓A(✓) is exactly given by the difference [27]

�N✓A(✓) =
1

⇡
Im log ⇠N (✓)� 1

⇡
Im log ⇠N (✓A) (12)

where ⇠N (✓) = det(1� e�i✓U) is the characteristic poly-
nomial (CP). As shown in [29] for � = 2 (see [30] for gen-
eral � > 0) the joint probability density of Im log ⇠N (✓)
at two distinct points ✓1 6= ✓2 converges as N ! +1
to that of a Gaussian process W�(✓) of zero mean and
covariance

E(W�(✓1)W�(✓2)) = � 1

2�
log


4 sin2

✓
✓1 � ✓2

2

◆�
(13)

a particular instance of the 1D log-correlated Gaussian
field. Since (12) implies that �N✓A(✓ = ✓A) = 0 in any re-
alization, the relevant object is the pinned log-correlated
process closely related to fBm0. The log-correlated fields
being highly singular always require a regularization to
study their value distribution. The imaginary parts
of the log ⇠N (✓) for N � 1 provides such a natural
regularization [30, 52–54], being asymptotically a ran-
dom process W which shares the covariance (13) but
with a finite variance E(W (✓)2) = ��1 logN + O(1).
Via (12) this provides the well-known asymptotic of
the eigenvalues/fermions number variance: E(�N 2(✓)) '
2

�⇡2 logN . We shall see however [27] that naively replac-
ing the difference �N✓A(✓) with its Gaussian approxima-
tion 1

⇡ [W�(✓)�W�(✓A)] (related to the bosonization of
the fermionic problem) is not sufficient for characterizing
the maximum of the process.

Gaussian fields characterized by a logarithmic covari-
ance appear in chaos and turbulence [31], branching ran-
dom walks and polymers on trees [21, 22], multifrac-
tal disordered systems [32, 33], two-dimensional grav-
ity [34, 35]. Early works on their extrema revealed a con-
nection to a remarkable freezing transition [21, 22, 32].
Through exact solutions, it led to predictions for the PDF
of the maximum value of a log-correlated field on the cir-

cle and on the interval [36, 37], involving the freezing
duality conjecture (FDC) (see [20] for an extensive discus-
sion). This led to further results in theoretical and math-
ematical physics [23, 38–42] and probability [24, 43–51].
A log-correlated context of random CP attracting a lot
of attention [30, 45–47, 55–62], none of these studies yet
addressed the eigenvalue/zeros counting function in the
intervals ` = O(1).

To study the maximum of the random field �N (✓) we
follow [20, 36, 37, 55, 56] and introduce a statistical me-
chanics problem of partition sum:

Zb =
N

2⇡

Z ✓B

✓A

d� e2⇡b
p

�/2 �N✓A
(�), (14)

The “ inverse temperature" is equal to �2⇡b
p

�/2, and
we choose b > 0 since we are studying here the maximum
retrieved from the free energy F for b ! +1 as

�Nm = lim
b!+1

F , F =
1

2⇡b
p
�/2

logZb (15)

To study the statistics of the associated free energy we
start with considering the integer moments of Zb given
by

E[Zn
b ] =

✓
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e�b
p

�/2
Pn
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p

�/2
Pn

a=1(�(�a�✓j)��(✓A�✓j))] (16)

The expectation value in (16) over the CUE�(N) com-
puted using (1) has the form E[

QN
j=1 g(✓j)] where we de-

fined

log g(✓) = 2⇡b
p
�/2

nX

a=1

(�(�a � ✓)� �(✓A � ✓)) (17)

This can be further rewritten for any �a, ✓, ✓A 2]� ⇡,⇡]
with �a > ✓A as

log g(✓) = b
p

�/2[
nX

a=1

�a � n✓A (18)

+n arg ei(✓A�✓+⇡) �
nX

a=1

arg ei(�a�✓+⇡)]

where we define the arg function as

argei� =

(
� � ⇡ < �  ⇡

�� 2⇡ ⇡ < �  3⇡
(19)

For � = 2, E[
QN

j=1 g(✓j)] = det1j,kN [gj�k] is a
Toeplitz determinant, where gp =

R ⇡
�⇡

d✓
2⇡ e

�ip✓g(✓) is the
associated symbol, and g(✓) according to (18)-(19) has
jump singularities. The corresponding asymptotics as
N ! 1 is given by the famous Fisher-Hartwig (FH)
formula [64] proved rigorously in [65]. For a general
rational � extension of FH formula has been conjectured
in [63]. Specifying the expressions in [63] to our case
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higher cumulants have limits as ` ! 0. Note that l !
0 limit is expected to provide the L � 1 asymptotic
for statistics of the maximum of N✓A(✓) in intervals of
the order 2⇡L/N , comparable with the mean eigenvalue
spacing. The universal statistics of CUE� eigenvalues
at such local scales is described by the so called sine-
� process [25] and the associated counting function has
been studied in [26].

Finally, addressing the question of the location of the
maximum in (3), ✓m 2 [✓A, ✓B ], let us define ym =
(✓m � ✓A)/`. For the mesoscopic interval, we predict the
PDF of ym to be symmetric around 1

2 , with E(y2m) = 17
50

and E(y4m) = 311
1470 , thus deviating from the uniform dis-

tribution. For the full circle we find a uniform distribu-
tion for ✓m [28]. However, joint moments for the position
and value of the maximum show the effect of pinning at
✓ = ✓A (see details in [27]).

To elucidate the relation to fBm0, let us recall that the
process �N✓A(✓) is exactly given by the difference [27]

�N✓A(✓) =
1

⇡
Im log ⇠N (✓)� 1

⇡
Im log ⇠N (✓A) (12)

where ⇠N (✓) = det(1� e�i✓U) is the characteristic poly-
nomial (CP). As shown in [29] for � = 2 (see [30] for gen-
eral � > 0) the joint probability density of Im log ⇠N (✓)
at two distinct points ✓1 6= ✓2 converges as N ! +1
to that of a Gaussian process W�(✓) of zero mean and
covariance
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a particular instance of the 1D log-correlated Gaussian
field. Since (12) implies that �N✓A(✓ = ✓A) = 0 in any re-
alization, the relevant object is the pinned log-correlated
process closely related to fBm0. The log-correlated fields
being highly singular always require a regularization to
study their value distribution. The imaginary parts
of the log ⇠N (✓) for N � 1 provides such a natural
regularization [30, 52–54], being asymptotically a ran-
dom process W which shares the covariance (13) but
with a finite variance E(W (✓)2) = ��1 logN + O(1).
Via (12) this provides the well-known asymptotic of
the eigenvalues/fermions number variance: E(�N 2(✓)) '
2

�⇡2 logN . We shall see however [27] that naively replac-
ing the difference �N✓A(✓) with its Gaussian approxima-
tion 1

⇡ [W�(✓)�W�(✓A)] (related to the bosonization of
the fermionic problem) is not sufficient for characterizing
the maximum of the process.

Gaussian fields characterized by a logarithmic covari-
ance appear in chaos and turbulence [31], branching ran-
dom walks and polymers on trees [21, 22], multifrac-
tal disordered systems [32, 33], two-dimensional grav-
ity [34, 35]. Early works on their extrema revealed a con-
nection to a remarkable freezing transition [21, 22, 32].
Through exact solutions, it led to predictions for the PDF
of the maximum value of a log-correlated field on the cir-

cle and on the interval [36, 37], involving the freezing
duality conjecture (FDC) (see [20] for an extensive discus-
sion). This led to further results in theoretical and math-
ematical physics [23, 38–42] and probability [24, 43–51].
A log-correlated context of random CP attracting a lot
of attention [30, 45–47, 55–62], none of these studies yet
addressed the eigenvalue/zeros counting function in the
intervals ` = O(1).

To study the maximum of the random field �N (✓) we
follow [20, 36, 37, 55, 56] and introduce a statistical me-
chanics problem of partition sum:
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d� e2⇡b
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(�), (14)

The “ inverse temperature" is equal to �2⇡b
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we choose b > 0 since we are studying here the maximum
retrieved from the free energy F for b ! +1 as

�Nm = lim
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2⇡b
p
�/2

logZb (15)

To study the statistics of the associated free energy we
start with considering the integer moments of Zb given
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The expectation value in (16) over the CUE�(N) com-
puted using (1) has the form E[
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j=1 g(✓j)] where we de-

fined
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�/2

nX

a=1

(�(�a � ✓)� �(✓A � ✓)) (17)

This can be further rewritten for any �a, ✓, ✓A 2]� ⇡,⇡]
with �a > ✓A as
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a=1
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where we define the arg function as
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�� 2⇡ ⇡ < �  3⇡
(19)

For � = 2, E[
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j=1 g(✓j)] = det1j,kN [gj�k] is a
Toeplitz determinant, where gp =

R ⇡
�⇡

d✓
2⇡ e

�ip✓g(✓) is the
associated symbol, and g(✓) according to (18)-(19) has
jump singularities. The corresponding asymptotics as
N ! 1 is given by the famous Fisher-Hartwig (FH)
formula [64] proved rigorously in [65]. For a general
rational � extension of FH formula has been conjectured
in [63]. Specifying the expressions in [63] to our case
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To find maximum: statistical mechanics 
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1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
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4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
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we obtain explicit formula in two cases:
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variance depends logarithmically on ` at small `, whereas
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Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm
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1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
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mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
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1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
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By contrast the factors Ck(`) are �-independent and
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Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where

A�(t) = r�t2/2
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
|t=0


2�(1 + t)2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)

�
(11)

This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e

i✓i . Right:
counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
|t=0


2�(1 + t)2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)

�
(11)

This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e
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counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
|t=0


2�(1 + t)2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)
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This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :
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E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:
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where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk
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|t=0 log
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which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime
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This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where

A�(t) = r�t2/2
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q
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
|t=0


2�(1 + t)2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)

�
(11)

This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
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2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where

A�(t) = r�t2/2
r�1Y

⌫=0

s�1Y

p=0

G(1� p
s +

⌫+it
q

2
�

r )

G
�
1� p

s + ⌫
r

� (8)

Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
|t=0


2�(1 + t)2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)

�
(11)

This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e

i✓i . Right:
counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2
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(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:
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m) ' 2k/2
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where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
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which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime
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This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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for � = 2 and N = 20. Left: eigenvalues � = e
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Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm
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fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
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1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
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4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)
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pinned and one free end, studied in [19]. Note that the
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1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
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where c(�)` = O(1) is an unknown `-dependent constant.
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)
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k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2
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Svegö theorem

smooth symbol

singular symbols

Fisher-Hartwig

general �

4

Zb =
N

2⇡

Z xB

xA

dy e2⇡b
p

�
2 �NxA

(y)
(59)

E[Zn
b ] = (

N

2⇡
)
n

Z xB

xA

dy1 . . . dyne
�b
p

�
2

Pn
a=1 N(ya�xA) ⇥ E[e2⇡b

p
�
2

Pn
a=1 �N[xA,ya] ] (60)

E[
NY

j=1

g(xj)] (61)

g(x) = e2⇡b
p

�
2

Pn
a=1 [xA,ya](x) (62)

log g(x) =
X

p2Z
cpe

ipx
(63)

det
N⇥N

gj�k (64)

= eNc0e
P

p�1 pcpc�p+o(1)
(65)

� (66)

E(e2⇡b
p

�
2 �NxA

(x)
) (67)

' N2b2A�(b)
2A�(�b)2

✓
4 sin

2 x� xA

2

◆b2

(68)

' (
N

2⇡
)
nN b2(n+n2)|A�(b)|2n|A�(bn)|2 (69)

Z xB

xA

nY

a=1

dya|1� ei(ya�xA)|2nb
2 Y

1acn

|1� ei(ya�yc)|�2b2
(70)

N ! +1 (71)

nb2 < 1 (72)

� = 4

� = 2
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B. Coulomb gas integrals

The predictions in the previous section (and in the Appendix A) are expected to be universally valid for all logREMs
in the thermodynamic limit M ! 1. For a few integrable logREMs, we may go further to predict the precise value
of O(1)-terms above. We shall first focus on the example of the circular model/periodic fBm0, defined in eq. (1);
analytical results on the interval model were obtained in Ref. [2, 27] by relying upon the Selberg Coulomb gas integrals
[39, 40] and will be recalled briefly below.

1. Circular model and fBm0 bridge

The approach of this section is based on employing the standard heuristic method of the physics of disordered
systems known as the replica trick. Roughly speaking, it starts by considering partition function integer moments
Zn

B
, which, when n = 1, 2, 3, . . . , can be expanded as a sum over n replica positions:

Zn

B
=

MX

j1=1

· · ·
MX

jn=1

exp (n�V1 � �Vj1 � · · · � �Vjn
) , (12)

where we used eq. (5) and eq. (3). Note that the disorder average can be simply performed by Wick theorem (using
eq. (1) for the circular model). Then one replaces the sum by a Coulomb gas integral in the thermodynamic limit;
when the integral has an exact expression, one can analytically continue it to arbitrary complex n [22, 24, 41] and
obtain exp(tFB) for generic t. The correspondence between discrete sums and continuum integrals is determined by
the replica symmetry breaking mechanism (RSB) which may or may not be operative in the phase in question, and
so depends on whether � < 1 and t < Q/2. For ordinary logREMs, which in their free energy only exhibits a freezing
transition, the formalism is described in Refs. [4, 24, 35]. In the present case of pinned logREM, the termination
point/prefreezing transition is also present, and requires extending the RSB formalism; such an analysis was initiated
in Ref. [33] and developed in further generality more recently in Ref. [42] (in particular, section 2 and Appendix B),
from which we shall apply some results.

Let us start within the (high temperature) phase where � < 1 and t < Q/2, so that the replica symmetry is
unbroken. The sum eq. (12) can be replaced by integral in a naive way, i.e.., the moment generating function of FB

is given in the M ! 1 limit by a Coulomb gas integral:

exp(tFB) = M�Qt+t
2

e
1
2w(t2�t)M(n = �t/�, a = t, b = �) , (13)

where M is known as the Morris integral, defined as [39]:

M(n, a, b) =

2⇡Z

0

nY

i=1


d✓i
2⇡

��1 � ei✓i
���2ab

�Y

i<j

��ei✓i � ei✓i
���2b2

=
n�1Y

j=0

�(1 � 2ab � jb2)�(1 � (j + 1)b2)

�(1 � ab � jb2)2�(1 � b2)
(14)

=
M̃(n, a, b)

�n(1 � b2)
where M̃(n, a, b) = �(1 � nb2)

eGb(Q � 2a) eGb(Q � a � nb)2

eGb(Q � 2a � nb) eGb(Q � a)2

eGb(Q)
eGb(Q � nb)

(15)

Here eGb is the generalized Barnes function. Its defining property is the following functional relation [we adopt the
notation of Ref. [2], see eq. (237) therein]

�(bx) =
eGb(x + b)
eGb(x)

,
nY

j=1

�(bx � jb2) =
eGb(x)

eGb(x � nb)
, (16)

which facilitates the analytically continuation of products of Gamma functions. eGb(x) is an entire function with the
following simples zeros:

eGb(x) = 0 , x = �nb � m/b , n, m = 0, 1, 2, . . . . (17)

When b = 1, eGb(x) reduces to the ordinary Barnes function:

eG1(x) = G(x) = (2⇡)x/2 exp
⇣
(x � 1)(log �(x) � x/2) �  (�2)(x)

⌘
(18)
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· · ·
MX

jn=1

exp (n�V1 � �Vj1 � · · · � �Vjn
) , (12)

where we used eq. (5) and eq. (3). Note that the disorder average can be simply performed by Wick theorem (using
eq. (1) for the circular model). Then one replaces the sum by a Coulomb gas integral in the thermodynamic limit;
when the integral has an exact expression, one can analytically continue it to arbitrary complex n [22, 24, 41] and
obtain exp(tFB) for generic t. The correspondence between discrete sums and continuum integrals is determined by
the replica symmetry breaking mechanism (RSB) which may or may not be operative in the phase in question, and
so depends on whether � < 1 and t < Q/2. For ordinary logREMs, which in their free energy only exhibits a freezing
transition, the formalism is described in Refs. [4, 24, 35]. In the present case of pinned logREM, the termination
point/prefreezing transition is also present, and requires extending the RSB formalism; such an analysis was initiated
in Ref. [33] and developed in further generality more recently in Ref. [42] (in particular, section 2 and Appendix B),
from which we shall apply some results.

Let us start within the (high temperature) phase where � < 1 and t < Q/2, so that the replica symmetry is
unbroken. The sum eq. (12) can be replaced by integral in a naive way, i.e.., the moment generating function of FB

is given in the M ! 1 limit by a Coulomb gas integral:

exp(tFB) = M�Qt+t
2

e
1
2w(t2�t)M(n = �t/�, a = t, b = �) , (13)

where M is known as the Morris integral, defined as [39]:

M(n, a, b) =

2⇡Z

0

nY

i=1


d✓i
2⇡

��1 � ei✓i
���2ab

�Y

i<j

��ei✓i � ei✓i
���2b2

=
n�1Y

j=0

�(1 � 2ab � jb2)�(1 � (j + 1)b2)

�(1 � ab � jb2)2�(1 � b2)
(14)

=
M̃(n, a, b)

�n(1 � b2)
where M̃(n, a, b) = �(1 � nb2)

eGb(Q � 2a) eGb(Q � a � nb)2

eGb(Q � 2a � nb) eGb(Q � a)2

eGb(Q)
eGb(Q � nb)

(15)

Here eGb is the generalized Barnes function. Its defining property is the following functional relation [we adopt the
notation of Ref. [2], see eq. (237) therein]

�(bx) =
eGb(x + b)
eGb(x)

,
nY

j=1

�(bx � jb2) =
eGb(x)

eGb(x � nb)
, (16)

which facilitates the analytically continuation of products of Gamma functions. eGb(x) is an entire function with the
following simples zeros:

eGb(x) = 0 , x = �nb � m/b , n, m = 0, 1, 2, . . . . (17)

When b = 1, eGb(x) reduces to the ordinary Barnes function:

eG1(x) = G(x) = (2⇡)x/2 exp
⇣
(x � 1)(log �(x) � x/2) �  (�2)(x)

⌘
(18)

4

gives for N ! +1 and nb2 < 1

E[Zn
b ] '

✓
N

2⇡

◆n

N b2(n+n2)|A�(b)|2n|A�(bn)|2

⇥
Z ✓B

✓A

Y

1a<cn

|1� ei(�a��c)|�2b2 (20)

⇥
Y

1an

|1� ei(�a�✓A)|2nb
2

nY

a=1

d�a

where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
can be interpreted, via (14), as giving

E(e2⇡b�N✓A
(✓)) ' N2b2 |A�(b)|4

✓
4 sin2

✓ � ✓A
2

◆b2

(21)

This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to

E[Zn
b ] '

✓
N

2⇡

◆n

N b2(n+n2)|A�(b)|2n|A�(bn)|2

⇥ M(n, a = �nb, b) (22)

where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain

E
⇣
e�2⇡

p
�
2 (F�F1)t

⌘
' N�tQ+t2A�(t)A�(�t)

⇥�(1 + tb)
Gb(Q� 2t)Gb(Q)3

Gb(Q� t)3Gb(Q+ t)
(23)

where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as

E(e�2⇡
p

�
2 Ft)�(1 +

t

b
) = E(e�2⇡

p
�
2 �Nmt) (24)

where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]

E(e�2⇡
p

�
2 �Nmt) ' N�2t+t2 ectA�(t)A�(�t)

⇥�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)
(25)

which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:

E(e�2⇡
p

�
2 �Nmt) ' (N`)�2t+t2 ectA�(t)A�(�t)

�(1 + t)2
2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)
(26)

where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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Svegö theorem

smooth symbol

singular symbols

Fisher-Hartwig

general �

4

Zb =
N

2⇡

Z xB

xA

dy e2⇡b
p

�
2 �NxA

(y)
(59)

E[Zn
b ] = (

N

2⇡
)
n

Z xB

xA

dy1 . . . dyne
�b
p

�
2

Pn
a=1 N(ya�xA) ⇥ E[e2⇡b

p
�
2

Pn
a=1 �N[xA,ya] ] (60)

E[
NY

j=1

g(xj)] (61)

g(x) = e2⇡b
p

�
2

Pn
a=1 [xA,ya](x) (62)

log g(x) =
X

p2Z
cpe

ipx
(63)

det
N⇥N

gj�k (64)

= eNc0e
P

p�1 pcpc�p+o(1)
(65)

� (66)

E(e2⇡b
p

�
2 �NxA

(x)
) (67)

' N2b2A�(b)
2A�(�b)2

✓
4 sin

2 x� xA

2

◆b2

(68)

' (
N

2⇡
)
nN b2(n+n2)|A�(b)|2n|A�(bn)|2 (69)

Z xB

xA

nY

a=1

dya|1� ei(ya�xA)|2nb
2 Y

1acn

|1� ei(ya�yc)|�2b2
(70)

N ! +1 (71)

nb2 < 1 (72)

� = 4

� = 2
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
can be interpreted, via (14), as giving
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain
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where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as
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where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]
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which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
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on an interval given and numerically checked in [19]. The
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In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
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limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
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Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to

E[Zn
b ] '

✓
N

2⇡

◆n

N b2(n+n2)|A�(b)|2n|A�(bn)|2

⇥ M(n, a = �nb, b) (22)

where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain

E
⇣
e�2⇡

p
�
2 (F�F1)t

⌘
' N�tQ+t2A�(t)A�(�t)

⇥�(1 + tb)
Gb(Q� 2t)Gb(Q)3

Gb(Q� t)3Gb(Q+ t)
(23)

where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as

E(e�2⇡
p

�
2 Ft)�(1 +

t

b
) = E(e�2⇡

p
�
2 �Nmt) (24)

where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]

E(e�2⇡
p

�
2 �Nmt) ' N�2t+t2 ectA�(t)A�(�t)

⇥�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)
(25)

which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:

E(e�2⇡
p

�
2 �Nmt) ' (N`)�2t+t2 ectA�(t)A�(�t)

�(1 + t)2
2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)
(26)

where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be

4

Zb =
N

2⇡

Z xB

xA

dy e2⇡b
p

�
2 �NxA

(y)
(59)

E[Zn
b ] = (

N

2⇡
)
n

Z xB

xA

dy1 . . . dyne
�b
p

�
2

Pn
a=1 N(ya�xA) ⇥ E[e2⇡b

p
�
2

Pn
a=1 �N[xA,ya] ] (60)

E[
NY

j=1

g(xj)] (61)

g(x) = e2⇡b
p

�
2

Pn
a=1 [xA,ya](x) (62)

log g(x) =
X

p2Z
cpe

ipx
(63)

det
N⇥N

gj�k (64)

= eNc0e
P

p�1 pcpc�p+o(1)
(65)

� (66)

E(e2⇡b
p

�
2 �NxA

(x)
) (67)

' N2b2A�(b)
2A�(�b)2

✓
4 sin

2 x� xA

2

◆b2

(68)

' (
N

2⇡
)
nN b2(n+n2)|A�(b)|2n|A�(bn)|2 (69)

Z xB

xA

nY

a=1

dya|1� ei(ya�xA)|2nb
2 Y

1acn

|1� ei(ya�yc)|�2b2
(70)

N ! +1 (71)

nb2 < 1 (72)
Z ⇡

�⇡
(73)

G1(z) = G(z) (74)

� = 4

� = 2
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B. Coulomb gas integrals

The predictions in the previous section (and in the Appendix A) are expected to be universally valid for all logREMs
in the thermodynamic limit M ! 1. For a few integrable logREMs, we may go further to predict the precise value
of O(1)-terms above. We shall first focus on the example of the circular model/periodic fBm0, defined in eq. (1);
analytical results on the interval model were obtained in Ref. [2, 27] by relying upon the Selberg Coulomb gas integrals
[39, 40] and will be recalled briefly below.

1. Circular model and fBm0 bridge

The approach of this section is based on employing the standard heuristic method of the physics of disordered
systems known as the replica trick. Roughly speaking, it starts by considering partition function integer moments
Zn

B
, which, when n = 1, 2, 3, . . . , can be expanded as a sum over n replica positions:

Zn

B
=

MX

j1=1

· · ·
MX

jn=1

exp (n�V1 � �Vj1 � · · · � �Vjn
) , (12)

where we used eq. (5) and eq. (3). Note that the disorder average can be simply performed by Wick theorem (using
eq. (1) for the circular model). Then one replaces the sum by a Coulomb gas integral in the thermodynamic limit;
when the integral has an exact expression, one can analytically continue it to arbitrary complex n [22, 24, 41] and
obtain exp(tFB) for generic t. The correspondence between discrete sums and continuum integrals is determined by
the replica symmetry breaking mechanism (RSB) which may or may not be operative in the phase in question, and
so depends on whether � < 1 and t < Q/2. For ordinary logREMs, which in their free energy only exhibits a freezing
transition, the formalism is described in Refs. [4, 24, 35]. In the present case of pinned logREM, the termination
point/prefreezing transition is also present, and requires extending the RSB formalism; such an analysis was initiated
in Ref. [33] and developed in further generality more recently in Ref. [42] (in particular, section 2 and Appendix B),
from which we shall apply some results.

Let us start within the (high temperature) phase where � < 1 and t < Q/2, so that the replica symmetry is
unbroken. The sum eq. (12) can be replaced by integral in a naive way, i.e.., the moment generating function of FB

is given in the M ! 1 limit by a Coulomb gas integral:

exp(tFB) = M�Qt+t
2

e
1
2w(t2�t)M(n = �t/�, a = t, b = �) , (13)

where M is known as the Morris integral, defined as [39]:
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�(1 � ab � jb2)2�(1 � b2)
(14)

=
M̃(n, a, b)

�n(1 � b2)
where M̃(n, a, b) = �(1 � nb2)

eGb(Q � 2a) eGb(Q � a � nb)2

eGb(Q � 2a � nb) eGb(Q � a)2

eGb(Q)
eGb(Q � nb)

(15)

Here eGb is the generalized Barnes function. Its defining property is the following functional relation [we adopt the
notation of Ref. [2], see eq. (237) therein]

�(bx) =
eGb(x + b)
eGb(x)

,
nY

j=1

�(bx � jb2) =
eGb(x)

eGb(x � nb)
, (16)

which facilitates the analytically continuation of products of Gamma functions. eGb(x) is an entire function with the
following simples zeros:

eGb(x) = 0 , x = �nb � m/b , n, m = 0, 1, 2, . . . . (17)

When b = 1, eGb(x) reduces to the ordinary Barnes function:

eG1(x) = G(x) = (2⇡)x/2 exp
⇣
(x � 1)(log �(x) � x/2) �  (�2)(x)

⌘
(18)
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In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).
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of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
can be interpreted, via (14), as giving
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain
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where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
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where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]
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which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:

E(e�2⇡
p

�
2 �Nmt) ' (N`)�2t+t2 ectA�(t)A�(�t)

�(1 + t)2
2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)
(26)

where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
can be interpreted, via (14), as giving
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
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where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
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1/b, since formally Gb(z) = G1/b(z). According to the
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where the r.h.s. is our main result, i.e. the DSLT of the
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2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1
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Relegating the details to [27] we simply quote our second
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where c = 3
2 log logN+c00. Expansion around t = 0 leads
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k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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we would reproduce the Coulomb gas factors in (20) but
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.
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for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be

4

gives for N ! +1 and nb2 < 1

E[Zn
b ] '

✓
N

2⇡

◆n

N b2(n+n2)|A�(b)|2n|A�(bn)|2

⇥
Z ✓B

✓A

Y

1a<cn

|1� ei(�a��c)|�2b2 (20)

⇥
Y

1an

|1� ei(�a�✓A)|2nb
2

nY

a=1

d�a

where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
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where M(n, a, b) is defined Eq (14) in [19]. This result is
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of ` (as can be seen already from (16)) and to the result
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on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
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In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
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tary matrices and for free and interacting fermions on
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log-correlated field and from the fermionic full counting
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provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
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Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.
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Sutherland-model fermions in an interval of size ✓ � ✓A
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B. Coulomb gas integrals

The predictions in the previous section (and in the Appendix A) are expected to be universally valid for all logREMs
in the thermodynamic limit M ! 1. For a few integrable logREMs, we may go further to predict the precise value
of O(1)-terms above. We shall first focus on the example of the circular model/periodic fBm0, defined in eq. (1);
analytical results on the interval model were obtained in Ref. [2, 27] by relying upon the Selberg Coulomb gas integrals
[39, 40] and will be recalled briefly below.

1. Circular model and fBm0 bridge

The approach of this section is based on employing the standard heuristic method of the physics of disordered
systems known as the replica trick. Roughly speaking, it starts by considering partition function integer moments
Zn

B
, which, when n = 1, 2, 3, . . . , can be expanded as a sum over n replica positions:

Zn

B
=

MX

j1=1

· · ·
MX

jn=1

exp (n�V1 � �Vj1 � · · · � �Vjn
) , (12)

where we used eq. (5) and eq. (3). Note that the disorder average can be simply performed by Wick theorem (using
eq. (1) for the circular model). Then one replaces the sum by a Coulomb gas integral in the thermodynamic limit;
when the integral has an exact expression, one can analytically continue it to arbitrary complex n [22, 24, 41] and
obtain exp(tFB) for generic t. The correspondence between discrete sums and continuum integrals is determined by
the replica symmetry breaking mechanism (RSB) which may or may not be operative in the phase in question, and
so depends on whether � < 1 and t < Q/2. For ordinary logREMs, which in their free energy only exhibits a freezing
transition, the formalism is described in Refs. [4, 24, 35]. In the present case of pinned logREM, the termination
point/prefreezing transition is also present, and requires extending the RSB formalism; such an analysis was initiated
in Ref. [33] and developed in further generality more recently in Ref. [42] (in particular, section 2 and Appendix B),
from which we shall apply some results.

Let us start within the (high temperature) phase where � < 1 and t < Q/2, so that the replica symmetry is
unbroken. The sum eq. (12) can be replaced by integral in a naive way, i.e.., the moment generating function of FB

is given in the M ! 1 limit by a Coulomb gas integral:

exp(tFB) = M�Qt+t
2

e
1
2w(t2�t)M(n = �t/�, a = t, b = �) , (13)

where M is known as the Morris integral, defined as [39]:
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Here eGb is the generalized Barnes function. Its defining property is the following functional relation [we adopt the
notation of Ref. [2], see eq. (237) therein]

�(bx) =
eGb(x + b)
eGb(x)

,
nY

j=1

�(bx � jb2) =
eGb(x)

eGb(x � nb)
, (16)

which facilitates the analytically continuation of products of Gamma functions. eGb(x) is an entire function with the
following simples zeros:

eGb(x) = 0 , x = �nb � m/b , n, m = 0, 1, 2, . . . . (17)

When b = 1, eGb(x) reduces to the ordinary Barnes function:

eG1(x) = G(x) = (2⇡)x/2 exp
⇣
(x � 1)(log �(x) � x/2) �  (�2)(x)

⌘
(18)
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B. Coulomb gas integrals

The predictions in the previous section (and in the Appendix A) are expected to be universally valid for all logREMs
in the thermodynamic limit M ! 1. For a few integrable logREMs, we may go further to predict the precise value
of O(1)-terms above. We shall first focus on the example of the circular model/periodic fBm0, defined in eq. (1);
analytical results on the interval model were obtained in Ref. [2, 27] by relying upon the Selberg Coulomb gas integrals
[39, 40] and will be recalled briefly below.

1. Circular model and fBm0 bridge

The approach of this section is based on employing the standard heuristic method of the physics of disordered
systems known as the replica trick. Roughly speaking, it starts by considering partition function integer moments
Zn

B
, which, when n = 1, 2, 3, . . . , can be expanded as a sum over n replica positions:

Zn

B
=

MX

j1=1

· · ·
MX

jn=1

exp (n�V1 � �Vj1 � · · · � �Vjn
) , (12)

where we used eq. (5) and eq. (3). Note that the disorder average can be simply performed by Wick theorem (using
eq. (1) for the circular model). Then one replaces the sum by a Coulomb gas integral in the thermodynamic limit;
when the integral has an exact expression, one can analytically continue it to arbitrary complex n [22, 24, 41] and
obtain exp(tFB) for generic t. The correspondence between discrete sums and continuum integrals is determined by
the replica symmetry breaking mechanism (RSB) which may or may not be operative in the phase in question, and
so depends on whether � < 1 and t < Q/2. For ordinary logREMs, which in their free energy only exhibits a freezing
transition, the formalism is described in Refs. [4, 24, 35]. In the present case of pinned logREM, the termination
point/prefreezing transition is also present, and requires extending the RSB formalism; such an analysis was initiated
in Ref. [33] and developed in further generality more recently in Ref. [42] (in particular, section 2 and Appendix B),
from which we shall apply some results.

Let us start within the (high temperature) phase where � < 1 and t < Q/2, so that the replica symmetry is
unbroken. The sum eq. (12) can be replaced by integral in a naive way, i.e.., the moment generating function of FB

is given in the M ! 1 limit by a Coulomb gas integral:
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Here eGb is the generalized Barnes function. Its defining property is the following functional relation [we adopt the
notation of Ref. [2], see eq. (237) therein]
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which facilitates the analytically continuation of products of Gamma functions. eGb(x) is an entire function with the
following simples zeros:

eGb(x) = 0 , x = �nb � m/b , n, m = 0, 1, 2, . . . . (17)

When b = 1, eGb(x) reduces to the ordinary Barnes function:

eG1(x) = G(x) = (2⇡)x/2 exp
⇣
(x � 1)(log �(x) � x/2) �  (�2)(x)
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B. Coulomb gas integrals

The predictions in the previous section (and in the Appendix A) are expected to be universally valid for all logREMs
in the thermodynamic limit M ! 1. For a few integrable logREMs, we may go further to predict the precise value
of O(1)-terms above. We shall first focus on the example of the circular model/periodic fBm0, defined in eq. (1);
analytical results on the interval model were obtained in Ref. [2, 27] by relying upon the Selberg Coulomb gas integrals
[39, 40] and will be recalled briefly below.

1. Circular model and fBm0 bridge

The approach of this section is based on employing the standard heuristic method of the physics of disordered
systems known as the replica trick. Roughly speaking, it starts by considering partition function integer moments
Zn
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, which, when n = 1, 2, 3, . . . , can be expanded as a sum over n replica positions:
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· · ·
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exp (n�V1 � �Vj1 � · · · � �Vjn
) , (12)

where we used eq. (5) and eq. (3). Note that the disorder average can be simply performed by Wick theorem (using
eq. (1) for the circular model). Then one replaces the sum by a Coulomb gas integral in the thermodynamic limit;
when the integral has an exact expression, one can analytically continue it to arbitrary complex n [22, 24, 41] and
obtain exp(tFB) for generic t. The correspondence between discrete sums and continuum integrals is determined by
the replica symmetry breaking mechanism (RSB) which may or may not be operative in the phase in question, and
so depends on whether � < 1 and t < Q/2. For ordinary logREMs, which in their free energy only exhibits a freezing
transition, the formalism is described in Refs. [4, 24, 35]. In the present case of pinned logREM, the termination
point/prefreezing transition is also present, and requires extending the RSB formalism; such an analysis was initiated
in Ref. [33] and developed in further generality more recently in Ref. [42] (in particular, section 2 and Appendix B),
from which we shall apply some results.

Let us start within the (high temperature) phase where � < 1 and t < Q/2, so that the replica symmetry is
unbroken. The sum eq. (12) can be replaced by integral in a naive way, i.e.., the moment generating function of FB

is given in the M ! 1 limit by a Coulomb gas integral:
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where M is known as the Morris integral, defined as [39]:

M(n, a, b) =

2⇡Z

0

nY

i=1


d✓i
2⇡

��1 � ei✓i
���2ab

�Y

i<j

��ei✓i � ei✓i
���2b2

=
n�1Y

j=0

�(1 � 2ab � jb2)�(1 � (j + 1)b2)

�(1 � ab � jb2)2�(1 � b2)
(14)

=
M̃(n, a, b)

�n(1 � b2)
where M̃(n, a, b) = �(1 � nb2)

eGb(Q � 2a) eGb(Q � a � nb)2

eGb(Q � 2a � nb) eGb(Q � a)2

eGb(Q)
eGb(Q � nb)

(15)

Here eGb is the generalized Barnes function. Its defining property is the following functional relation [we adopt the
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following simples zeros:

eGb(x) = 0 , x = �nb � m/b , n, m = 0, 1, 2, . . . . (17)
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gives for N ! +1 and nb2 < 1

E[Zn
b ] '

✓
N

2⇡

◆n

N b2(n+n2)|A�(b)|2n|A�(bn)|2

⇥
Z ✓B

✓A

Y

1a<cn

|1� ei(�a��c)|�2b2 (20)

⇥
Y

1an

|1� ei(�a�✓A)|2nb
2

nY

a=1

d�a

where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
can be interpreted, via (14), as giving

E(e2⇡b�N✓A
(✓)) ' N2b2 |A�(b)|4

✓
4 sin2

✓ � ✓A
2

◆b2

(21)

This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to

E[Zn
b ] '

✓
N

2⇡

◆n

N b2(n+n2)|A�(b)|2n|A�(bn)|2

⇥ M(n, a = �nb, b) (22)

where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain

E
⇣
e�2⇡

p
�
2 (F�F1)t

⌘
' N�tQ+t2A�(t)A�(�t)

⇥�(1 + tb)
Gb(Q� 2t)Gb(Q)3

Gb(Q� t)3Gb(Q+ t)
(23)

where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as

E(e�2⇡
p

�
2 Ft)�(1 +

t

b
) = E(e�2⇡

p
�
2 �Nmt) (24)

where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]

E(e�2⇡
p

�
2 �Nmt) ' N�2t+t2 ectA�(t)A�(�t)

⇥�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)
(25)

which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:

E(e�2⇡
p

�
2 �Nmt) ' (N`)�2t+t2 ectA�(t)A�(�t)

�(1 + t)2
2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)
(26)

where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
can be interpreted, via (14), as giving
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain
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where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as
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where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]
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which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:
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where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
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correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
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where M(n, a, b) is defined Eq (14) in [19]. This result is
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for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.
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merics there for k = 2, 3, 4. These coefficients are studied
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k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
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statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
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Let us first discuss the simplest case n = 1 when (20)
can be interpreted, via (14), as giving

E(e2⇡b�N✓A
(✓)) ' N2b2 |A�(b)|4

✓
4 sin2

✓ � ✓A
2

◆b2

(21)

This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].
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Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to

E[Zn
b ] '

✓
N

2⇡

◆n

N b2(n+n2)|A�(b)|2n|A�(bn)|2

⇥ M(n, a = �nb, b) (22)

where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain

E
⇣
e�2⇡

p
�
2 (F�F1)t

⌘
' N�tQ+t2A�(t)A�(�t)

⇥�(1 + tb)
Gb(Q� 2t)Gb(Q)3

Gb(Q� t)3Gb(Q+ t)
(23)

where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as

E(e�2⇡
p

�
2 Ft)�(1 +

t

b
) = E(e�2⇡

p
�
2 �Nmt) (24)

where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]

E(e�2⇡
p

�
2 �Nmt) ' N�2t+t2 ectA�(t)A�(�t)

⇥�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)
(25)

which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:

E(e�2⇡
p

�
2 �Nmt) ' (N`)�2t+t2 ectA�(t)A�(�t)

�(1 + t)2
2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)
(26)

where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].
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its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.
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Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
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where F1 is a constant [69] and Q = b+ 1
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generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
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where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]
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which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:
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where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
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The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
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to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
can be interpreted, via (14), as giving
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain
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which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:
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where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
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we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.
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(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain
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where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as
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b
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where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]
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which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:
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2G(2� 2t)
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(26)

where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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B. Coulomb gas integrals

The predictions in the previous section (and in the Appendix A) are expected to be universally valid for all logREMs
in the thermodynamic limit M ! 1. For a few integrable logREMs, we may go further to predict the precise value
of O(1)-terms above. We shall first focus on the example of the circular model/periodic fBm0, defined in eq. (1);
analytical results on the interval model were obtained in Ref. [2, 27] by relying upon the Selberg Coulomb gas integrals
[39, 40] and will be recalled briefly below.

1. Circular model and fBm0 bridge

The approach of this section is based on employing the standard heuristic method of the physics of disordered
systems known as the replica trick. Roughly speaking, it starts by considering partition function integer moments
Zn

B
, which, when n = 1, 2, 3, . . . , can be expanded as a sum over n replica positions:

Zn

B
=

MX

j1=1

· · ·
MX

jn=1

exp (n�V1 � �Vj1 � · · · � �Vjn
) , (12)

where we used eq. (5) and eq. (3). Note that the disorder average can be simply performed by Wick theorem (using
eq. (1) for the circular model). Then one replaces the sum by a Coulomb gas integral in the thermodynamic limit;
when the integral has an exact expression, one can analytically continue it to arbitrary complex n [22, 24, 41] and
obtain exp(tFB) for generic t. The correspondence between discrete sums and continuum integrals is determined by
the replica symmetry breaking mechanism (RSB) which may or may not be operative in the phase in question, and
so depends on whether � < 1 and t < Q/2. For ordinary logREMs, which in their free energy only exhibits a freezing
transition, the formalism is described in Refs. [4, 24, 35]. In the present case of pinned logREM, the termination
point/prefreezing transition is also present, and requires extending the RSB formalism; such an analysis was initiated
in Ref. [33] and developed in further generality more recently in Ref. [42] (in particular, section 2 and Appendix B),
from which we shall apply some results.

Let us start within the (high temperature) phase where � < 1 and t < Q/2, so that the replica symmetry is
unbroken. The sum eq. (12) can be replaced by integral in a naive way, i.e.., the moment generating function of FB

is given in the M ! 1 limit by a Coulomb gas integral:

exp(tFB) = M�Qt+t
2

e
1
2w(t2�t)M(n = �t/�, a = t, b = �) , (13)

where M is known as the Morris integral, defined as [39]:

M(n, a, b) =

2⇡Z

0

nY

i=1


d✓i
2⇡

��1 � ei✓i
���2ab

�Y

i<j

��ei✓i � ei✓i
���2b2

=
n�1Y

j=0

�(1 � 2ab � jb2)�(1 � (j + 1)b2)

�(1 � ab � jb2)2�(1 � b2)
(14)

=
M̃(n, a, b)

�n(1 � b2)
where M̃(n, a, b) = �(1 � nb2)

eGb(Q � 2a) eGb(Q � a � nb)2

eGb(Q � 2a � nb) eGb(Q � a)2

eGb(Q)
eGb(Q � nb)

(15)

Here eGb is the generalized Barnes function. Its defining property is the following functional relation [we adopt the
notation of Ref. [2], see eq. (237) therein]

�(bx) =
eGb(x + b)
eGb(x)

,
nY

j=1

�(bx � jb2) =
eGb(x)

eGb(x � nb)
, (16)

which facilitates the analytically continuation of products of Gamma functions. eGb(x) is an entire function with the
following simples zeros:

eGb(x) = 0 , x = �nb � m/b , n, m = 0, 1, 2, . . . . (17)

When b = 1, eGb(x) reduces to the ordinary Barnes function:

eG1(x) = G(x) = (2⇡)x/2 exp
⇣
(x � 1)(log �(x) � x/2) �  (�2)(x)

⌘
(18)
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gives for N ! +1 and nb2 < 1
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
can be interpreted, via (14), as giving

E(e2⇡b�N✓A
(✓)) ' N2b2 |A�(b)|4

✓
4 sin2
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◆b2
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain
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where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
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where the r.h.s. is our main result, i.e. the DSLT of the
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of (24). Here c = 3
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that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)
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The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1
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on an interval given and numerically checked in [19]. The
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t is discussed in [27].
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statistics for the counting staircases, which would fur-
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
can be interpreted, via (14), as giving
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain
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where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as
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where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]
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which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:

E(e�2⇡
p

�
2 �Nmt) ' (N`)�2t+t2 ectA�(t)A�(�t)

�(1 + t)2
2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)
(26)

where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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of (24). Here c = 3
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that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
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where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain

E
⇣
e�2⇡

p
�
2 (F�F1)t

⌘
' N�tQ+t2A�(t)A�(�t)

⇥�(1 + tb)
Gb(Q� 2t)Gb(Q)3

Gb(Q� t)3Gb(Q+ t)
(23)

where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as

E(e�2⇡
p

�
2 Ft)�(1 +

t

b
) = E(e�2⇡

p
�
2 �Nmt) (24)

where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]

E(e�2⇡
p

�
2 �Nmt) ' N�2t+t2 ectA�(t)A�(�t)

⇥�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)
(25)

which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].
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on an interval given and numerically checked in [19]. The
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log-correlated field and from the fermionic full counting
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the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
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of (24). Here c = 3
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The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
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the maximum over a mesoscopic interval 1
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of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
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of the critical line t 2 R. Such zeroes are known to be
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statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
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which seems not to be addressed in the literature apart
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Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
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from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain
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where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as
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where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]
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which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:
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where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.
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the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:

E(e�2⇡
p

�
2 �Nmt) ' (N`)�2t+t2 ectA�(t)A�(�t)

�(1 + t)2
2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)
(26)

where c = 3
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of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
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(DSLT) of the free energy first in the high temperature
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where F1 is a constant [69] and Q = b+ 1
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of (24). Here c = 3
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that we cannot determine by this method. Expansion of
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The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].
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the maximum over a mesoscopic interval 1
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where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
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correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
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on an interval given and numerically checked in [19]. The
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imum of the deviation of the counting function from
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log-correlated field and from the fermionic full counting
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mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
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where the function A�(b) is defined in (8). Had we
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
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from the free-fermion case � = 2 [2, 66] and � = 4 [67].
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain

E
⇣
e�2⇡

p
�
2 (F�F1)t

⌘
' N�tQ+t2A�(t)A�(�t)

⇥�(1 + tb)
Gb(Q� 2t)Gb(Q)3

Gb(Q� t)3Gb(Q+ t)
(23)

where F1 is a constant [69] and Q = b+ 1
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which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:
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where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
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its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
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ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
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B. Coulomb gas integrals

The predictions in the previous section (and in the Appendix A) are expected to be universally valid for all logREMs
in the thermodynamic limit M ! 1. For a few integrable logREMs, we may go further to predict the precise value
of O(1)-terms above. We shall first focus on the example of the circular model/periodic fBm0, defined in eq. (1);
analytical results on the interval model were obtained in Ref. [2, 27] by relying upon the Selberg Coulomb gas integrals
[39, 40] and will be recalled briefly below.

1. Circular model and fBm0 bridge

The approach of this section is based on employing the standard heuristic method of the physics of disordered
systems known as the replica trick. Roughly speaking, it starts by considering partition function integer moments
Zn

B
, which, when n = 1, 2, 3, . . . , can be expanded as a sum over n replica positions:

Zn

B
=

MX

j1=1

· · ·
MX

jn=1

exp (n�V1 � �Vj1 � · · · � �Vjn
) , (12)

where we used eq. (5) and eq. (3). Note that the disorder average can be simply performed by Wick theorem (using
eq. (1) for the circular model). Then one replaces the sum by a Coulomb gas integral in the thermodynamic limit;
when the integral has an exact expression, one can analytically continue it to arbitrary complex n [22, 24, 41] and
obtain exp(tFB) for generic t. The correspondence between discrete sums and continuum integrals is determined by
the replica symmetry breaking mechanism (RSB) which may or may not be operative in the phase in question, and
so depends on whether � < 1 and t < Q/2. For ordinary logREMs, which in their free energy only exhibits a freezing
transition, the formalism is described in Refs. [4, 24, 35]. In the present case of pinned logREM, the termination
point/prefreezing transition is also present, and requires extending the RSB formalism; such an analysis was initiated
in Ref. [33] and developed in further generality more recently in Ref. [42] (in particular, section 2 and Appendix B),
from which we shall apply some results.

Let us start within the (high temperature) phase where � < 1 and t < Q/2, so that the replica symmetry is
unbroken. The sum eq. (12) can be replaced by integral in a naive way, i.e.., the moment generating function of FB

is given in the M ! 1 limit by a Coulomb gas integral:

exp(tFB) = M�Qt+t
2

e
1
2w(t2�t)M(n = �t/�, a = t, b = �) , (13)

where M is known as the Morris integral, defined as [39]:
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eGb(Q)
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(15)

Here eGb is the generalized Barnes function. Its defining property is the following functional relation [we adopt the
notation of Ref. [2], see eq. (237) therein]

�(bx) =
eGb(x + b)
eGb(x)

,
nY

j=1

�(bx � jb2) =
eGb(x)

eGb(x � nb)
, (16)

which facilitates the analytically continuation of products of Gamma functions. eGb(x) is an entire function with the
following simples zeros:

eGb(x) = 0 , x = �nb � m/b , n, m = 0, 1, 2, . . . . (17)

When b = 1, eGb(x) reduces to the ordinary Barnes function:

eG1(x) = G(x) = (2⇡)x/2 exp
⇣
(x � 1)(log �(x) � x/2) �  (�2)(x)

⌘
(18)
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
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that we cannot determine by this method. Expansion of
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(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:
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to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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Svegö theorem

smooth symbol

singular symbols

Fisher-Hartwig

general �

4

Zb =
N

2⇡

Z xB

xA

dy e2⇡b
p

�
2 �NxA

(y)
(59)

E[Zn
b ] = (

N

2⇡
)
n

Z xB

xA

dy1 . . . dyne
�b
p

�
2

Pn
a=1 N(ya�xA) ⇥ E[e2⇡b

p
�
2

Pn
a=1 �N[xA,ya] ] (60)

E[
NY

j=1

g(xj)] (61)

g(x) = e2⇡b
p

�
2

Pn
a=1 [xA,ya](x) (62)

log g(x) =
X

p2Z
cpe

ipx
(63)

det
N⇥N

gj�k (64)

= eNc0e
P

p�1 pcpc�p+o(1)
(65)

� (66)

E(e2⇡b
p

�
2 �NxA

(x)
) (67)

' N2b2A�(b)
2A�(�b)2

✓
4 sin

2 x� xA

2

◆b2

(68)

' (
N

2⇡
)
nN b2(n+n2)|A�(b)|2n|A�(bn)|2 (69)

Z xB

xA

nY

a=1

dya|1� ei(ya�xA)|2nb
2 Y

1acn

|1� ei(ya�yc)|�2b2
(70)

N ! +1 (71)

nb2 < 1 (72)
Z ⇡

�⇡
(73)

� = 4

� = 2
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Svegö theorem

smooth symbol

singular symbols

Fisher-Hartwig

general �

4

Zb =
N

2⇡

Z xB

xA

dy e2⇡b
p

�
2 �NxA

(y)
(59)

E[Zn
b ] = (

N

2⇡
)
n

Z xB

xA

dy1 . . . dyne
�b
p

�
2

Pn
a=1 N(ya�xA) ⇥ E[e2⇡b

p
�
2

Pn
a=1 �N[xA,ya] ] (60)

E[
NY

j=1

g(xj)] (61)

g(x) = e2⇡b
p

�
2

Pn
a=1 [xA,ya](x) (62)

log g(x) =
X

p2Z
cpe

ipx
(63)

det
N⇥N

gj�k (64)

= eNc0e
P

p�1 pcpc�p+o(1)
(65)

� (66)

E(e2⇡b
p

�
2 �NxA

(x)
) (67)

' N2b2A�(b)
2A�(�b)2

✓
4 sin

2 x� xA

2

◆b2

(68)

' (
N

2⇡
)
nN b2(n+n2)|A�(b)|2n|A�(bn)|2 (69)

Z xB

xA

nY

a=1

dya|1� ei(ya�xA)|2nb
2 Y

1acn

|1� ei(ya�yc)|�2b2
(70)

N ! +1 (71)

nb2 < 1 (72)

� = 4

� = 2
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
can be interpreted, via (14), as giving

E(e2⇡b�N✓A
(✓)) ' N2b2 |A�(b)|4

✓
4 sin2

✓ � ✓A
2

◆b2

(21)

This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain
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where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as
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where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]
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which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:
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where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
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we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:

E(e�2⇡
p

�
2 �Nmt) ' (N`)�2t+t2 ectA�(t)A�(�t)

�(1 + t)2
2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)
(26)

where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
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on an interval given and numerically checked in [19]. The
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t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to

E[Zn
b ] '

✓
N

2⇡

◆n

N b2(n+n2)|A�(b)|2n|A�(bn)|2

⇥ M(n, a = �nb, b) (22)

where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain

E
⇣
e�2⇡

p
�
2 (F�F1)t

⌘
' N�tQ+t2A�(t)A�(�t)

⇥�(1 + tb)
Gb(Q� 2t)Gb(Q)3

Gb(Q� t)3Gb(Q+ t)
(23)

where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
�(1 + t

b ), the right hand side is invariant by duality b !
1/b, since formally Gb(z) = G1/b(z). According to the
FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as

E(e�2⇡
p

�
2 Ft)�(1 +

t

b
) = E(e�2⇡

p
�
2 �Nmt) (24)

where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]

E(e�2⇡
p

�
2 �Nmt) ' N�2t+t2 ectA�(t)A�(�t)

⇥�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)
(25)

which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3
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The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
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merics there for k = 2, 3, 4. These coefficients are studied
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the maximum over a mesoscopic interval 1
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where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.
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can be interpreted, via (14), as giving

E(e2⇡b�N✓A
(✓)) ' N2b2 |A�(b)|4

✓
4 sin2

✓ � ✓A
2

◆b2

(21)

This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
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from the free-fermion case � = 2 [2, 66] and � = 4 [67].
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Coulomb integrals in (20) can be explicitly calculated.
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for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
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log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm
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statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
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limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
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�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
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where F1 is a constant [69] and Q = b+ 1
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generalized Barnes function, see Eq. (44) in [37] and [70].
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1/b, since formally Gb(z) = G1/b(z). According to the
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where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]
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which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:
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where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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on an interval given and numerically checked in [19]. The
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we would reproduce the Coulomb gas factors in (20) but
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capsulates the residual non-Gaussianity of the process.
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on an interval given and numerically checked in [19]. The
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statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).
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that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].

(ii) Mesoscopic interval. A similar calculation gives
the maximum over a mesoscopic interval 1

N ⌧ ` ⌧ 2⇡.
Relegating the details to [27] we simply quote our second
main result, the DSLT of the PDF of �Nm for the small
interval limit of small ` ⌧ 1:

E(e�2⇡
p

�
2 �Nmt) ' (N`)�2t+t2 ectA�(t)A�(�t)

�(1 + t)2
2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)
(26)

where c = 3
2 log logN+c00. Expansion around t = 0 leads

to the same coefficients C̃(�)
k which are thus independent

of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
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structure of the above DSLT’s in the complex plane for
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of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
that we cannot determine by this method. Expansion of
Eq. (25) around t = 0 leads to the large N asymptotics
(4)-(6) for the cumulants, together with the predicted
values for the coefficients C̃(�)

k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
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of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
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log-correlated field and from the fermionic full counting
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statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
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limit [72]. Finally, it is natural to conjecture that for
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In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
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The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
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merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].
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of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be
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where the function A�(b) is defined in (8). Had we
used instead an approximation replacing the difference
�N✓A(✓) in the large�N limit with the logarithmically
correlated Gaussian process W�(✓) defined via (12) - (13),
we would reproduce the Coulomb gas factors in (20) but
miss the factors A�(b), see [27]. Hence, this product en-
capsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n = 1 when (20)
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This formula can be interpreted as the generating func-
tion for the full counting statistics for the number of
Sutherland-model fermions in an interval of size ✓ � ✓A
which seems not to be addressed in the literature apart
from the free-fermion case � = 2 [2, 66] and � = 4 [67].

Further progress is possible in the two cases when the
Coulomb integrals in (20) can be explicitly calculated.

(i) Full circle ✓A = �⇡, ✓B = ⇡. In that case the
Coulomb integral is known as the Morris integral [68]
leading to
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where M(n, a, b) is defined Eq (14) in [19]. This result is
valid in the high temperature phase with nb2 < 1. From
this expression for integer moments there is a well defined
procedure to obtain the double sided Laplace transform
(DSLT) of the free energy first in the high temperature
phase b < 1 via an analytic continuation. Defining t =
�bn we obtain
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where F1 is a constant [69] and Q = b+ 1
b and Gb(x) is the

generalized Barnes function, see Eq. (44) in [37] and [70].
We note that if we multiply both sides of the equation by
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FDC [20, 37] we obtain the DSLT in the low temperature

phase b > 1. The result can be written as

E(e�2⇡
p

�
2 Ft)�(1 +

t

b
) = E(e�2⇡

p
�
2 �Nmt) (24)

where the r.h.s. is our main result, i.e. the DSLT of the
PDF of �Nm for the full circle [71]

E(e�2⇡
p

�
2 �Nmt) ' N�2t+t2 ectA�(t)A�(�t)

⇥�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)
(25)

which, according to (15), is the b ! +1 limit of the l.h.s
of (24). Here c = 3

2 log log(N) + c0 and c0 is a constant
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(4)-(6) for the cumulants, together with the predicted
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k in (7) and Ck(2⇡) in (9).
The Ck(2⇡) equal, up to a factor (�1)k, the cumulants
Ck given in [19] for the fBm0 bridge, checked against nu-
merics there for k = 2, 3, 4. These coefficients are studied
in more details in [27].
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of ` (as can be seen already from (16)) and to the result
for Ck(`) in (10), again related to the ones for the fBm0
on an interval given and numerically checked in [19]. The
structure of the above DSLT’s in the complex plane for
t is discussed in [27].

In conclusion, we obtained the cumulants of the max-
imum of the deviation of the counting function from
its mean on an interval, for eigenvalues of random uni-
tary matrices and for free and interacting fermions on
the circle. They inherit features both from the fBm0
log-correlated field and from the fermionic full counting
statistics. Finally, our result for the distribution of �Nm

provides a first step to study the Kolmogorov-Smirnov
statistics for the counting staircases, which would fur-
ther require the joint PDF of the maximum and mini-
mum (usually non-trivially correlated [73]).

The results for the mesoscopic interval are expected
to be universal for a broader class of random matrix en-
sembles, as well as for fermions on a lattice in the dilute
limit [72]. Finally, it is natural to conjecture that for
� = 2 universality extends to describing the statistics of
the counting staircases for the nontrivial zeroes tn of the
Riemann zeta-function ⇣(1/2+it) in mesoscopic intervals
of the critical line t 2 R. Such zeroes are known to be

Similar result for the small interval  Selberg integral  
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Notice that the low-temperature variance C2,� = C2�⇡2/(6�2) is smaller than the zero-temperature one. Heuristically
speaking, this reflects the fact that the non-Gaussian fluctuations of the free energy of logREMs in the frozen phase
are dominated by those of the minimal energy. For the fBm0 bridge case, eq. (25) and eq. (22) imply more explicitly:

C2,� =
(2�2 � 1)⇡2

6�2
, C3,� = 2(4 +

1

�3
)⇣(3) � 2⇡2 , � > 1 . (26)

Analogous formulas for the other models in the sequel can be similarly obtained and will not be displayed explicitly.

2. fBm0 on an interval

The method above applies also to the interval model (or fBm on [0, 1]), defined in eq. (2), upon replacing the Morris
integral M(n, a, b) by a special case of the Selberg integral [2]:

S(n, a, b) :=
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eGb(1/b � nb) eGb(Q � 2a � nb) eGb(Q � nb) eGb(2Q � 2a � nb)

, (27)

which coincides with Eq. (238) in [2] setting ā = �2a = 2bn and b̄ = 0 there. We remark that Morris integral and
Selberg integral (in their respective general form) are related [39] and this fact has been used in Refs [2, 27]. We then
obtain, following similar steps as above the non-Gaussian corrections to the cumulants of the probability distribution
for the mininum Bmin of the [0, 1]-fBm0, for k > 1 [compare with eq. (22) above]

B2
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see also Eq. (236) in [2]. Now we can go further than Ref. [2] and obtain the following explicit prediction for the
lowest cumulants

{C2, C3, C4}[0,1] =

⇢
9

4
, 8⇣(3) � 8⇡2

3
+

17

4
, �72⇣(3) +

4⇡4

5
+

99

8

�
= {2.25, �12.4525, 3.75418} . (30)

These predictions are also found to be in nice agreements with numerical calculation, with similar strong finite size
corrections, see Fig. 2 (b). Note that since the interval model is not translationally invariant, the argument leading to
eq. (10) is invalid and C2 is considerably di↵erent from the variance of the minimum of the unpinned interval model,
4⇡2

3 � 27
4 = 6.40947 [23]. Higher cumulants Ck are also easily expressed in terms of poly-gamma functions, using the

formula Eq. (B8) in the Appendix.
We now address two pathological features noticed in Ref. [2], p57, and argue that they do not invalidate the

foregoing predictions.
First, it was observed that the cumulant corrections Ck cannot correspond to a well-defined positive probability

distribution. For the sake of argument, let us call vmin a fictitious random variable whose k-th cumulant is Ck. Then
its fourth moment obtained from eq. (30) would be negative: v4min = �0.115 · · · < 0. This feature would become
problematic if and only if one wanted to view the minimum Bmin as a sum of a Gaussian of variance 2 ln M and an
independent random variable vmin. We stress that such a “natural” interpretation of the above results eq. (22), (30)
is not possible in any way. However this does not preclude the fact that the non-gaussian random variable Bmin has
a probability distribution whose cumulants are correctly predicted by the above equations (22) and (30).

A second disturbing feature is that in both models studied so far, the moment generating function of FB has a zero
at t = Q/2, coming from the factor eGb(Q � 2a) (with a = t) present in eq. (27) and (15), respectively [see eq. (17)].
So the cumulant generating function ln exp(tFB) must become non-convex when t is close enough to Q/2 [despite the

presence of the M t
2

factor in eq. (19)], which calls for a further explanation.
Nicely, the required explanation of this feature is provided by the considerations of section II A: t = Q/2 is the locus

of the termination point transition. Beyond that point and in the phase dominated by the termination/pre-freezing
mechanism, the RSB becomes non-trivial: a finite portion of replicas become bound and freeze at j ⇠ 1 [33, 42]. For
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Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e

i✓i . Right:
counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:
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Finally, the higher cumulants converge to a finite limit
as N ! 1:
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where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)
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This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
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ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
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which shows that they are smooth as a function of the
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with Sutherland-type interaction for � 6= 2) in a meso-
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(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
|t=0


2�(1 + t)2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)

�
(11)

This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas

2

Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e

i✓i . Right:
counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
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fBm0, defined in [18] and whose extrema where investi-
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relation to fBm0 alone is insufficient to fully determine
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up in a non-trivial way in the PDF of its maximum �Nm.
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nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where

A�(t) = r�t2/2
r�1Y

⌫=0

s�1Y

p=0

G(1� p
s +

⌫+it
q

2
�

r )

G
�
1� p

s + ⌫
r

� (8)

Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
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2k+1 vanish. Specifying for � = 2,
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scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
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1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :
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where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-
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ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2
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which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]
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For k � 2 we obtain in this regime
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This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
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1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm
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1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
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defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where

A�(t) = r�t2/2
r�1Y

⌫=0

s�1Y

p=0

G(1� p
s +

⌫+it
q

2
�

r )

G
�
1� p

s + ⌫
r

� (8)

Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
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k , are intimately but non-trivially related to the cu-
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By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:
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SUPPLEMENTARY MATERIAL

Statistics of extremes in eigenvalue-counting staircases
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We provide some additional details for some of the calculations described in the manuscript of the Letter.

CUMULANT AMPLITUDES C̃
(�)
k AS A FUNCTION OF �

Let us recall the formula given in the text for the coefficients C̃(�)
k which enter in the cumulants of the PDF for

�Nm, namely, for � = 2s/r, with s, r mutually prime and k � 2

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (27)

A�(t) = r�t2/2
r�1Y

⌫=0

s�1Y

p=0

G(1� p
s +

⌫+it
q

2
�

r )

G
�
1� p

s + ⌫
r

� (28)

To obtain more explicit expressions we use that for k � 2

dk

dyk
logG(x+ y)|y=0 = �k(x) := (k � 1) (k�2)(x) + (x� 1) (k�1)(x)� �k,2 (29)

where  (k)(x) = dk+1

dxk+1 log�(x). Hence, for even k = 2p, defining p = s� q we obtain

C̃(�)
2p = (�1)p

2

(rs)p

r�1X

⌫=0

sX

q=1

�2p(
⌫

r
+

q

s
)� 2 log r�p,1 (30)

and we recall that odd cumulants vanish.
Since any real � can be reached by a sequence � = 2sn/rn of arbitrary large sn, rn we can obtain an alternative

expression valid for any � in terms of a convergent infinite series. We need to distinguish two cases:

Cumulants C2p with p � 2. In that case we see that the large s, r behavior in (30) is dominated by the divergence
of �k(x) near x = 0. We use that

�2p(x) = � (2p� 1)!

x2p
+O(1) (31)

One finds for k = 2p with p � 2

C̃(�)
2p = (�1)p+12(2p� 1)!

1X

⌫=0

1X

q=1

1

(⌫
q

�
2 + q

q
2
� )

2p
(32)

One of the sum can be carried out leading to two equivalent "dual" expressions

C̃(�)
2p = (�2)1�p�p

1X

⌫=0

 (2p�1)(1 +
�⌫

2
) = (�2)p+1 1

�p

1X

q=1

 (2p�1)(
2q

�
) (33)

where we have used that  (2p�1)(1) = (2p� 1)!⇣(2p). The above series are convergent for p � 2, since at large x one
has  (2p�1)(x) ' (2p�2)!

z2p�1 . Hence the result is analytic in � > 0. This asymptotics can be used to obtain the large �
expansion

C̃(�)
2p = (�2)1�p(2p� 1)!⇣(2p)�p + (�1)p+12p(2p� 2)!⇣(2p� 1)

1

�p�1
+O(��p) (34)

as well as the small � expansion

C̃(�)
2p ' (�1)p+122�p(2p� 2)!⇣(2p� 1)�p�1 , � ⌧ 1 (35)
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As an example we give more explicitly the fourth cumulant

C̃(�)
4 = �12

1X

⌫=0

1X

q=1

1

(⌫
q

�
2 + q

q
2
� )

4
= � 8

�2

1X

q=1

 (3)(
2q

�
) = �1

2
�2

1X

⌫=0

 (3)(1 +
�⌫

2
) (36)

One can then check that this formula, valid for any �, correctly reproduces for the cases � = 2s/r, with s, r mutual
primes, the same result as the original formula (30), for instance one finds

C̃(�=2)
4 = �12⇣(3) , C̃(�=1)

4 =
⇡4

4
� 24⇣(3) , C̃(�=4)

4 = �24⇣(3)� ⇡4

4
(37)

Let us also give more detailed asymptotics at large and small �

C̃(�)
4 = � 1

30
⇡4�2 � 8⇣(3)

�
+

4⇡4

15�2
� 32⇣(5)

�3
+O(��4) (38)

= �2�⇣(3)� ⇡4�2

60
� �3⇣(5)

2
+O

�
�5

�
(39)

The fourth cumulant is plotted as a function of � in the Figure 3, together with the large and small � asymptotics
which, as we see, are quite accurate.

Second cumulant C̃(�)
2 . The second cumulant reads, for � = 2s/r

C̃(�)
2 = � 2

rs

r�1X

⌫=0

sX

q=1

�2(
⌫

r
+

q

s
)� 2 log r (40)

To study the limit where both r, s ! +1 with a fixed (more precisely, converging) ratio � = 2s/r, it is useful to
decompose �2(x) = � 1

x2 + �̃2(x), where �̃2(x) is regular at x = 0, and to introduce
Pr�1

⌫=0
1

1+⌫ = Hr ' log r + �E +
O(1/r). Then one has in that limit

� 2

rs

r�1X

⌫=0

sX

q=1

�̃2(
⌫

r
+

q

s
) ! �2

Z 1

0
dx

Z 1

0
dy �̃2(x+ y) = �2(

Z 1

0
dss�̃2(s) +

Z 2

1
ds(2� s)�̃2(s)) = 2 log 2 (41)

Hence need to evaluate the limit

C̃(�)
2 ' 2 log 2 + 2�E + 2

r�1X

⌫=0

[
sX

q=1

�/2

(⌫ �
2 + q)2

� 1

1 + ⌫
] (42)

= 2 log 2 + 2�E + 2
r�1X

⌫=0

[
�

2
 (1)(1 +

�⌫

2
)� �

2
 (1)(1 + s+

�⌫

2
)� 1

1 + ⌫
] (43)

where we have used that
Ps

q=1
1

(q+a)2 =  (1)(1 + a)�  (1)(1 + s+ a). Now one can check that

lim
r!+1

r�1X

⌫=0

�

2
 (1)(1 +

�

2
r +

�⌫

2
) ' lim

r!+1

2r�1X

p=r

1
2
� + p

= log 2 (44)

where the second line is obtained writing p = r + ⌫ and using  (1)(x) ⇠ 1/x at large x, but the full equivalence has
also been confirmed numerically. Hence we can take the large r, s limit in (42), the factors log 2 cancel, and we finally
obtain the second cumulant for any � as the following convergent "dual" series

C̃(�)
2 = 2�E + 2

+1X

⌫=0

[
+1X

q=1

�/2

(⌫ �
2 + q)2

� 1

1 + ⌫
] = 2�E + 2

+1X

⌫=0

[
�

2
 (1)(1 +

�⌫

2
)� 1

1 + ⌫
] (45)

= 2�E + 2 log(�/2) + 2
1X

q=1

(
2

�
 (1)(

2q

�
)� 1

q
) (46)

Note the non trivial term 2 log(�/2) in the last expression, arising from the replacement �2 log r = �2 log s+2 log(�/2)

in (40). For � = 2 one recovers C̃(�=2)
2 = 2 + 2�E . We also find either from (45), or from the original formula (40)

C̃(�=1)
2 = 2 + 2�E � ⇡2

4
, C̃(�=4)

2 = 2 + 2�E +
⇡2

4
+ log(4) (47)
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Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e

i✓i . Right:
counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where

A�(t) = r�t2/2
r�1Y

⌫=0

s�1Y

p=0

G(1� p
s +

⌫+it
q

2
�

r )

G
�
1� p

s + ⌫
r

� (8)

Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
|t=0


2�(1 + t)2G(2� 2t)
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This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where

A�(t) = r�t2/2
r�1Y

⌫=0

s�1Y

p=0

G(1� p
s +

⌫+it
q

2
�

r )

G
�
1� p

s + ⌫
r

� (8)

Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
|t=0


2�(1 + t)2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)

�
(11)

This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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We provide some additional details for some of the calculations described in the manuscript of the Letter.

CUMULANT AMPLITUDES C̃
(�)
k AS A FUNCTION OF �

Let us recall the formula given in the text for the coefficients C̃(�)
k which enter in the cumulants of the PDF for

�Nm, namely, for � = 2s/r, with s, r mutually prime and k � 2

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (27)

A�(t) = r�t2/2
r�1Y

⌫=0

s�1Y

p=0

G(1� p
s +

⌫+it
q

2
�

r )

G
�
1� p

s + ⌫
r

� (28)

To obtain more explicit expressions we use that for k � 2

dk

dyk
logG(x+ y)|y=0 = �k(x) := (k � 1) (k�2)(x) + (x� 1) (k�1)(x)� �k,2 (29)

where  (k)(x) = dk+1

dxk+1 log�(x). Hence, for even k = 2p, defining p = s� q we obtain

C̃(�)
2p = (�1)p

2

(rs)p

r�1X

⌫=0

sX

q=1

�2p(
⌫

r
+

q

s
)� 2 log r�p,1 (30)

and we recall that odd cumulants vanish.
Since any real � can be reached by a sequence � = 2sn/rn of arbitrary large sn, rn we can obtain an alternative

expression valid for any � in terms of a convergent infinite series. We need to distinguish two cases:

Cumulants C2p with p � 2. In that case we see that the large s, r behavior in (30) is dominated by the divergence
of �k(x) near x = 0. We use that

�2p(x) = � (2p� 1)!

x2p
+O(1) (31)

One finds for k = 2p with p � 2

C̃(�)
2p = (�1)p+12(2p� 1)!

1X

⌫=0

1X

q=1

1

(⌫
q

�
2 + q

q
2
� )

2p
(32)

One of the sum can be carried out leading to two equivalent "dual" expressions

C̃(�)
2p = (�2)1�p�p

1X

⌫=0

 (2p�1)(1 +
�⌫

2
) = (�2)p+1 1

�p

1X

q=1

 (2p�1)(
2q

�
) (33)

where we have used that  (2p�1)(1) = (2p� 1)!⇣(2p). The above series are convergent for p � 2, since at large x one
has  (2p�1)(x) ' (2p�2)!

z2p�1 . Hence the result is analytic in � > 0. This asymptotics can be used to obtain the large �
expansion

C̃(�)
2p = (�2)1�p(2p� 1)!⇣(2p)�p + (�1)p+12p(2p� 2)!⇣(2p� 1)

1

�p�1
+O(��p) (34)

as well as the small � expansion

C̃(�)
2p ' (�1)p+122�p(2p� 2)!⇣(2p� 1)�p�1 , � ⌧ 1 (35)
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As an example we give more explicitly the fourth cumulant

C̃(�)
4 = �12

1X

⌫=0

1X

q=1

1

(⌫
q

�
2 + q

q
2
� )

4
= � 8

�2

1X

q=1

 (3)(
2q

�
) = �1

2
�2

1X

⌫=0

 (3)(1 +
�⌫

2
) (36)

One can then check that this formula, valid for any �, correctly reproduces for the cases � = 2s/r, with s, r mutual
primes, the same result as the original formula (30), for instance one finds

C̃(�=2)
4 = �12⇣(3) , C̃(�=1)

4 =
⇡4

4
� 24⇣(3) , C̃(�=4)

4 = �24⇣(3)� ⇡4

4
(37)

Let us also give more detailed asymptotics at large and small �

C̃(�)
4 = � 1

30
⇡4�2 � 8⇣(3)

�
+

4⇡4

15�2
� 32⇣(5)

�3
+O(��4) (38)

= �2�⇣(3)� ⇡4�2

60
� �3⇣(5)

2
+O

�
�5

�
(39)

The fourth cumulant is plotted as a function of � in the Figure 3, together with the large and small � asymptotics
which, as we see, are quite accurate.

Second cumulant C̃(�)
2 . The second cumulant reads, for � = 2s/r

C̃(�)
2 = � 2

rs

r�1X

⌫=0

sX

q=1

�2(
⌫

r
+

q

s
)� 2 log r (40)

To study the limit where both r, s ! +1 with a fixed (more precisely, converging) ratio � = 2s/r, it is useful to
decompose �2(x) = � 1

x2 + �̃2(x), where �̃2(x) is regular at x = 0, and to introduce
Pr�1

⌫=0
1

1+⌫ = Hr ' log r + �E +
O(1/r). Then one has in that limit

� 2

rs

r�1X

⌫=0

sX

q=1

�̃2(
⌫

r
+

q

s
) ! �2

Z 1

0
dx

Z 1

0
dy �̃2(x+ y) = �2(

Z 1

0
dss�̃2(s) +

Z 2

1
ds(2� s)�̃2(s)) = 2 log 2 (41)

Hence need to evaluate the limit

C̃(�)
2 ' 2 log 2 + 2�E + 2
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[
sX

q=1

�/2

(⌫ �
2 + q)2

� 1

1 + ⌫
] (42)

= 2 log 2 + 2�E + 2
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[
�

2
 (1)(1 +

�⌫

2
)� �

2
 (1)(1 + s+

�⌫

2
)� 1

1 + ⌫
] (43)

where we have used that
Ps

q=1
1

(q+a)2 =  (1)(1 + a)�  (1)(1 + s+ a). Now one can check that

lim
r!+1

r�1X

⌫=0

�

2
 (1)(1 +

�

2
r +

�⌫

2
) ' lim

r!+1

2r�1X

p=r

1
2
� + p

= log 2 (44)

where the second line is obtained writing p = r + ⌫ and using  (1)(x) ⇠ 1/x at large x, but the full equivalence has
also been confirmed numerically. Hence we can take the large r, s limit in (42), the factors log 2 cancel, and we finally
obtain the second cumulant for any � as the following convergent "dual" series

C̃(�)
2 = 2�E + 2

+1X

⌫=0

[
+1X

q=1

�/2

(⌫ �
2 + q)2

� 1

1 + ⌫
] = 2�E + 2

+1X

⌫=0

[
�

2
 (1)(1 +

�⌫

2
)� 1

1 + ⌫
] (45)

= 2�E + 2 log(�/2) + 2
1X

q=1

(
2

�
 (1)(

2q

�
)� 1

q
) (46)

Note the non trivial term 2 log(�/2) in the last expression, arising from the replacement �2 log r = �2 log s+2 log(�/2)

in (40). For � = 2 one recovers C̃(�=2)
2 = 2 + 2�E . We also find either from (45), or from the original formula (40)

C̃(�=1)
2 = 2 + 2�E � ⇡2

4
, C̃(�=4)

2 = 2 + 2�E +
⇡2

4
+ log(4) (47)
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Figure 1: Constructing an instance of �N0(✓) for ✓ 2 [0,⇡]
for � = 2 and N = 20. Left: eigenvalues � = e

i✓i . Right:
counting staircase (top), with mean subtracted (bottom).

Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :

2⇡

r
�

2
E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:

Ec(�N 2
m) ' 2

�(2⇡)2
(2 logN + C̃(�)

2 + C2(`)) (5)

Finally, the higher cumulants converge to a finite limit
as N ! 1:

Ec(�N k
m) ' 2k/2

�k/2(2⇡)k
(C̃(�)

k + Ck(`)), (6)

where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =

dk

dtk
|t=0 log(A�(t)A�(�t)) (7)

where

A�(t) = r�t2/2
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p=0

G(1� p
s +
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s + ⌫
r

� (8)

Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


�(1 + t)2G(2� 2t)

G(2� t)3G(2 + t)

�
(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
|t=0


2�(1 + t)2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)

�
(11)

This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :
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E(�Nm) ' 2 logN � 3

2
log logN + c(�)` (4)

where c(�)` = O(1) is an unknown `-dependent constant.
The variance for the maximum �Nm exhibits to the lead-

ing order the extensive universal logarithmic growth typ-
ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:
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Finally, the higher cumulants converge to a finite limit
as N ! 1:
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where the constants Ck(`) = O(1) depend on the length
` of the interval and will be given below in two limiting
cases. The `�independent constants C̃(�)

k for k � 2 are
given by

C̃(�)
k =
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
C̃(2)

4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
dk

dtk
|t=0 log


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G(2� t)3G(2 + t)
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(9)

which is related to the fBm0 bridge on ] � ⇡,⇡] studied
in [19]

(ii) maximum over a mesoscopic interval 1
N ⌧ ` ⌧ 1.

For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
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2�(1 + t)2G(2� 2t)

G(2 + t)2G(2� t)G(4� t)

�
(11)

This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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Figure 2: A single realization of �N�⇡(✓) for the full circle
✓ 2 [�⇡,⇡] for � = 2 and N = 200.

1D log-correlated Gaussian field, the so called fractional
Brownian Motion with Hurst index H = 0, denoted as
fBm0, defined in [18] and whose extrema where investi-
gated recently [19, 20]. However it turns out that the
relation to fBm0 alone is insufficient to fully determine
the statistics of �Nm. Namely, we will demonstrate that
although the process �N✓A(✓) for large N � 1 is very
close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a non-trivial way in the PDF of its maximum �Nm.
These single-point features are inherited from the discrete
nature of the number of fermions/eigenvalues as exempli-
fied e.g. in fermion counting statistics [2].

We now describe our main findings by first assuming
that the Dyson parameter is rational and can be repre-
sented as �/2 = s/r where s and r are mutually prime,
and relaxing this assumption later on. We find that, for
any fixed interval, the mean value of the maximum �Nm

defined in (3) exhibits, for N ! 1, the universal behav-
ior of the log-correlated fields [21–24] :
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where c(�)` = O(1) is an unknown `-dependent constant.
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ical for pinned log-correlated fields [19], on top of which
we can evaluate the corrections of the order of unity:
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where the constants Ck(`) = O(1) depend on the length
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cases. The `�independent constants C̃(�)

k for k � 2 are
given by
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Here G(z) denotes the standard Barnes function satis-
fying G(z+1) = �(z)G(z), with G(1) = 1. Note that all
the odd coefficients C̃(�)

2k+1 vanish. Specifying for � = 2,
one has A2(t) = G(1+it), leading to C̃(2)

2 = 2(1+�E) and
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4 = �12⇣(3). Notably, using (7), (8), we were able to
obtain a formula for the C̃(�)

k as single infinite series [27],
which shows that they are smooth as a function of the
Dyson parameter �, thus relaxing the assumption of ra-
tionality. As discussed below, the factors A�(t), hence
C̃(�)

k , are intimately but non-trivially related to the cu-
mulants of the number of fermions (free for � = 2 and
with Sutherland-type interaction for � 6= 2) in a meso-
scopic interval of the circle.

By contrast the factors Ck(`) are �-independent and
originate from the problem of the maximum of a fBm0
on the interval [✓A, ✓B ]. For the `-dependent constants
we obtain explicit formula in two cases:

(i) maximum over the full circle ` = 2⇡. In that case
[✓A, ✓B ] =]� ⇡,⇡] and we find for any k � 2

Ck(2⇡) = (�1)k
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For k � 2 we obtain in this regime

Ck(`) ' 2 log ` �k,2 (10)

+(�1)k
dk

dtk
|t=0


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This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in [19]. Note that the
variance depends logarithmically on ` at small `, whereas
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Figure 2: (a) Numerical calculation of the cumulants of the minimum of the fBm0 bridge. For the variance, k = 2, we define

v
2
min := B

2
min�V

2
1

c
, i.e., the extensive Gaussian contribution is subtracted from the raw data. Higher cumulants are not a↵ected

by the Gaussian contribution, and are plotted as such: v
k
min := B

k
min, k > 2. A quadratic Ansatz a1 + a1/ lnM + a2/(lnM)2

is used to account for the finite size scaling and extrapolate the M ! 1 value from M = 28 !, 223, which is compared to the
predictions eq. (22) (in red markers). (b) The same for the fBm0 on the interval [0, 1] (pinned interval model, M = 210, . . . , 223),
compared with eq. (30).

where  (n)(x) is n-th poly-gamma function. Note that the first line of eq. (15) holds only when the integral converges,
whereas the second line is an analytical continuation that makes sense for general complex value of parameters. We
refer to D. Ostrovsky’s work on rigorous aspects of such a procedure [27, 41, 43–45].

Now, in the phase defined by � > 1, t < Q/2 = 1 [note that in the � > 1 phase, Q = 2, see eq. (8)], the above
expression is modified by the freezing transition in a fashion known as the duality-freezing scenario (which can be
understood by a breaking of replica symmetry [4, 24] occurring in the bulk and unrelated to the presence of the
pinning at a particular point), and becomes (with Q = 2)

exp(tFB)�(1 + t/�) = M�2t+t
2+cte

1
2wt

2

�(1 + t)M̃(n = �t, a = t, b = 1) , (19)

where c = 3
2 ln ln M/ ln M +cUV contains the log-correction of eq. (9) and the constant cUV that depends on the short-

distance details of the model [4]. In particular, by expanding the above equation at t = 0, we obtain the cumulants of
FB . At zero temperature, we thus obtain that the cumulants of the distribution of the minimum Bmin for the fbM0
bridge, Bj , are a sum of those of a Gaussian distribution of variance 2 ln M and non-Gaussian corrections, whose
values are given in the M ! 1 limit as (with Q = 2)

B2
min

c

� 2 ln M � w
M!1�! C2 , Bk

min

c M!1�! Ck , k > 2 ; (20)

Ck :=
dk

dtk
ln

h
�(1 + t)M̃(�t, t, 1)

i����
t=0

=
dk

dtk
ln


G(2 � 2t)�(1 + t)2

G(2 � t)3G(2 + t)

�����
t=0

(21)

{C2, C3, C4}circular =

⇢
⇡2

3
, �2⇡2 + 8⇣(3),

14⇡4

15
� 72⇣(3)

�
= {3.28987, �10.1228, 4.36705} . (22)

Here ⇣(x) is the Riemann zeta. The above predictions are tested numerically, see Fig. 2 (a) The prediction for C2

is tested by computing B2
min � V 2

1

c

. As an independent check, we recall that C2 = ⇡
2

3 is known as the minimum
variance of the circular model without pinning [22, 23]. Thus, we recover eq. (10), which was obtained rigorously.
Higher cumulants Ck are also easily expressed in terms of poly-gamma functions, using the formula Eq. (B8) in the
Appendix.

In general, at any temperature, the free energy FB ’s cumulants are the sum of those of a Gaussian of variance
2 ln M and non-Gaussian corrections Ck,� , which are given by the Taylor expansion of the analytically continued
Morris integral with Q = 2

F2
B

c

= 2 ln M + w + C2,� , Fk

B

c

= Ck,� , k > 2 ; (23)

Ck,� =
dk

dtk
ln

h
M̃(�t/�, t,�)

i����
t=0

, � < 1 , k > 1 ; (24)

Ck,� = Ck � ��k(�1)k(k � 1)!⇣(k) , � > 1 , k > 1 . (25)

We emphasize that the last identity is a direct consequence of the freezing scenario, and applies to the low-temperature
phase of all models in this work, as well as ordinary logREMs [in which case it was known since Ref. [23], eq. (24)].
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Notice that the low-temperature variance C2,� = C2�⇡2/(6�2) is smaller than the zero-temperature one. Heuristically
speaking, this reflects the fact that the non-Gaussian fluctuations of the free energy of logREMs in the frozen phase
are dominated by those of the minimal energy. For the fBm0 bridge case, eq. (25) and eq. (22) imply more explicitly:

C2,� =
(2�2 � 1)⇡2

6�2
, C3,� = 2(4 +

1

�3
)⇣(3) � 2⇡2 , � > 1 . (26)

Analogous formulas for the other models in the sequel can be similarly obtained and will not be displayed explicitly.

2. fBm0 on an interval

The method above applies also to the interval model (or fBm on [0, 1]), defined in eq. (2), upon replacing the Morris
integral M(n, a, b) by a special case of the Selberg integral [2]:

S(n, a, b) :=

1Z

0

nY

i=1

⇥
x�2ab
i

dxi

⇤Y

i<j

|xi � xj |�2b2 =
n�1Y

j=0

�(1 � 2ab � jb2)�(1 � jb2)�(1 � (j + 1)b2)

�(2 � 2ab � (n + j � 1)b2)�(1 � b2)

=
S̃(n, a, b)

�n(1 � b2)
where S̃(n, a, b) =

eGb(1/b) eGb(Q � 2a) eGb(Q) eGb(2Q � 2a � 2nb)
eGb(1/b � nb) eGb(Q � 2a � nb) eGb(Q � nb) eGb(2Q � 2a � nb)

, (27)

which coincides with Eq. (238) in [2] setting ā = �2a = 2bn and b̄ = 0 there. We remark that Morris integral and
Selberg integral (in their respective general form) are related [39] and this fact has been used in Refs [2, 27]. We then
obtain, following similar steps as above the non-Gaussian corrections to the cumulants of the probability distribution
for the mininum Bmin of the [0, 1]-fBm0, for k > 1 [compare with eq. (22) above]

B2
min

c

� 2 ln M � w
M!1�! C2 , Bk

min

c M!1�! Ck , (28)

Ck =
dk

dtk
ln

h
�(1 + t)S̃(�t, t, 1)

i����
t=0

=
dk

dtk
ln


2G(2 � 2t)�(1 + t)

G(2 � t)G(4 � t)G(1 + t)G(2 + t)

�����
t=0

, (29)

see also Eq. (236) in [2]. Now we can go further than Ref. [2] and obtain the following explicit prediction for the
lowest cumulants

{C2, C3, C4}[0,1] =

⇢
9

4
, 8⇣(3) � 8⇡2

3
+

17

4
, �72⇣(3) +

4⇡4

5
+

99

8

�
= {2.25, �12.4525, 3.75418} . (30)

These predictions are also found to be in nice agreements with numerical calculation, with similar strong finite size
corrections, see Fig. 2 (b). Note that since the interval model is not translationally invariant, the argument leading to
eq. (10) is invalid and C2 is considerably di↵erent from the variance of the minimum of the unpinned interval model,
4⇡2

3 � 27
4 = 6.40947 [23]. Higher cumulants Ck are also easily expressed in terms of poly-gamma functions, using the

formula Eq. (B8) in the Appendix.
We now address two pathological features noticed in Ref. [2], p57, and argue that they do not invalidate the

foregoing predictions.
First, it was observed that the cumulant corrections Ck cannot correspond to a well-defined positive probability

distribution. For the sake of argument, let us call vmin a fictitious random variable whose k-th cumulant is Ck. Then
its fourth moment obtained from eq. (30) would be negative: v4min = �0.115 · · · < 0. This feature would become
problematic if and only if one wanted to view the minimum Bmin as a sum of a Gaussian of variance 2 ln M and an
independent random variable vmin. We stress that such a “natural” interpretation of the above results eq. (22), (30)
is not possible in any way. However this does not preclude the fact that the non-gaussian random variable Bmin has
a probability distribution whose cumulants are correctly predicted by the above equations (22) and (30).

A second disturbing feature is that in both models studied so far, the moment generating function of FB has a zero
at t = Q/2, coming from the factor eGb(Q � 2a) (with a = t) present in eq. (27) and (15), respectively [see eq. (17)].
So the cumulant generating function ln exp(tFB) must become non-convex when t is close enough to Q/2 [despite the

presence of the M t
2

factor in eq. (19)], which calls for a further explanation.
Nicely, the required explanation of this feature is provided by the considerations of section II A: t = Q/2 is the locus

of the termination point transition. Beyond that point and in the phase dominated by the termination/pre-freezing
mechanism, the RSB becomes non-trivial: a finite portion of replicas become bound and freeze at j ⇠ 1 [33, 42]. For
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3

✓x � ✓y ' (x� y)
d✓x
dx

(30)

�̃N (x)� �̃N (y) ' (x� y)
d�̃N (x)

dx
(31)

V (x) =
x2

2
(32)

kF (x) =
p

2µ� x2 (33)

⇢(x) =
kF (x)

⇡
(34)

cos ✓x =
�xp
2µ

(35)

p
2µ (36)

z = ei✓x (37)

w = ei✓y (38)

C(z, w) = � 1

2⇡
log |z � w

z � w̄
| (39)

�
p

2µ (40)

eixj (41)

j = 1, . . . , N (42)

P (x1, . . . , xN ) ⇠
Y

1j<kN

|eixj � eixk |� (43)

�⇡ < xj  ⇡ (44)

�NxA(x) = N[xA,x] � E(N[xA,x]) (45)

E(N[xA,x]) =
N(x� xA)

2⇡
(46)

x ! (47)

�Nm = max
x2[xA,xB ]

�NxA(x) (48)

max
x2[xA,xB ]

|�NxA(x)| (49)

3

✓x � ✓y ' (x� y)
d✓x
dx

(30)

�̃N (x)� �̃N (y) ' (x� y)
d�̃N (x)

dx
(31)

V (x) =
x2

2
(32)

kF (x) =
p

2µ� x2 (33)

⇢(x) =
kF (x)

⇡
(34)

cos ✓x =
�xp
2µ

(35)

p
2µ (36)

z = ei✓x (37)

w = ei✓y (38)

C(z, w) = � 1

2⇡
log |z � w

z � w̄
| (39)

�
p

2µ (40)

eixj (41)

j = 1, . . . , N (42)

P (x1, . . . , xN ) ⇠
Y

1j<kN

|eixj � eixk |� (43)

�⇡ < xj  ⇡ (44)

�NxA(x) = N[xA,x] � E(N[xA,x]) (45)

E(N[xA,x]) =
N(x� xA)

2⇡
(46)

x ! (47)

Cao, Fyodorov, Le Doussal. Phys. Rev. E (2018) 



6

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
1/ log2 M

�12
�10
�8
�6
�4
�2

0
2
4
6

vk m
in

c

(a) circular

k = 2
k = 3
k = 4

0.00 0.02 0.04 0.06 0.08 0.10 0.12
1/ log2 M

�20

�15

�10

�5

0

5

vk m
in

c

(b) interval

k = 2
k = 3
k = 4

Figure 2: (a) Numerical calculation of the cumulants of the minimum of the fBm0 bridge. For the variance, k = 2, we define

v
2
min := B

2
min�V

2
1

c
, i.e., the extensive Gaussian contribution is subtracted from the raw data. Higher cumulants are not a↵ected

by the Gaussian contribution, and are plotted as such: v
k
min := B

k
min, k > 2. A quadratic Ansatz a1 + a1/ lnM + a2/(lnM)2

is used to account for the finite size scaling and extrapolate the M ! 1 value from M = 28 !, 223, which is compared to the
predictions eq. (22) (in red markers). (b) The same for the fBm0 on the interval [0, 1] (pinned interval model, M = 210, . . . , 223),
compared with eq. (30).

where  (n)(x) is n-th poly-gamma function. Note that the first line of eq. (15) holds only when the integral converges,
whereas the second line is an analytical continuation that makes sense for general complex value of parameters. We
refer to D. Ostrovsky’s work on rigorous aspects of such a procedure [27, 41, 43–45].

Now, in the phase defined by � > 1, t < Q/2 = 1 [note that in the � > 1 phase, Q = 2, see eq. (8)], the above
expression is modified by the freezing transition in a fashion known as the duality-freezing scenario (which can be
understood by a breaking of replica symmetry [4, 24] occurring in the bulk and unrelated to the presence of the
pinning at a particular point), and becomes (with Q = 2)

exp(tFB)�(1 + t/�) = M�2t+t
2+cte

1
2wt

2

�(1 + t)M̃(n = �t, a = t, b = 1) , (19)

where c = 3
2 ln ln M/ ln M +cUV contains the log-correction of eq. (9) and the constant cUV that depends on the short-

distance details of the model [4]. In particular, by expanding the above equation at t = 0, we obtain the cumulants of
FB . At zero temperature, we thus obtain that the cumulants of the distribution of the minimum Bmin for the fbM0
bridge, Bj , are a sum of those of a Gaussian distribution of variance 2 ln M and non-Gaussian corrections, whose
values are given in the M ! 1 limit as (with Q = 2)

B2
min

c

� 2 ln M � w
M!1�! C2 , Bk

min

c M!1�! Ck , k > 2 ; (20)

Ck :=
dk
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ln
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i����
t=0

=
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
G(2 � 2t)�(1 + t)2
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(21)

{C2, C3, C4}circular =

⇢
⇡2

3
, �2⇡2 + 8⇣(3),

14⇡4

15
� 72⇣(3)
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= {3.28987, �10.1228, 4.36705} . (22)

Here ⇣(x) is the Riemann zeta. The above predictions are tested numerically, see Fig. 2 (a) The prediction for C2

is tested by computing B2
min � V 2

1

c

. As an independent check, we recall that C2 = ⇡
2

3 is known as the minimum
variance of the circular model without pinning [22, 23]. Thus, we recover eq. (10), which was obtained rigorously.
Higher cumulants Ck are also easily expressed in terms of poly-gamma functions, using the formula Eq. (B8) in the
Appendix.

In general, at any temperature, the free energy FB ’s cumulants are the sum of those of a Gaussian of variance
2 ln M and non-Gaussian corrections Ck,� , which are given by the Taylor expansion of the analytically continued
Morris integral with Q = 2

F2
B

c

= 2 ln M + w + C2,� , Fk

B

c

= Ck,� , k > 2 ; (23)

Ck,� =
dk

dtk
ln

h
M̃(�t/�, t,�)

i����
t=0

, � < 1 , k > 1 ; (24)

Ck,� = Ck � ��k(�1)k(k � 1)!⇣(k) , � > 1 , k > 1 . (25)

We emphasize that the last identity is a direct consequence of the freezing scenario, and applies to the low-temperature
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Table 1: The mappings between (i) models of interacting trapped fermions studied here and
(ii) the standard random matrix ensembles. The variable x denotes the positions of the
fermions, � the eigenvalues of the RMT ensemble, and the mapping �(x) is displayed in the
last column. The first three columns denote respectively the domain for the fermions, the
external potential V (x), and their interaction W (x, y), defined in (3). Note that in the second
line periodic boundary conditions are to be understood for the fermionic system. The next
two columns indicate the RMT ensemble and the matrix potential V0(�), see Eq. (6). Here �
is the Dyson index which varies continuously and corresponds to noninteracting fermions for
� = 2.

1.2 Models and mappings

Let us now describe the class of models which we study in this paper. In this section we focus
on models related to RMT, while further extensions will be discussed below. Here we consider
N spinless fermions trapped in an external potential V (x) and with two-body interactions
parameterized by a symmetric function W (x, y) = W (y, x). The Hamiltonian is of the general
form (we use units such that m = ~ = 1)

HN =
NX

i=1


p2i
2

+ V (xi)

�
+
X

i<j

W (xi, xj) . (4)

In this paper we study specific choices for V (x) and W (x, y) such that the joint PDF of the
positions of the fermions in the ground state can be written in the form

| 0(~x)|
2 = e�U(~x) , U(~x) =

X

i

v(xi) +
X

i<j

w(xi, xj) (5)

with w a symmetric function w(x, y) = w(y, x). One example of such models corresponds to

Eqs. (3), with V (x) = x2

2 and W (x, y) = �(��2)
4(x�y)2 , and (1), with v(x) = x2 and w(x, y) =

�� log |x � y|. This is one instance of a more general class of fermion models that can be
mapped onto a random matrix ensemble (in that case G�E).

Let us briefly review the ensembles of interest. We denote �i, i = 1, . . . , N the eigenvalues
of a random matrix in an ensemble such that the joint PDF can be written as

P (~�) =
e�F (~�)

ZN
, F (~�) =

NX

i=1

V0(�i)� �
X

i<j

log |�i � �j | (6)
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external potential V (x), and their interaction W (x, y), defined in (3). Note that in the second
line periodic boundary conditions are to be understood for the fermionic system. The next
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1.2 Models and mappings

Let us now describe the class of models which we study in this paper. In this section we focus
on models related to RMT, while further extensions will be discussed below. Here we consider
N spinless fermions trapped in an external potential V (x) and with two-body interactions
parameterized by a symmetric function W (x, y) = W (y, x). The Hamiltonian is of the general
form (we use units such that m = ~ = 1)
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W (xi, xj) . (4)

In this paper we study specific choices for V (x) and W (x, y) such that the joint PDF of the
positions of the fermions in the ground state can be written in the form

| 0(~x)|
2 = e�U(~x) , U(~x) =
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i

v(xi) +
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i<j

w(xi, xj) (5)

with w a symmetric function w(x, y) = w(y, x). One example of such models corresponds to

Eqs. (3), with V (x) = x2

2 and W (x, y) = �(��2)
4(x�y)2 , and (1), with v(x) = x2 and w(x, y) =

�� log |x � y|. This is one instance of a more general class of fermion models that can be
mapped onto a random matrix ensemble (in that case G�E).

Let us briefly review the ensembles of interest. We denote �i, i = 1, . . . , N the eigenvalues
of a random matrix in an ensemble such that the joint PDF can be written as

P (~�) =
e�F (~�)

ZN
, F (~�) =

NX

i=1

V0(�i)� �
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log |�i � �j | (6)

5

SciPost Physics Submission

Fermions’
domain

Fermion poten-
tial V (x)

Fermion interaction
W (x, y)

RMT en-
semble

Matrix po-
tential V0(�)

Map �(x)

x 2 R x2/2 �(��2)
4(x�y)2

G�E ��2/2 � =
q

2
�x

x2 [0, L] 0
� 2⇡

L

�2 �(��2)

16 sin2 ⇡(x�y)
L

C�E 0 � = eix
2⇡
L

x 2 R+ x2

2 +
�2� 1

4
2x2

�(��2)
4

h
1

(x�y)2
+ 1

(x+y)2

i
WL�E �

2�� � log � � = 2
�x

2

x2 [0,⇡] 1
8

✓
�2
1�

1
4

sin2 x
2
+

�2
2�

1
4

cos2 x
2

◆
�(��2)

16

✓
1

sin2 x�y
2

+ 1

sin2 x+y
2

◆
J�E log 1

��1 (1��)�2 � = 1�cos x
2

Table 1: The mappings between (i) models of interacting trapped fermions studied here and
(ii) the standard random matrix ensembles. The variable x denotes the positions of the
fermions, � the eigenvalues of the RMT ensemble, and the mapping �(x) is displayed in the
last column. The first three columns denote respectively the domain for the fermions, the
external potential V (x), and their interaction W (x, y), defined in (3). Note that in the second
line periodic boundary conditions are to be understood for the fermionic system. The next
two columns indicate the RMT ensemble and the matrix potential V0(�), see Eq. (6). Here �
is the Dyson index which varies continuously and corresponds to noninteracting fermions for
� = 2.

1.2 Models and mappings

Let us now describe the class of models which we study in this paper. In this section we focus
on models related to RMT, while further extensions will be discussed below. Here we consider
N spinless fermions trapped in an external potential V (x) and with two-body interactions
parameterized by a symmetric function W (x, y) = W (y, x). The Hamiltonian is of the general
form (we use units such that m = ~ = 1)

HN =
NX

i=1


p2i
2

+ V (xi)

�
+

X

i<j

W (xi, xj) . (4)

In this paper we study specific choices for V (x) and W (x, y) such that the joint PDF of the
positions of the fermions in the ground state can be written in the form

| 0(~x)|
2 = e�U(~x) , U(~x) =

X

i

v(xi) +
X

i<j

w(xi, xj) (5)

with w a symmetric function w(x, y) = w(y, x). One example of such models corresponds to

Eqs. (3), with V (x) = x2

2 and W (x, y) = �(��2)
4(x�y)2 , and (1), with v(x) = x2 and w(x, y) =

�� log |x � y|. This is one instance of a more general class of fermion models that can be
mapped onto a random matrix ensemble (in that case G�E).

Let us briefly review the ensembles of interest. We denote �i, i = 1, . . . , N the eigenvalues
of a random matrix in an ensemble such that the joint PDF can be written as

P (~�) =
e�F (~�)

ZN
, F (~�) =

NX

i=1

V0(�i)� �
X

i<j

log |�i � �j | (6)

5

SciPost Physics Submission

Fermions’
domain

Fermion poten-
tial V (x)

Fermion interaction
W (x, y)

RMT en-
semble

Matrix po-
tential V0(�)

Map �(x)

x 2 R x2/2 �(��2)
4(x�y)2

G�E ��2/2 � =
q

2
�x

x2 [0, L] 0
� 2⇡

L

�2 �(��2)

16 sin2 ⇡(x�y)
L

C�E 0 � = eix
2⇡
L

x 2 R+ x2

2 +
�2� 1

4
2x2

�(��2)
4

h
1

(x�y)2
+ 1

(x+y)2

i
WL�E �

2�� � log � � = 2
�x

2

x2 [0,⇡] 1
8

✓
�2
1�

1
4

sin2 x
2
+

�2
2�

1
4

cos2 x
2

◆
�(��2)

16

✓
1

sin2 x�y
2

+ 1

sin2 x+y
2

◆
J�E log 1

��1 (1��)�2 � = 1�cos x
2

Table 1: The mappings between (i) models of interacting trapped fermions studied here and
(ii) the standard random matrix ensembles. The variable x denotes the positions of the
fermions, � the eigenvalues of the RMT ensemble, and the mapping �(x) is displayed in the
last column. The first three columns denote respectively the domain for the fermions, the
external potential V (x), and their interaction W (x, y), defined in (3). Note that in the second
line periodic boundary conditions are to be understood for the fermionic system. The next
two columns indicate the RMT ensemble and the matrix potential V0(�), see Eq. (6). Here �
is the Dyson index which varies continuously and corresponds to noninteracting fermions for
� = 2.

1.2 Models and mappings

Let us now describe the class of models which we study in this paper. In this section we focus
on models related to RMT, while further extensions will be discussed below. Here we consider
N spinless fermions trapped in an external potential V (x) and with two-body interactions
parameterized by a symmetric function W (x, y) = W (y, x). The Hamiltonian is of the general
form (we use units such that m = ~ = 1)

HN =
NX

i=1


p2i
2

+ V (xi)

�
+
X

i<j

W (xi, xj) . (4)

In this paper we study specific choices for V (x) and W (x, y) such that the joint PDF of the
positions of the fermions in the ground state can be written in the form

| 0(~x)|
2 = e�U(~x) , U(~x) =

X

i

v(xi) +
X

i<j

w(xi, xj) (5)

with w a symmetric function w(x, y) = w(y, x). One example of such models corresponds to

Eqs. (3), with V (x) = x2

2 and W (x, y) = �(��2)
4(x�y)2 , and (1), with v(x) = x2 and w(x, y) =

�� log |x � y|. This is one instance of a more general class of fermion models that can be
mapped onto a random matrix ensemble (in that case G�E).

Let us briefly review the ensembles of interest. We denote �i, i = 1, . . . , N the eigenvalues
of a random matrix in an ensemble such that the joint PDF can be written as

P (~�) =
e�F (~�)

ZN
, F (~�) =

NX

i=1

V0(�i)� �
X

i<j

log |�i � �j | (6)

5

SciPost Physics Submission

Fermions’
domain

Fermion poten-
tial V (x)

Fermion interaction
W (x, y)

RMT en-
semble

Matrix po-
tential V0(�)

Map �(x)

x 2 R x2/2 �(��2)
4(x�y)2

G�E ��2/2 � =
q

2
�x

x2 [0, L] 0
� 2⇡

L

�2 �(��2)

16 sin2 ⇡(x�y)
L

C�E 0 � = eix
2⇡
L

x 2 R+ x2

2 +
�2� 1

4
2x2

�(��2)
4

h
1

(x�y)2
+ 1

(x+y)2

i
WL�E �

2�� � log � � = 2
�x

2

x2 [0,⇡] 1
8

✓
�2
1�

1
4

sin2 x
2
+

�2
2�

1
4

cos2 x
2

◆
�(��2)

16

✓
1

sin2 x�y
2

+ 1

sin2 x+y
2

◆
J�E log 1

��1 (1��)�2 � = 1�cos x
2

Table 1: The mappings between (i) models of interacting trapped fermions studied here and
(ii) the standard random matrix ensembles. The variable x denotes the positions of the
fermions, � the eigenvalues of the RMT ensemble, and the mapping �(x) is displayed in the
last column. The first three columns denote respectively the domain for the fermions, the
external potential V (x), and their interaction W (x, y), defined in (3). Note that in the second
line periodic boundary conditions are to be understood for the fermionic system. The next
two columns indicate the RMT ensemble and the matrix potential V0(�), see Eq. (6). Here �
is the Dyson index which varies continuously and corresponds to noninteracting fermions for
� = 2.

1.2 Models and mappings

Let us now describe the class of models which we study in this paper. In this section we focus
on models related to RMT, while further extensions will be discussed below. Here we consider
N spinless fermions trapped in an external potential V (x) and with two-body interactions
parameterized by a symmetric function W (x, y) = W (y, x). The Hamiltonian is of the general
form (we use units such that m = ~ = 1)

HN =
NX

i=1


p2i
2

+ V (xi)

�
+
X

i<j

W (xi, xj) . (4)

In this paper we study specific choices for V (x) and W (x, y) such that the joint PDF of the
positions of the fermions in the ground state can be written in the form

| 0(~x)|
2 = e�U(~x) , U(~x) =

X

i

v(xi) +
X

i<j

w(xi, xj) (5)

with w a symmetric function w(x, y) = w(y, x). One example of such models corresponds to

Eqs. (3), with V (x) = x2

2 and W (x, y) = �(��2)
4(x�y)2 , and (1), with v(x) = x2 and w(x, y) =

�� log |x � y|. This is one instance of a more general class of fermion models that can be
mapped onto a random matrix ensemble (in that case G�E).

Let us briefly review the ensembles of interest. We denote �i, i = 1, . . . , N the eigenvalues
of a random matrix in an ensemble such that the joint PDF can be written as

P (~�) =
e�F (~�)

ZN
, F (~�) =

NX

i=1

V0(�i)� �
X

i<j

log |�i � �j | (6)

5

SciPost Physics Submission

Fermions’
domain

Fermion poten-
tial V (x)

Fermion interaction
W (x, y)

RMT en-
semble

Matrix po-
tential V0(�)

Map �(x)

x 2 R x2/2 �(��2)
4(x�y)2

G�E ��2/2 � =
q

2
�x

x2 [0, L] 0
� 2⇡

L

�2 �(��2)

16 sin2 ⇡(x�y)
L

C�E 0 � = eix
2⇡
L

x 2 R+ x2

2 +
�2� 1

4
2x2

�(��2)
4

h
1

(x�y)2
+ 1

(x+y)2

i
WL�E �

2�� � log � � = 2
�x

2

x2 [0,⇡] 1
8

✓
�2
1�

1
4

sin2 x
2
+

�2
2�

1
4

cos2 x
2

◆
�(��2)

16

✓
1

sin2 x�y
2

+ 1

sin2 x+y
2

◆
J�E log 1

��1 (1��)�2 � = 1�cos x
2

Table 1: The mappings between (i) models of interacting trapped fermions studied here and
(ii) the standard random matrix ensembles. The variable x denotes the positions of the
fermions, � the eigenvalues of the RMT ensemble, and the mapping �(x) is displayed in the
last column. The first three columns denote respectively the domain for the fermions, the
external potential V (x), and their interaction W (x, y), defined in (3). Note that in the second
line periodic boundary conditions are to be understood for the fermionic system. The next
two columns indicate the RMT ensemble and the matrix potential V0(�), see Eq. (6). Here �
is the Dyson index which varies continuously and corresponds to noninteracting fermions for
� = 2.

1.2 Models and mappings

Let us now describe the class of models which we study in this paper. In this section we focus
on models related to RMT, while further extensions will be discussed below. Here we consider
N spinless fermions trapped in an external potential V (x) and with two-body interactions
parameterized by a symmetric function W (x, y) = W (y, x). The Hamiltonian is of the general
form (we use units such that m = ~ = 1)

HN =
NX

i=1


p2i
2

+ V (xi)

�
+

X

i<j

W (xi, xj) . (4)

In this paper we study specific choices for V (x) and W (x, y) such that the joint PDF of the
positions of the fermions in the ground state can be written in the form

| 0(~x)|
2 = e�U(~x) , U(~x) =

X

i

v(xi) +
X

i<j

w(xi, xj) (5)

with w a symmetric function w(x, y) = w(y, x). One example of such models corresponds to

Eqs. (3), with V (x) = x2

2 and W (x, y) = �(��2)
4(x�y)2 , and (1), with v(x) = x2 and w(x, y) =

�� log |x � y|. This is one instance of a more general class of fermion models that can be
mapped onto a random matrix ensemble (in that case G�E).

Let us briefly review the ensembles of interest. We denote �i, i = 1, . . . , N the eigenvalues
of a random matrix in an ensemble such that the joint PDF can be written as

P (~�) =
e�F (~�)

ZN
, F (~�) =

NX

i=1

V0(�i)� �
X

i<j

log |�i � �j | (6)

5

larger class: can be mapped to RMT ensemble  

SciPost Physics Submission

where ~� = {�i}i=1,...,N and ZN is a normalisation constant. Here � is the Dyson index and
V0 the matrix potential (not to be confused with the fermion potential V ). For instance the
Gaussian-beta ensemble (G�E) corresponds to the case where the eigenvalues are on the real
axis, �i 2 R, with V0(�) =

�
2�

2. It contains the Gaussian unitary, orthogonal and symplectic
ensemble for � = 2, 1, 4 respectively. The circular-beta ensemble (C�E) corresponds to the
case where the eigenvalues are on the unit circle in the complex plane, with V0(�) = 0, and
includes the circular unitary ensemble (CUE) for � = 2. The Wishart-Laguerre-beta ensemble
(WL�E) corresponds to �i 2 R+ and V0(�) =

�
2�� � log �. The Jacobi-beta ensemble (J�E)

corresponds to �i 2 [0, 1] and V0(�) = ��1 log �� �2 log(1� �). In all these cases and for any
�, ZN has an explicit expression as a Selberg integral [68], and the ensembles can be mapped
onto certain tridiagonal matrices [69]. These ensembles are recapitulated in the Table 1.

The general idea behind the mapping between fermions and RMT is that, upon some
map which we denote �(x), i.e., �i = �(xi), one can identify the joint PDF (6) with the
quantum joint PDF (5) corresponding to the many-body ground state of the fermion system
with Hamiltonian (4). Taking into account the Jacobian of the map, the correspondence reads

v(x) = V0(�(x))� log |�0(x)| (7)

w(x, x0) = �� log |�(x)� �(x0)| . (8)

The simplest case is the mapping �(x) =
q

2
� x from the G�E to the fermions on the real

axis described by the model (3). For the C�E ensemble the map is �(x) = eix
2⇡
L , where

the fermions live on the periodic ring, xj 2 [0, L]. In that case it maps onto the Sutherland
model, without any external potential V (x) = 0, see second line of the Table 1. For the
WL�E ensemble the map is �(x) = 2

�x
2 and the fermions live on R+, xi > 0, with potential

sum of harmonic and 1/x2 wall, and 1/x2 type interactions as given in the third line of the
Table 1. Finally for the J�E ensemble the map is �(x) = 1

2(1 � cosx) and the fermions live
in a box xi 2 [0,⇡] with potential and interactions given in the fourth line of the Table 1. For
�1 = �2 = 1/2 the potential is a hard box with Dirichlet boundary conditions. For � = 2 the
fermions are noninteracting in all four cases, and their positions xi in the ground state form
a determinantal point process. Note that the above mappings are valid for any N .

To summarize, our main strategy behind the mapping between the ground state of trapped
fermions with two-body interactionsW and the joint distribution of the eigenvalues of a matrix
model consists of the following three steps.

• We consider the Hamiltonian HN in (4) which has only one and two-body potentials, V
and W respectively. We then write the many-body ground state wave function in any
given ordered sector, e.g. x1 < · · · < xN , as  0(~x) ⇠ e�U(~x)/2, where U(~x) is of the
form (5) consisting only of one-body and two-body terms.

• We next substitute this wave function  0(~x) ⇠ e�U(~x)/2 in the Schrödinger equation
HN 0 = E0 0 (in an ordered sector). The main condition is that this equation is
satisfied for some value of the ground state energy E0, i.e., that no three-body interaction
is generated upon applying the kinetic operator. This condition selects some special
families of potentials V and interactions W . In the absence of potential this approach
dates back to Sutherland and Calogero [66, 67]. This is a standard although tedious
calculation, recalled in Appendix A, allowing also to determine E0 for each model. The
fact that  0 is indeed the ground state is ensured by the additional condition that  0(~x)
vanishes only at xi = xj for i 6= j, but not elsewhere [64], see also [63, 71].
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Table 1: The mappings between (i) models of interacting trapped fermions studied here and
(ii) the standard random matrix ensembles. The variable x denotes the positions of the
fermions, � the eigenvalues of the RMT ensemble, and the mapping �(x) is displayed in the
last column. The first three columns denote respectively the domain for the fermions, the
external potential V (x), and their interaction W (x, y), defined in (3). Note that in the second
line periodic boundary conditions are to be understood for the fermionic system. The next
two columns indicate the RMT ensemble and the matrix potential V0(�), see Eq. (6). Here �
is the Dyson index which varies continuously and corresponds to noninteracting fermions for
� = 2.

1.2 Models and mappings

Let us now describe the class of models which we study in this paper. In this section we focus
on models related to RMT, while further extensions will be discussed below. Here we consider
N spinless fermions trapped in an external potential V (x) and with two-body interactions
parameterized by a symmetric function W (x, y) = W (y, x). The Hamiltonian is of the general
form (we use units such that m = ~ = 1)

HN =
NX

i=1


p2i
2

+ V (xi)

�
+
X

i<j

W (xi, xj) . (4)

In this paper we study specific choices for V (x) and W (x, y) such that the joint PDF of the
positions of the fermions in the ground state can be written in the form

| 0(~x)|
2 = e�U(~x) , U(~x) =

X

i

v(xi) +
X

i<j

w(xi, xj) (5)

with w a symmetric function w(x, y) = w(y, x). One example of such models corresponds to

Eqs. (3), with V (x) = x2

2 and W (x, y) = �(��2)
4(x�y)2 , and (1), with v(x) = x2 and w(x, y) =

�� log |x � y|. This is one instance of a more general class of fermion models that can be
mapped onto a random matrix ensemble (in that case G�E).

Let us briefly review the ensembles of interest. We denote �i, i = 1, . . . , N the eigenvalues
of a random matrix in an ensemble such that the joint PDF can be written as

P (~�) =
e�F (~�)

ZN
, F (~�) =

NX

i=1

V0(�i)� �
X

i<j

log |�i � �j | (6)
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where ~� = {�i}i=1,...,N and ZN is a normalisation constant. Here � is the Dyson index and
V0 the matrix potential (not to be confused with the fermion potential V ). For instance the
Gaussian-beta ensemble (G�E) corresponds to the case where the eigenvalues are on the real
axis, �i 2 R, with V0(�) =

�
2�

2. It contains the Gaussian unitary, orthogonal and symplectic
ensemble for � = 2, 1, 4 respectively. The circular-beta ensemble (C�E) corresponds to the
case where the eigenvalues are on the unit circle in the complex plane, with V0(�) = 0, and
includes the circular unitary ensemble (CUE) for � = 2. The Wishart-Laguerre-beta ensemble
(WL�E) corresponds to �i 2 R+ and V0(�) =

�
2�� � log �. The Jacobi-beta ensemble (J�E)

corresponds to �i 2 [0, 1] and V0(�) = ��1 log �� �2 log(1� �). In all these cases and for any
�, ZN has an explicit expression as a Selberg integral [68], and the ensembles can be mapped
onto certain tridiagonal matrices [69]. These ensembles are recapitulated in the Table 1.

The general idea behind the mapping between fermions and RMT is that, upon some
map which we denote �(x), i.e., �i = �(xi), one can identify the joint PDF (6) with the
quantum joint PDF (5) corresponding to the many-body ground state of the fermion system
with Hamiltonian (4). Taking into account the Jacobian of the map, the correspondence reads

v(x) = V0(�(x))� log |�0(x)| (7)

w(x, x0) = �� log |�(x)� �(x0)| . (8)

The simplest case is the mapping �(x) =
q

2
� x from the G�E to the fermions on the real

axis described by the model (3). For the C�E ensemble the map is �(x) = eix
2⇡
L , where

the fermions live on the periodic ring, xj 2 [0, L]. In that case it maps onto the Sutherland
model, without any external potential V (x) = 0, see second line of the Table 1. For the
WL�E ensemble the map is �(x) = 2

�x
2 and the fermions live on R+, xi > 0, with potential

sum of harmonic and 1/x2 wall, and 1/x2 type interactions as given in the third line of the
Table 1. Finally for the J�E ensemble the map is �(x) = 1

2(1 � cosx) and the fermions live
in a box xi 2 [0,⇡] with potential and interactions given in the fourth line of the Table 1. For
�1 = �2 = 1/2 the potential is a hard box with Dirichlet boundary conditions. For � = 2 the
fermions are noninteracting in all four cases, and their positions xi in the ground state form
a determinantal point process. Note that the above mappings are valid for any N .

To summarize, our main strategy behind the mapping between the ground state of trapped
fermions with two-body interactionsW and the joint distribution of the eigenvalues of a matrix
model consists of the following three steps.

• We consider the Hamiltonian HN in (4) which has only one and two-body potentials, V
and W respectively. We then write the many-body ground state wave function in any
given ordered sector, e.g. x1 < · · · < xN , as  0(~x) ⇠ e�U(~x)/2, where U(~x) is of the
form (5) consisting only of one-body and two-body terms.

• We next substitute this wave function  0(~x) ⇠ e�U(~x)/2 in the Schrödinger equation
HN 0 = E0 0 (in an ordered sector). The main condition is that this equation is
satisfied for some value of the ground state energy E0, i.e., that no three-body interaction
is generated upon applying the kinetic operator. This condition selects some special
families of potentials V and interactions W . In the absence of potential this approach
dates back to Sutherland and Calogero [66, 67]. This is a standard although tedious
calculation, recalled in Appendix A, allowing also to determine E0 for each model. The
fact that  0 is indeed the ground state is ensured by the additional condition that  0(~x)
vanishes only at xi = xj for i 6= j, but not elsewhere [64], see also [63, 71].
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Table 1: The mappings between (i) models of interacting trapped fermions studied here and
(ii) the standard random matrix ensembles. The variable x denotes the positions of the
fermions, � the eigenvalues of the RMT ensemble, and the mapping �(x) is displayed in the
last column. The first three columns denote respectively the domain for the fermions, the
external potential V (x), and their interaction W (x, y), defined in (3). Note that in the second
line periodic boundary conditions are to be understood for the fermionic system. The next
two columns indicate the RMT ensemble and the matrix potential V0(�), see Eq. (6). Here �
is the Dyson index which varies continuously and corresponds to noninteracting fermions for
� = 2.
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| 0(~x)|
2 = e�U(~x) , U(~x) =

X

i

v(xi) +
X

i<j

w(xi, xj) (5)

with w a symmetric function w(x, y) = w(y, x). One example of such models corresponds to

Eqs. (3), with V (x) = x2

2 and W (x, y) = �(��2)
4(x�y)2 , and (1), with v(x) = x2 and w(x, y) =

�� log |x � y|. This is one instance of a more general class of fermion models that can be
mapped onto a random matrix ensemble (in that case G�E).

Let us briefly review the ensembles of interest. We denote �i, i = 1, . . . , N the eigenvalues
of a random matrix in an ensemble such that the joint PDF can be written as

P (~�) =
e�F (~�)

ZN
, F (~�) =

NX

i=1

V0(�i)� �
X

i<j

log |�i � �j | (6)
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+
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Table 1: The mappings between (i) models of interacting trapped fermions studied here and
(ii) the standard random matrix ensembles. The variable x denotes the positions of the
fermions, � the eigenvalues of the RMT ensemble, and the mapping �(x) is displayed in the
last column. The first three columns denote respectively the domain for the fermions, the
external potential V (x), and their interaction W (x, y), defined in (3). Note that in the second
line periodic boundary conditions are to be understood for the fermionic system. The next
two columns indicate the RMT ensemble and the matrix potential V0(�), see Eq. (6). Here �
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
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with w a symmetric function w(x, y) = w(y, x). One example of such models corresponds to

Eqs. (3), with V (x) = x2

2 and W (x, y) = �(��2)
4(x�y)2 , and (1), with v(x) = x2 and w(x, y) =

�� log |x � y|. This is one instance of a more general class of fermion models that can be
mapped onto a random matrix ensemble (in that case G�E).

Let us briefly review the ensembles of interest. We denote �i, i = 1, . . . , N the eigenvalues
of a random matrix in an ensemble such that the joint PDF can be written as

P (~�) =
e�F (~�)

ZN
, F (~�) =

NX
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V0(�i)� �
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log |�i � �j | (6)
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where ~� = {�i}i=1,...,N and ZN is a normalisation constant. Here � is the Dyson index and
V0 the matrix potential (not to be confused with the fermion potential V ). For instance the
Gaussian-beta ensemble (G�E) corresponds to the case where the eigenvalues are on the real
axis, �i 2 R, with V0(�) =

�
2�

2. It contains the Gaussian unitary, orthogonal and symplectic
ensemble for � = 2, 1, 4 respectively. The circular-beta ensemble (C�E) corresponds to the
case where the eigenvalues are on the unit circle in the complex plane, with V0(�) = 0, and
includes the circular unitary ensemble (CUE) for � = 2. The Wishart-Laguerre-beta ensemble
(WL�E) corresponds to �i 2 R+ and V0(�) =

�
2�� � log �. The Jacobi-beta ensemble (J�E)

corresponds to �i 2 [0, 1] and V0(�) = ��1 log �� �2 log(1� �). In all these cases and for any
�, ZN has an explicit expression as a Selberg integral [68], and the ensembles can be mapped
onto certain tridiagonal matrices [69]. These ensembles are recapitulated in the Table 1.

The general idea behind the mapping between fermions and RMT is that, upon some
map which we denote �(x), i.e., �i = �(xi), one can identify the joint PDF (6) with the
quantum joint PDF (5) corresponding to the many-body ground state of the fermion system
with Hamiltonian (4). Taking into account the Jacobian of the map, the correspondence reads

v(x) = V0(�(x))� log |�0(x)| (7)

w(x, x0) = �� log |�(x)� �(x0)| . (8)

The simplest case is the mapping �(x) =
q

2
� x from the G�E to the fermions on the real

axis described by the model (3). For the C�E ensemble the map is �(x) = eix
2⇡
L , where

the fermions live on the periodic ring, xj 2 [0, L]. In that case it maps onto the Sutherland
model, without any external potential V (x) = 0, see second line of the Table 1. For the
WL�E ensemble the map is �(x) = 2

�x
2 and the fermions live on R+, xi > 0, with potential

sum of harmonic and 1/x2 wall, and 1/x2 type interactions as given in the third line of the
Table 1. Finally for the J�E ensemble the map is �(x) = 1

2(1 � cosx) and the fermions live
in a box xi 2 [0,⇡] with potential and interactions given in the fourth line of the Table 1. For
�1 = �2 = 1/2 the potential is a hard box with Dirichlet boundary conditions. For � = 2 the
fermions are noninteracting in all four cases, and their positions xi in the ground state form
a determinantal point process. Note that the above mappings are valid for any N .

To summarize, our main strategy behind the mapping between the ground state of trapped
fermions with two-body interactionsW and the joint distribution of the eigenvalues of a matrix
model consists of the following three steps.

• We consider the Hamiltonian HN in (4) which has only one and two-body potentials, V
and W respectively. We then write the many-body ground state wave function in any
given ordered sector, e.g. x1 < · · · < xN , as  0(~x) ⇠ e�U(~x)/2, where U(~x) is of the
form (5) consisting only of one-body and two-body terms.

• We next substitute this wave function  0(~x) ⇠ e�U(~x)/2 in the Schrödinger equation
HN 0 = E0 0 (in an ordered sector). The main condition is that this equation is
satisfied for some value of the ground state energy E0, i.e., that no three-body interaction
is generated upon applying the kinetic operator. This condition selects some special
families of potentials V and interactions W . In the absence of potential this approach
dates back to Sutherland and Calogero [66, 67]. This is a standard although tedious
calculation, recalled in Appendix A, allowing also to determine E0 for each model. The
fact that  0 is indeed the ground state is ensured by the additional condition that  0(~x)
vanishes only at xi = xj for i 6= j, but not elsewhere [64], see also [63, 71].
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• Finally, we identify the quantum probability, given by | 0(~x)|2, as the joint PDF of the
eigenvalues �1, . . . ,�N of a random matrix, under a map �i = �(xi), and we show how
to construct this map explicitly for several examples. This last step allows us to identify
new connections between interacting (and noninteracting) fermions and random matrix
models, see e.g. Section 6.

Mean density. The simplest observable to compute is the average density ⇢(x) of the
fermions

⇢(x) =

*
NX

i=1

� (x� xi)

+
, (9)

where h. . . i denotes expectation values with respect to the ground state. In particular one
can ask how the interactions modify this density as compared to the noninteracting case
W = 0. In the large N limit and in the absence of interactions, the density in the bulk reads
⇢(x) ' 1

⇡

p
2(µ� V (x))+ as given by LDA or semi-classical methods (we denote everywhere

(x)+ = max(x, 0)). Note that the LDA works only for noninteracting fermions and in the
bulk [34]. Here µ denotes the Fermi energy which is determined by the normalization conditionR
dx⇢(x) = N (e.g., µ ' N for the harmonic oscillator (HO) considered above). Note that for

some integrable systems, the LDA may be improved as in Ref. [108] to include interactions.
We will not explore this route here.

For the models in Table 1, the noninteracting case corresponds to � = 2. To obtain the
density for arbitrary � one can interpret the PDF (5), or equivalently (6), as the Boltzmann
distribution for a gas of classical particles at unit temperature, with energy U(~x), or equiv-
alently F (~�). Using (7) and (8), in both cases, the interaction between these particles is
logarithmic which corresponds to the 2d Coulomb interaction. In the large N limit and in
the presence of a confining potential, the equilibrium density is obtained by minimizing the
corresponding energy. This Coulomb gas (CG) method has been widely used in the context

of RMT. Rewriting (6) as F (~�) = �
2

hPN
i=1

2V0(�i)
� � 2

P
i<j log |�i � �j |

i
, one immediately

sees that the Coulomb gas result for a general � coincides with that of a gas with � = 2 and
a matrix potential 2V0 (�) /�. Using the known results for the average eigenvalue density,
defined as �(�) = 1

N

P
ih�(�� �i)i, we can write, respectively for the G�E and WL�E

�(�) =
1

p
N

�W

✓
�

p
N

◆
, �W(z) =

q
(2� z2)+

⇡
(10)

�(�) =
1

N
�MP

✓
�

N

◆
, �MP(z) =

1

2⇡

s✓
4� z

z

◆

+

. (11)

The subscripts ‘W’ and ‘MP’ stand for Wigner (semi-circle) and Marcenko-Pastur, respec-
tively. Using the mapping to the fermions with

⇢(x) = N�0(x)�(�(x)) (12)

and �(x) =
q

2
�x and �(x) = 2

�x
2 for the G�E and WL�E respectively, we obtain the fermion

density for the models in the first and third line of the Table 1 as

⇢(x) '
2

⇡�

p
(N� � x2)+ , V (x) =

x2

2
(13)

⇢(x) '
2 ✓(x)

⇡�

p
(2N� � x2)+ , V (x) =

x2

2
+

�2 � 1
4

2x2
,
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• Finally, we identify the quantum probability, given by | 0(~x)|2, as the joint PDF of the
eigenvalues �1, . . . ,�N of a random matrix, under a map �i = �(xi), and we show how
to construct this map explicitly for several examples. This last step allows us to identify
new connections between interacting (and noninteracting) fermions and random matrix
models, see e.g. Section 6.

Mean density. The simplest observable to compute is the average density ⇢(x) of the
fermions

⇢(x) =

*
NX

i=1

� (x� xi)

+
, (9)

where h. . . i denotes expectation values with respect to the ground state. In particular one
can ask how the interactions modify this density as compared to the noninteracting case
W = 0. In the large N limit and in the absence of interactions, the density in the bulk reads
⇢(x) ' 1

⇡

p
2(µ� V (x))+ as given by LDA or semi-classical methods (we denote everywhere

(x)+ = max(x, 0)). Note that the LDA works only for noninteracting fermions and in the
bulk [34]. Here µ denotes the Fermi energy which is determined by the normalization conditionR
dx⇢(x) = N (e.g., µ ' N for the harmonic oscillator (HO) considered above). Note that for

some integrable systems, the LDA may be improved as in Ref. [108] to include interactions.
We will not explore this route here.

For the models in Table 1, the noninteracting case corresponds to � = 2. To obtain the
density for arbitrary � one can interpret the PDF (5), or equivalently (6), as the Boltzmann
distribution for a gas of classical particles at unit temperature, with energy U(~x), or equiv-
alently F (~�). Using (7) and (8), in both cases, the interaction between these particles is
logarithmic which corresponds to the 2d Coulomb interaction. In the large N limit and in
the presence of a confining potential, the equilibrium density is obtained by minimizing the
corresponding energy. This Coulomb gas (CG) method has been widely used in the context

of RMT. Rewriting (6) as F (~�) = �
2

hPN
i=1

2V0(�i)
� � 2

P
i<j log |�i � �j |

i
, one immediately

sees that the Coulomb gas result for a general � coincides with that of a gas with � = 2 and
a matrix potential 2V0 (�) /�. Using the known results for the average eigenvalue density,
defined as �(�) = 1

N

P
ih�(�� �i)i, we can write, respectively for the G�E and WL�E

�(�) =
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The subscripts ‘W’ and ‘MP’ stand for Wigner (semi-circle) and Marcenko-Pastur, respec-
tively. Using the mapping to the fermions with

⇢(x) = N�0(x)�(�(x)) (12)

and �(x) =
q

2
�x and �(x) = 2

�x
2 for the G�E and WL�E respectively, we obtain the fermion

density for the models in the first and third line of the Table 1 as
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(13)

⇢(x) '
2 ✓(x)

⇡�

p
(2N� � x2)+ , V (x) =

x2

2
+

�2 � 1
4

2x2
,

7

SciPost Physics Submission

• Finally, we identify the quantum probability, given by | 0(~x)|2, as the joint PDF of the
eigenvalues �1, . . . ,�N of a random matrix, under a map �i = �(xi), and we show how
to construct this map explicitly for several examples. This last step allows us to identify
new connections between interacting (and noninteracting) fermions and random matrix
models, see e.g. Section 6.

Mean density. The simplest observable to compute is the average density ⇢(x) of the
fermions

⇢(x) =

*
NX

i=1

� (x� xi)

+
, (9)

where h. . . i denotes expectation values with respect to the ground state. In particular one
can ask how the interactions modify this density as compared to the noninteracting case
W = 0. In the large N limit and in the absence of interactions, the density in the bulk reads
⇢(x) ' 1

⇡

p
2(µ� V (x))+ as given by LDA or semi-classical methods (we denote everywhere

(x)+ = max(x, 0)). Note that the LDA works only for noninteracting fermions and in the
bulk [34]. Here µ denotes the Fermi energy which is determined by the normalization conditionR
dx⇢(x) = N (e.g., µ ' N for the harmonic oscillator (HO) considered above). Note that for

some integrable systems, the LDA may be improved as in Ref. [108] to include interactions.
We will not explore this route here.

For the models in Table 1, the noninteracting case corresponds to � = 2. To obtain the
density for arbitrary � one can interpret the PDF (5), or equivalently (6), as the Boltzmann
distribution for a gas of classical particles at unit temperature, with energy U(~x), or equiv-
alently F (~�). Using (7) and (8), in both cases, the interaction between these particles is
logarithmic which corresponds to the 2d Coulomb interaction. In the large N limit and in
the presence of a confining potential, the equilibrium density is obtained by minimizing the
corresponding energy. This Coulomb gas (CG) method has been widely used in the context

of RMT. Rewriting (6) as F (~�) = �
2

hPN
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2V0(�i)
� � 2

P
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, one immediately

sees that the Coulomb gas result for a general � coincides with that of a gas with � = 2 and
a matrix potential 2V0 (�) /�. Using the known results for the average eigenvalue density,
defined as �(�) = 1
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• Finally, we identify the quantum probability, given by | 0(~x)|2, as the joint PDF of the
eigenvalues �1, . . . ,�N of a random matrix, under a map �i = �(xi), and we show how
to construct this map explicitly for several examples. This last step allows us to identify
new connections between interacting (and noninteracting) fermions and random matrix
models, see e.g. Section 6.

Mean density. The simplest observable to compute is the average density ⇢(x) of the
fermions

⇢(x) =

*
NX

i=1

� (x� xi)

+
, (9)

where h. . . i denotes expectation values with respect to the ground state. In particular one
can ask how the interactions modify this density as compared to the noninteracting case
W = 0. In the large N limit and in the absence of interactions, the density in the bulk reads
⇢(x) ' 1

⇡

p
2(µ� V (x))+ as given by LDA or semi-classical methods (we denote everywhere

(x)+ = max(x, 0)). Note that the LDA works only for noninteracting fermions and in the
bulk [34]. Here µ denotes the Fermi energy which is determined by the normalization conditionR
dx⇢(x) = N (e.g., µ ' N for the harmonic oscillator (HO) considered above). Note that for

some integrable systems, the LDA may be improved as in Ref. [108] to include interactions.
We will not explore this route here.

For the models in Table 1, the noninteracting case corresponds to � = 2. To obtain the
density for arbitrary � one can interpret the PDF (5), or equivalently (6), as the Boltzmann
distribution for a gas of classical particles at unit temperature, with energy U(~x), or equiv-
alently F (~�). Using (7) and (8), in both cases, the interaction between these particles is
logarithmic which corresponds to the 2d Coulomb interaction. In the large N limit and in
the presence of a confining potential, the equilibrium density is obtained by minimizing the
corresponding energy. This Coulomb gas (CG) method has been widely used in the context

of RMT. Rewriting (6) as F (~�) = �
2

hPN
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2V0(�i)
� � 2
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, one immediately

sees that the Coulomb gas result for a general � coincides with that of a gas with � = 2 and
a matrix potential 2V0 (�) /�. Using the known results for the average eigenvalue density,
defined as �(�) = 1
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Figure 3: Variance of the number of particles in the interval [0, a] (or equivalently, [a,1)) for
the model in the third line of Table 1 associated to the WL�E with � = 2, and � = 1 (a)
and � = 2 (b). The blue markers are the empirical variance computed over 5⇥ 104 simulated
WL�E matrices with N = 100, and the red lines are our theoretical prediction (48).

where

�WL(z; c) =

p
(z � ⇣�)(⇣+ � z)

2⇡z
, ⇣± = (1±

p
1 + c)2 . (44)

The normalization condition reads
R ⇣+
⇣�

dz�WL(z; c) = 1, where the two scaled edges of the

support ⇣± depend on the parameter c. Using the mapping to the fermions, with � = 2
�x

2 we
obtain the fermion density [see (10)] as

⇢(x) '
4x

�
�WL

✓
2x2

�N
;
2�

�N

◆
. (45)

For � = 2, one can check that this result coincides with the prediction from the LDA in the
bulk as expected, i.e.,

⇢(x) '
1

⇡

p
2(µ� V (x)) , (46)

together with the relation between µ and N , which reads µ = 2N+�+ 1
2 ' 2N+� in the large

N limit, with � = O(N) considered here. The prediction (45) allows to obtain the density for
interacting fermions for general � in the potential (42). It is interesting to note in the above
result that the gap in the fermion density near the origin remains non-zero for any value of
the interaction parameter � = O(1). In the limit �/N ! 0 one recovers the result in (13).

One can now use our main conjecture (18) and its analog

�⇡2VarN (�)
[0,a] � c� = 2⇡2VarN (�=2)

[0,a] � c2 + o(1) (47)

for semi-infinite intervals, and the result that we obtained in [49] for the case � = 2, to predict
the variance of the number of fermions in an interval for general � for the potential (42). For
the interval [0, a] with a in the bulk, this leads to

�⇡2VarN[0,a] ' log (8N) + c� + log

0

BBB@
ã

r
1 +

�̃

2

✓
1� ã2

1+ �̃
2

�
�̃2

8ã2(2+�̃)

◆3/2

⇣
1� �̃2

(2+�̃)2

⌘1/2

1

CCCA
, (48)
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Figure 3: Variance of the number of particles in the interval [0, a] (or equivalently, [a,1)) for
the model in the third line of Table 1 associated to the WL�E with � = 2, and � = 1 (a)
and � = 2 (b). The blue markers are the empirical variance computed over 5⇥ 104 simulated
WL�E matrices with N = 100, and the red lines are our theoretical prediction (48).
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together with the relation between µ and N , which reads µ = 2N+�+ 1
2 ' 2N+� in the large

N limit, with � = O(N) considered here. The prediction (45) allows to obtain the density for
interacting fermions for general � in the potential (42). It is interesting to note in the above
result that the gap in the fermion density near the origin remains non-zero for any value of
the interaction parameter � = O(1). In the limit �/N ! 0 one recovers the result in (13).

One can now use our main conjecture (18) and its analog
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[0,a] � c2 + o(1) (47)

for semi-infinite intervals, and the result that we obtained in [49] for the case � = 2, to predict
the variance of the number of fermions in an interval for general � for the potential (42). For
the interval [0, a] with a in the bulk, this leads to
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Figure 3: Variance of the number of particles in the interval [0, a] (or equivalently, [a,1)) for
the model in the third line of Table 1 associated to the WL�E with � = 2, and � = 1 (a)
and � = 2 (b). The blue markers are the empirical variance computed over 5⇥ 104 simulated
WL�E matrices with N = 100, and the red lines are our theoretical prediction (48).
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interacting fermions for general � in the potential (42). It is interesting to note in the above
result that the gap in the fermion density near the origin remains non-zero for any value of
the interaction parameter � = O(1). In the limit �/N ! 0 one recovers the result in (13).

One can now use our main conjecture (18) and its analog
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for semi-infinite intervals, and the result that we obtained in [49] for the case � = 2, to predict
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where �̃ = 2�/(N�) and ã = ap
2�N

(which is the position of the edge at �̃ = 0). The

theoretical prediction (48) is compared with numerical simulations of Wishart matrices in
Fig. 3 with � = 2 and � 2 {1, 2}, with excellent agreement. A formula analogous to (48) for
a general interval [a, b] with a, b in the bulk is given in Appendix D, where we also give some
formula for the Jacobi box potential (line 4 in Table 1) as well as the details of the derivation
of (48).

3 Higher cumulants

We now study the higher cumulants (larger than 2) of the number of fermions in an interval for
the interacting fermion models displayed in Table 1. In our previous work for noninteracting
fermions in [49] we had conjectured, and checked with available rigorous results for several
potentials, that the higher cumulants are determined solely from microscopic scale. Hence
they are independent of the potential in the large N limit. Here we will go one step further
and conjecture that this remains true in the interacting case for general �. Although the
numerical values of these cumulants depend non trivially on �, i.e., on the interaction strength,
they are insensitive to the details of an external smooth potential. Indeed these cumulants
are determined at microscopic scales where the 1/x2 interactions dominate over the local
variations of the potential. Consequently we can conjecture that the higher cumulants are
the same as for fermions on a circle without a potential, i.e for the C�E.

It turns out that the cumulants for the C�E were recently predicted in Ref. [72] in a
di↵erent context. Consider the periodic model in the second line of Table 1 where x is the
coordinate along a circle of perimeter L = 2⇡. The result of [72] gives the FCS generating
function for N[a,b], i.e., the number of fermions with positions xi 2 [a, b] as [89]

log
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up to terms that vanish in the large N limit. Here t is a parameter [90], and for � = 2s/r,
with s, r integers mutually prime
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where G(z) is the Barnes function [91]. This formula is based on yet another conjecture made
in [73] (see formula (3.22)-(3.23) there and [92]).

From (49) expanding on both sides in powers of t one finds that the cumulants hN k
[a,b]i

c of
order k > 2 take the form
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Ec
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where the coe�cients C̃(�)
k are defined for k � 2 as

C̃(�)
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dk

dtk
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where �̃ = 2�/(N�) and ã = ap
2�N

(which is the position of the edge at �̃ = 0). The

theoretical prediction (48) is compared with numerical simulations of Wishart matrices in
Fig. 3 with � = 2 and � 2 {1, 2}, with excellent agreement. A formula analogous to (48) for
a general interval [a, b] with a, b in the bulk is given in Appendix D, where we also give some
formula for the Jacobi box potential (line 4 in Table 1) as well as the details of the derivation
of (48).

3 Higher cumulants

We now study the higher cumulants (larger than 2) of the number of fermions in an interval for
the interacting fermion models displayed in Table 1. In our previous work for noninteracting
fermions in [49] we had conjectured, and checked with available rigorous results for several
potentials, that the higher cumulants are determined solely from microscopic scale. Hence
they are independent of the potential in the large N limit. Here we will go one step further
and conjecture that this remains true in the interacting case for general �. Although the
numerical values of these cumulants depend non trivially on �, i.e., on the interaction strength,
they are insensitive to the details of an external smooth potential. Indeed these cumulants
are determined at microscopic scales where the 1/x2 interactions dominate over the local
variations of the potential. Consequently we can conjecture that the higher cumulants are
the same as for fermions on a circle without a potential, i.e for the C�E.

It turns out that the cumulants for the C�E were recently predicted in Ref. [72] in a
di↵erent context. Consider the periodic model in the second line of Table 1 where x is the
coordinate along a circle of perimeter L = 2⇡. The result of [72] gives the FCS generating
function for N[a,b], i.e., the number of fermions with positions xi 2 [a, b] as [89]
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where G(z) is the Barnes function [91]. This formula is based on yet another conjecture made
in [73] (see formula (3.22)-(3.23) there and [92]).

From (49) expanding on both sides in powers of t one finds that the cumulants hN k
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In fact, going beyond the harmonic potential, our more general prediction for the models
in Table 1 reads at large N and in the bulk [74]

�⇡2

2
VarN (�)

[a,b] � c� = ⇡2VarN (�=2)
[a0,b0] � c2 + o(1) (18)

where a0 = a
p
2/� and b0 = b

p
2/� for the models in line 1 and 3 in the Table 1 and a0 = a

and b0 = b for the other two models (on a circle and in a box). On the right hand side of Eq.

(18), VarN (�=2)
[a,b] is the variance for noninteracting fermions (i.e., for � = 2) in the presence

of a potential V (x) indicated in the Table 1 and given by the general formula (24) (which
takes simpler forms for the models in the Table 1). The constant c� is independent of the
model, and (18) also holds on microscopic scales in the limit of large interval (as in Eq. (2)).
Finally, in Section 2 we also analyze the case of a “semi-infinite” interval, i.e., [a,+1[ for the
G�E, [0, b] for WL�E and J�E, for which we have a similar prediction. One consequence of
our prediction (18) is that in the microscopic limit (|a� b| small compared to the size of the
Fermi gas) one has [75]

VarN[a,b] '
2

�⇡2
[log (kF (a) |b� a|) + c� ] (19)

for kF (a)|b� a| = O(1) � 1.
In Section 3 we study the higher cumulants of N[a,b]. We present the following conjecture

for interacting fermions. Consider an interval [a, b] inside the bulk. For the models displayed

in Table 1 and for any �, the cumulants of N (�)
[a,b] of order 3 and higher are determined solely

from the microscopic scales. This implies that these higher cumulants are identical to those
of the C�E. The cumulants for the C�E have been given in [72], using yet another conjecture
about extended Fisher-Hartwig asymptotics for C�E, formulated in [73]. We will thus use
these formulae and obtain here the full counting statistics for a larger class of interacting
fermion models. These cumulants for general � admit the following series representations
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for arbitrary integer p > 1, while the odd cumulants vanish. For � 2 {1, 2, 4} the explicit
evaluation for the fourth cumulant gives

C̃(�=2)
4 = �12⇣(3) , C̃(�=1)

4 =
⇡4

4
� 24⇣(3) , C̃(�=4)
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4
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where ⇣(z) is the Riemann-zeta function. The conjecture extends naturally to the case of an
interval with only one point in the bulk (i.e., for a “semi-infinite” interval). It is a natural
extension of the conjecture previously formulated in Ref. [49] for noninteracting fermions
� = 2 and recalled in the introduction. One can check that formula (20) reduces to Eq. (23)
in [49] in the case � = 2.

This conjecture can be checked in a few cases, with impressive agreement. For instance in
Section 4 we study the limit from the bulk to the edge for any �. In the case � 2 {1, 2, 4} we
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In fact, going beyond the harmonic potential, our more general prediction for the models
in Table 1 reads at large N and in the bulk [74]

�⇡2

2
VarN (�)

[a,b] � c� = ⇡2VarN (�=2)
[a0,b0] � c2 + o(1) (18)

where a0 = a
p

2/� and b0 = b
p

2/� for the models in line 1 and 3 in the Table 1 and a0 = a
and b0 = b for the other two models (on a circle and in a box). On the right hand side of Eq.

(18), VarN (�=2)
[a,b] is the variance for noninteracting fermions (i.e., for � = 2) in the presence

of a potential V (x) indicated in the Table 1 and given by the general formula (24) (which
takes simpler forms for the models in the Table 1). The constant c� is independent of the
model, and (18) also holds on microscopic scales in the limit of large interval (as in Eq. (2)).
Finally, in Section 2 we also analyze the case of a “semi-infinite” interval, i.e., [a,+1[ for the
G�E, [0, b] for WL�E and J�E, for which we have a similar prediction. One consequence of
our prediction (18) is that in the microscopic limit (|a� b| small compared to the size of the
Fermi gas) one has [75]

VarN[a,b] '
2

�⇡2
[log (kF (a) |b� a|) + c� ] (19)

for kF (a)|b� a| = O(1) � 1.
In Section 3 we study the higher cumulants of N[a,b]. We present the following conjecture

for interacting fermions. Consider an interval [a, b] inside the bulk. For the models displayed

in Table 1 and for any �, the cumulants of N (�)
[a,b] of order 3 and higher are determined solely

from the microscopic scales. This implies that these higher cumulants are identical to those
of the C�E. The cumulants for the C�E have been given in [72], using yet another conjecture
about extended Fisher-Hartwig asymptotics for C�E, formulated in [73]. We will thus use
these formulae and obtain here the full counting statistics for a larger class of interacting
fermion models. These cumulants for general � admit the following series representations
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for arbitrary integer p > 1, while the odd cumulants vanish. For � 2 {1, 2, 4} the explicit
evaluation for the fourth cumulant gives

C̃(�=2)
4 = �12⇣(3) , C̃(�=1)

4 =
⇡4

4
� 24⇣(3) , C̃(�=4)
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4
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where ⇣(z) is the Riemann-zeta function. The conjecture extends naturally to the case of an
interval with only one point in the bulk (i.e., for a “semi-infinite” interval). It is a natural
extension of the conjecture previously formulated in Ref. [49] for noninteracting fermions
� = 2 and recalled in the introduction. One can check that formula (20) reduces to Eq. (23)
in [49] in the case � = 2.

This conjecture can be checked in a few cases, with impressive agreement. For instance in
Section 4 we study the limit from the bulk to the edge for any �. In the case � 2 {1, 2, 4} we
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where �̃ = 2�/(N�) and ã = ap
2�N

(which is the position of the edge at �̃ = 0). The

theoretical prediction (48) is compared with numerical simulations of Wishart matrices in
Fig. 3 with � = 2 and � 2 {1, 2}, with excellent agreement. A formula analogous to (48) for
a general interval [a, b] with a, b in the bulk is given in Appendix D, where we also give some
formula for the Jacobi box potential (line 4 in Table 1) as well as the details of the derivation
of (48).

3 Higher cumulants

We now study the higher cumulants (larger than 2) of the number of fermions in an interval for
the interacting fermion models displayed in Table 1. In our previous work for noninteracting
fermions in [49] we had conjectured, and checked with available rigorous results for several
potentials, that the higher cumulants are determined solely from microscopic scale. Hence
they are independent of the potential in the large N limit. Here we will go one step further
and conjecture that this remains true in the interacting case for general �. Although the
numerical values of these cumulants depend non trivially on �, i.e., on the interaction strength,
they are insensitive to the details of an external smooth potential. Indeed these cumulants
are determined at microscopic scales where the 1/x2 interactions dominate over the local
variations of the potential. Consequently we can conjecture that the higher cumulants are
the same as for fermions on a circle without a potential, i.e for the C�E.

It turns out that the cumulants for the C�E were recently predicted in Ref. [72] in a
di↵erent context. Consider the periodic model in the second line of Table 1 where x is the
coordinate along a circle of perimeter L = 2⇡. The result of [72] gives the FCS generating
function for N[a,b], i.e., the number of fermions with positions xi 2 [a, b] as [89]
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up to terms that vanish in the large N limit. Here t is a parameter [90], and for � = 2s/r,
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where G(z) is the Barnes function [91]. This formula is based on yet another conjecture made
in [73] (see formula (3.22)-(3.23) there and [92]).

From (49) expanding on both sides in powers of t one finds that the cumulants hN k
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In fact, going beyond the harmonic potential, our more general prediction for the models
in Table 1 reads at large N and in the bulk [74]

�⇡2

2
VarN (�)

[a,b] � c� = ⇡2VarN (�=2)
[a0,b0] � c2 + o(1) (18)

where a0 = a
p
2/� and b0 = b

p
2/� for the models in line 1 and 3 in the Table 1 and a0 = a

and b0 = b for the other two models (on a circle and in a box). On the right hand side of Eq.

(18), VarN (�=2)
[a,b] is the variance for noninteracting fermions (i.e., for � = 2) in the presence

of a potential V (x) indicated in the Table 1 and given by the general formula (24) (which
takes simpler forms for the models in the Table 1). The constant c� is independent of the
model, and (18) also holds on microscopic scales in the limit of large interval (as in Eq. (2)).
Finally, in Section 2 we also analyze the case of a “semi-infinite” interval, i.e., [a,+1[ for the
G�E, [0, b] for WL�E and J�E, for which we have a similar prediction. One consequence of
our prediction (18) is that in the microscopic limit (|a� b| small compared to the size of the
Fermi gas) one has [75]

VarN[a,b] '
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�⇡2
[log (kF (a) |b� a|) + c� ] (19)

for kF (a)|b� a| = O(1) � 1.
In Section 3 we study the higher cumulants of N[a,b]. We present the following conjecture

for interacting fermions. Consider an interval [a, b] inside the bulk. For the models displayed

in Table 1 and for any �, the cumulants of N (�)
[a,b] of order 3 and higher are determined solely

from the microscopic scales. This implies that these higher cumulants are identical to those
of the C�E. The cumulants for the C�E have been given in [72], using yet another conjecture
about extended Fisher-Hartwig asymptotics for C�E, formulated in [73]. We will thus use
these formulae and obtain here the full counting statistics for a larger class of interacting
fermion models. These cumulants for general � admit the following series representations
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for arbitrary integer p > 1, while the odd cumulants vanish. For � 2 {1, 2, 4} the explicit
evaluation for the fourth cumulant gives

C̃(�=2)
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4 =
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4
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4 = �24⇣(3)�
⇡4
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where ⇣(z) is the Riemann-zeta function. The conjecture extends naturally to the case of an
interval with only one point in the bulk (i.e., for a “semi-infinite” interval). It is a natural
extension of the conjecture previously formulated in Ref. [49] for noninteracting fermions
� = 2 and recalled in the introduction. One can check that formula (20) reduces to Eq. (23)
in [49] in the case � = 2.

This conjecture can be checked in a few cases, with impressive agreement. For instance in
Section 4 we study the limit from the bulk to the edge for any �. In the case � 2 {1, 2, 4} we
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In fact, going beyond the harmonic potential, our more general prediction for the models
in Table 1 reads at large N and in the bulk [74]

�⇡2

2
VarN (�)

[a,b] � c� = ⇡2VarN (�=2)
[a0,b0] � c2 + o(1) (18)

where a0 = a
p
2/� and b0 = b

p
2/� for the models in line 1 and 3 in the Table 1 and a0 = a

and b0 = b for the other two models (on a circle and in a box). On the right hand side of Eq.

(18), VarN (�=2)
[a,b] is the variance for noninteracting fermions (i.e., for � = 2) in the presence

of a potential V (x) indicated in the Table 1 and given by the general formula (24) (which
takes simpler forms for the models in the Table 1). The constant c� is independent of the
model, and (18) also holds on microscopic scales in the limit of large interval (as in Eq. (2)).
Finally, in Section 2 we also analyze the case of a “semi-infinite” interval, i.e., [a,+1[ for the
G�E, [0, b] for WL�E and J�E, for which we have a similar prediction. One consequence of
our prediction (18) is that in the microscopic limit (|a� b| small compared to the size of the
Fermi gas) one has [75]

VarN[a,b] '
2

�⇡2
[log (kF (a) |b� a|) + c� ] (19)

for kF (a)|b� a| = O(1) � 1.
In Section 3 we study the higher cumulants of N[a,b]. We present the following conjecture

for interacting fermions. Consider an interval [a, b] inside the bulk. For the models displayed

in Table 1 and for any �, the cumulants of N (�)
[a,b] of order 3 and higher are determined solely

from the microscopic scales. This implies that these higher cumulants are identical to those
of the C�E. The cumulants for the C�E have been given in [72], using yet another conjecture
about extended Fisher-Hartwig asymptotics for C�E, formulated in [73]. We will thus use
these formulae and obtain here the full counting statistics for a larger class of interacting
fermion models. These cumulants for general � admit the following series representations

⌧⇣
N

(�)
[a,b]

⌘2p
�c

=
2

(2�⇡2)p
C̃(�)
2p (20)

C̃(�)
2p = (�2)p+1 1

�p

1X

q=1

 (2p�1)

✓
2q

�

◆
, (21)

for arbitrary integer p > 1, while the odd cumulants vanish. For � 2 {1, 2, 4} the explicit
evaluation for the fourth cumulant gives

C̃(�=2)
4 = �12⇣(3) , C̃(�=1)

4 =
⇡4

4
� 24⇣(3) , C̃(�=4)

4 = �24⇣(3)�
⇡4

4
, (22)

where ⇣(z) is the Riemann-zeta function. The conjecture extends naturally to the case of an
interval with only one point in the bulk (i.e., for a “semi-infinite” interval). It is a natural
extension of the conjecture previously formulated in Ref. [49] for noninteracting fermions
� = 2 and recalled in the introduction. One can check that formula (20) reduces to Eq. (23)
in [49] in the case � = 2.

This conjecture can be checked in a few cases, with impressive agreement. For instance in
Section 4 we study the limit from the bulk to the edge for any �. In the case � 2 {1, 2, 4} we
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In fact, going beyond the harmonic potential, our more general prediction for the models
in Table 1 reads at large N and in the bulk [74]

�⇡2

2
VarN (�)

[a,b] � c� = ⇡2VarN (�=2)
[a0,b0] � c2 + o(1) (18)

where a0 = a
p
2/� and b0 = b

p
2/� for the models in line 1 and 3 in the Table 1 and a0 = a

and b0 = b for the other two models (on a circle and in a box). On the right hand side of Eq.

(18), VarN (�=2)
[a,b] is the variance for noninteracting fermions (i.e., for � = 2) in the presence

of a potential V (x) indicated in the Table 1 and given by the general formula (24) (which
takes simpler forms for the models in the Table 1). The constant c� is independent of the
model, and (18) also holds on microscopic scales in the limit of large interval (as in Eq. (2)).
Finally, in Section 2 we also analyze the case of a “semi-infinite” interval, i.e., [a,+1[ for the
G�E, [0, b] for WL�E and J�E, for which we have a similar prediction. One consequence of
our prediction (18) is that in the microscopic limit (|a� b| small compared to the size of the
Fermi gas) one has [75]

VarN[a,b] '
2

�⇡2
[log (kF (a) |b� a|) + c� ] (19)

for kF (a)|b� a| = O(1) � 1.
In Section 3 we study the higher cumulants of N[a,b]. We present the following conjecture

for interacting fermions. Consider an interval [a, b] inside the bulk. For the models displayed

in Table 1 and for any �, the cumulants of N (�)
[a,b] of order 3 and higher are determined solely

from the microscopic scales. This implies that these higher cumulants are identical to those
of the C�E. The cumulants for the C�E have been given in [72], using yet another conjecture
about extended Fisher-Hartwig asymptotics for C�E, formulated in [73]. We will thus use
these formulae and obtain here the full counting statistics for a larger class of interacting
fermion models. These cumulants for general � admit the following series representations

⌧⇣
N

(�)
[a,b]

⌘2p
�c

=
2

(2�⇡2)p
C̃(�)
2p (20)

C̃(�)
2p = (�2)p+1 1

�p

1X

q=1

 (2p�1)

✓
2q

�

◆
, (21)

for arbitrary integer p > 1, while the odd cumulants vanish. For � 2 {1, 2, 4} the explicit
evaluation for the fourth cumulant gives

C̃(�=2)
4 = �12⇣(3) , C̃(�=1)

4 =
⇡4

4
� 24⇣(3) , C̃(�=4)

4 = �24⇣(3)�
⇡4

4
, (22)

where ⇣(z) is the Riemann-zeta function. The conjecture extends naturally to the case of an
interval with only one point in the bulk (i.e., for a “semi-infinite” interval). It is a natural
extension of the conjecture previously formulated in Ref. [49] for noninteracting fermions
� = 2 and recalled in the introduction. One can check that formula (20) reduces to Eq. (23)
in [49] in the case � = 2.

This conjecture can be checked in a few cases, with impressive agreement. For instance in
Section 4 we study the limit from the bulk to the edge for any �. In the case � 2 {1, 2, 4} we
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In fact, going beyond the harmonic potential, our more general prediction for the models
in Table 1 reads at large N and in the bulk [74]

�⇡2

2
VarN (�)

[a,b] � c� = ⇡2VarN (�=2)
[a0,b0] � c2 + o(1) (18)

where a0 = a
p
2/� and b0 = b

p
2/� for the models in line 1 and 3 in the Table 1 and a0 = a

and b0 = b for the other two models (on a circle and in a box). On the right hand side of Eq.

(18), VarN (�=2)
[a,b] is the variance for noninteracting fermions (i.e., for � = 2) in the presence

of a potential V (x) indicated in the Table 1 and given by the general formula (24) (which
takes simpler forms for the models in the Table 1). The constant c� is independent of the
model, and (18) also holds on microscopic scales in the limit of large interval (as in Eq. (2)).
Finally, in Section 2 we also analyze the case of a “semi-infinite” interval, i.e., [a,+1[ for the
G�E, [0, b] for WL�E and J�E, for which we have a similar prediction. One consequence of
our prediction (18) is that in the microscopic limit (|a� b| small compared to the size of the
Fermi gas) one has [75]

VarN[a,b] '
2

�⇡2
[log (kF (a) |b� a|) + c� ] (19)

for kF (a)|b� a| = O(1) � 1.
In Section 3 we study the higher cumulants of N[a,b]. We present the following conjecture

for interacting fermions. Consider an interval [a, b] inside the bulk. For the models displayed

in Table 1 and for any �, the cumulants of N (�)
[a,b] of order 3 and higher are determined solely

from the microscopic scales. This implies that these higher cumulants are identical to those
of the C�E. The cumulants for the C�E have been given in [72], using yet another conjecture
about extended Fisher-Hartwig asymptotics for C�E, formulated in [73]. We will thus use
these formulae and obtain here the full counting statistics for a larger class of interacting
fermion models. These cumulants for general � admit the following series representations

⌧⇣
N

(�)
[a,b]

⌘2p
�c

=
2

(2�⇡2)p
C̃(�)
2p (20)

C̃(�)
2p = (�2)p+1 1

�p

1X

q=1

 (2p�1)

✓
2q

�

◆
, (21)

for arbitrary integer p > 1, while the odd cumulants vanish. For � 2 {1, 2, 4} the explicit
evaluation for the fourth cumulant gives

C̃(�=2)
4 = �12⇣(3) , C̃(�=1)

4 =
⇡4

4
� 24⇣(3) , C̃(�=4)

4 = �24⇣(3)�
⇡4

4
, (22)

where ⇣(z) is the Riemann-zeta function. The conjecture extends naturally to the case of an
interval with only one point in the bulk (i.e., for a “semi-infinite” interval). It is a natural
extension of the conjecture previously formulated in Ref. [49] for noninteracting fermions
� = 2 and recalled in the introduction. One can check that formula (20) reduces to Eq. (23)
in [49] in the case � = 2.

This conjecture can be checked in a few cases, with impressive agreement. For instance in
Section 4 we study the limit from the bulk to the edge for any �. In the case � 2 {1, 2, 4} we
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It is obvious from this formula that C̃(�)
2p+1 = 0 hence all the odd cumulants vanish, i.e.,

hN
2p+1
[a,b] i

c = 0. We thus focus now on the even cumulants. Although the coe�cients C̃(�)
k are

defined here for rational values of �, it is possible to obtain expressions for these coe�cient
for any real �, as an explicitly continuous function of �. This is achieved using the fact that
any real � can be reached by a sequence � = 2sn/rn of arbitrary large sn, rn and performing
an asymptotic analysis (see details in [72]). The result for k = 2p with p � 2 can be written
in terms of the following double series

C̃(�)
2p = (�1)p+1 2 (2p� 1)!

1X

⌫=0

1X

q=1

1
✓
⌫
q

�
2 + q

q
2
�

◆2p . (53)

In addition, one of the sums (either over ⌫ or over q) can be carried out, leading to two
equivalent ”dual” expressions

C̃(�)
2p = (�2)1�p�p

1X

⌫=0

 (2p�1)

✓
1 +

�⌫

2

◆

= (�2)p+1 1

�p

1X

q=1

 (2p�1)

✓
2q

�

◆
(54)

where we recall that  (q)(x) = dq+1

dxq+1 log�(x) is the polygamma function. The above series

are convergent for p � 2, since at large x one has  (2p�1)(z) ' (2p�2)!
z2p�1 . The asymptotics for

small and large � can be obtained from either of the dual series in (54) and can be found
in [72]. For the classical values � 2 {1, 2, 4} these series can be performed explicitly, e.g. see
formula (22) for the fourth cumulant. Note that the formula (53) transforms simply under
the ”duality” � ! 4/�. This duality was studied in [93].

From our conjecture, the formula (51) for the cumulants of the fermion model on the
circle (i.e., the C�E) is thus predicted to hold for all the fermion models in Table 1, with no
modification. Indeed the rescaling of lengths is unimportant here since the values of these
cumulants are independent of the size of the intervals (assumed here to be macroscopic in
the bulk). In the case of a semi-infinite interval, e.g. [a,+1[ for the quadratic potential, the
result is divided by a factor of 2.

We can now return to the question of the O(1) term in the second cumulant (the variance)
as discussed in the previous section. In particular the above predictions based on the C�E
allow to obtain explicitly the universal constant c� which enters in all the formulae for the
variance of the fermion models considered here. Comparing the formula (41) with the O(t2)

term in (49) one finds that the relation (18) holds, together with c� = log 2 + 1
2 C̃

(�)
2 , where

C̃(�)
2 is given in (52). Using the analysis of C̃(�)

2 in [72], the constant c� can be written in
several alternative forms, either as a convergent double series

c� = log 2 + �E +
+1X

⌫=0

2

64
+1X

q=1

�/2
⇣
⌫ �
2 + q

⌘2 �
1

1 + ⌫

3

75 , (55)
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where ✓(x) is the Heavisde function. The positions of the two edges are thus x = x±e ' ±
p
�N

in the first case, while x�e ' 0 and x+e '
p
2�N in the second one. For � = 2 it agrees with

the LDA result, and it shows that the Fermi gas expands for � > 2 and shrinks for � < 2, as
compared to the noninteracting case � = 2, while retaining a semi-circular shape. In the case
of the box, corresponding to the J�E, the density is uniform in the large N limit. Note that
in the large N limit, with � = O(1), the 1/x2 part of the potential in the third and fourth
models in the Table 1 do not a↵ect the bulk density (for a di↵erent scaling see below). They
become important only in the region close to the wall (see below).

1.3 Outline and main results

In this paper we study the statistics of N (�)
I , i.e., the number of fermions in an interval I, for

the models in the Table 1 for any � � 1, and, in a second stage, for a larger class of models.
In parallel to the applications to fermions we also obtain new results in the corresponding
random matrix ensembles, with a slightly larger domain of validity, i.e., for any � > 0.

In Section 2 we study the variance of N (�)
[a,b] for an interval I = [a, b] of macroscopic size

in the bulk for � = 1, 2, 4 in the large N limit, and then propose an extension to any �.
In all these cases the variance grows logarithmically with N for large N , and we obtain the
amplitude of the logarithm together with the O(1) correction term which has a non trivial
dependence on the two edges a, b on macroscopic scales. In the noninteracting case � = 2

there exists a formula, recalled here in Eq. (24) for the variance VarN (�=2)
[a,b] for a general

potential V (x). For the harmonic potential V (x) = x2

2 , which corresponds to G�E, we extend
this formula to � = 1, 2, 4, and it reads

�⇡2

2
VarN[a,b] = logN +

3

4
log

h�
1� ã2

� ⇣
1� b̃2

⌘i

+ log

������
4|ã� b̃|

1� ãb̃+
q

(1� ã2)(1� b̃2)

������
+ c� + o(1) (14)

where ã = a/
p
�N and b̃ = b/

p
�N , |ã| ,

���b̃
��� < 1, where ±

p
�N are the positions of the two

edges, as can be seen in Eq. (13). For � = 1, 2, 4 the constant c� takes the values

c1 = log 2 + �E + 1�
⇡2

8
, c2 = log 2 + �E + 1 , (15)

c4 = 2 log 2 + �E + 1 +
⇡2

8
. (16)

Here we argue that formula (14) extends to the model (3) of interacting fermions with
general � in the harmonic potential. Using related works [72, 73] (see discussion below) we
propose the following expression as a series representation for c�

c� = �E + log � +
1X

q=1


2

�
 (1)

✓
2q

�

◆
�

1

q

�
, (17)

where here and below  (k)(z) = dk+1

dzk+1 log�(z) is the polygamma function. We have checked
numerically the predictions (14), (17) for the variance (see Fig. 4).
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In fact, going beyond the harmonic potential, our more general prediction for the models
in Table 1 reads at large N and in the bulk [74]

�⇡2

2
VarN (�)

[a,b] � c� = ⇡2VarN (�=2)
[a0,b0] � c2 + o(1) (18)

where a0 = a
p

2/� and b0 = b
p

2/� for the models in line 1 and 3 in the Table 1 and a0 = a
and b0 = b for the other two models (on a circle and in a box). On the right hand side of Eq.

(18), VarN (�=2)
[a,b] is the variance for noninteracting fermions (i.e., for � = 2) in the presence

of a potential V (x) indicated in the Table 1 and given by the general formula (24) (which
takes simpler forms for the models in the Table 1). The constant c� is independent of the
model, and (18) also holds on microscopic scales in the limit of large interval (as in Eq. (2)).
Finally, in Section 2 we also analyze the case of a “semi-infinite” interval, i.e., [a,+1[ for the
G�E, [0, b] for WL�E and J�E, for which we have a similar prediction. One consequence of
our prediction (18) is that in the microscopic limit (|a� b| small compared to the size of the
Fermi gas) one has [75]

VarN[a,b] '
2

�⇡2
[log (kF (a) |b� a|) + c� ] (19)

for kF (a)|b� a| = O(1) � 1.
In Section 3 we study the higher cumulants of N[a,b]. We present the following conjecture

for interacting fermions. Consider an interval [a, b] inside the bulk. For the models displayed

in Table 1 and for any �, the cumulants of N (�)
[a,b] of order 3 and higher are determined solely

from the microscopic scales. This implies that these higher cumulants are identical to those
of the C�E. The cumulants for the C�E have been given in [72], using yet another conjecture
about extended Fisher-Hartwig asymptotics for C�E, formulated in [73]. We will thus use
these formulae and obtain here the full counting statistics for a larger class of interacting
fermion models. These cumulants for general � admit the following series representations

⌧⇣
N

(�)
[a,b]

⌘2p
�c

=
2

(2�⇡2)p
C̃(�)
2p (20)

C̃(�)
2p = (�2)p+1 1

�p

1X

q=1

 (2p�1)

✓
2q

�

◆
, (21)

for arbitrary integer p > 1, while the odd cumulants vanish. For � 2 {1, 2, 4} the explicit
evaluation for the fourth cumulant gives

C̃(�=2)
4 = �12⇣(3) , C̃(�=1)

4 =
⇡4

4
� 24⇣(3) , C̃(�=4)

4 = �24⇣(3)�
⇡4

4
, (22)

where ⇣(z) is the Riemann-zeta function. The conjecture extends naturally to the case of an
interval with only one point in the bulk (i.e., for a “semi-infinite” interval). It is a natural
extension of the conjecture previously formulated in Ref. [49] for noninteracting fermions
� = 2 and recalled in the introduction. One can check that formula (20) reduces to Eq. (23)
in [49] in the case � = 2.

This conjecture can be checked in a few cases, with impressive agreement. For instance in
Section 4 we study the limit from the bulk to the edge for any �. In the case � 2 {1, 2, 4} we
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where ✓(x) is the Heavisde function. The positions of the two edges are thus x = x±e ' ±
p
�N

in the first case, while x�e ' 0 and x+e '
p
2�N in the second one. For � = 2 it agrees with

the LDA result, and it shows that the Fermi gas expands for � > 2 and shrinks for � < 2, as
compared to the noninteracting case � = 2, while retaining a semi-circular shape. In the case
of the box, corresponding to the J�E, the density is uniform in the large N limit. Note that
in the large N limit, with � = O(1), the 1/x2 part of the potential in the third and fourth
models in the Table 1 do not a↵ect the bulk density (for a di↵erent scaling see below). They
become important only in the region close to the wall (see below).

1.3 Outline and main results

In this paper we study the statistics of N (�)
I , i.e., the number of fermions in an interval I, for

the models in the Table 1 for any � � 1, and, in a second stage, for a larger class of models.
In parallel to the applications to fermions we also obtain new results in the corresponding
random matrix ensembles, with a slightly larger domain of validity, i.e., for any � > 0.

In Section 2 we study the variance of N (�)
[a,b] for an interval I = [a, b] of macroscopic size

in the bulk for � = 1, 2, 4 in the large N limit, and then propose an extension to any �.
In all these cases the variance grows logarithmically with N for large N , and we obtain the
amplitude of the logarithm together with the O(1) correction term which has a non trivial
dependence on the two edges a, b on macroscopic scales. In the noninteracting case � = 2

there exists a formula, recalled here in Eq. (24) for the variance VarN (�=2)
[a,b] for a general

potential V (x). For the harmonic potential V (x) = x2

2 , which corresponds to G�E, we extend
this formula to � = 1, 2, 4, and it reads

�⇡2

2
VarN[a,b] = logN +

3

4
log

h�
1� ã2

� ⇣
1� b̃2

⌘i

+ log

������
4|ã� b̃|

1� ãb̃+
q

(1� ã2)(1� b̃2)

������
+ c� + o(1) (14)

where ã = a/
p
�N and b̃ = b/

p
�N , |ã| ,

���b̃
��� < 1, where ±

p
�N are the positions of the two

edges, as can be seen in Eq. (13). For � = 1, 2, 4 the constant c� takes the values

c1 = log 2 + �E + 1�
⇡2

8
, c2 = log 2 + �E + 1 , (15)

c4 = 2 log 2 + �E + 1 +
⇡2

8
. (16)

Here we argue that formula (14) extends to the model (3) of interacting fermions with
general � in the harmonic potential. Using related works [72, 73] (see discussion below) we
propose the following expression as a series representation for c�

c� = �E + log � +
1X

q=1


2

�
 (1)

✓
2q

�

◆
�

1

q

�
, (17)

where here and below  (k)(z) = dk+1

dzk+1 log�(z) is the polygamma function. We have checked
numerically the predictions (14), (17) for the variance (see Fig. 4).
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where ✓(x) is the Heavisde function. The positions of the two edges are thus x = x±e ' ±
p
�N

in the first case, while x�e ' 0 and x+e '
p
2�N in the second one. For � = 2 it agrees with

the LDA result, and it shows that the Fermi gas expands for � > 2 and shrinks for � < 2, as
compared to the noninteracting case � = 2, while retaining a semi-circular shape. In the case
of the box, corresponding to the J�E, the density is uniform in the large N limit. Note that
in the large N limit, with � = O(1), the 1/x2 part of the potential in the third and fourth
models in the Table 1 do not a↵ect the bulk density (for a di↵erent scaling see below). They
become important only in the region close to the wall (see below).

1.3 Outline and main results

In this paper we study the statistics of N (�)
I , i.e., the number of fermions in an interval I, for

the models in the Table 1 for any � � 1, and, in a second stage, for a larger class of models.
In parallel to the applications to fermions we also obtain new results in the corresponding
random matrix ensembles, with a slightly larger domain of validity, i.e., for any � > 0.

In Section 2 we study the variance of N (�)
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(1� ã2)(1� b̃2)

������
+ c� + o(1) (14)

where ã = a/
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���b̃
��� < 1, where ±

p
�N are the positions of the two

edges, as can be seen in Eq. (13). For � = 1, 2, 4 the constant c� takes the values

c1 = log 2 + �E + 1�
⇡2

8
, c2 = log 2 + �E + 1 , (15)

c4 = 2 log 2 + �E + 1 +
⇡2

8
. (16)

Here we argue that formula (14) extends to the model (3) of interacting fermions with
general � in the harmonic potential. Using related works [72, 73] (see discussion below) we
propose the following expression as a series representation for c�

c� = �E + log � +
1X

q=1


2

�
 (1)

✓
2q

�

◆
�

1

q

�
, (17)

where here and below  (k)(z) = dk+1

dzk+1 log�(z) is the polygamma function. We have checked
numerically the predictions (14), (17) for the variance (see Fig. 4).

8

SciPost Physics Submission

where ✓(x) is the Heavisde function. The positions of the two edges are thus x = x±e ' ±
p
�N

in the first case, while x�e ' 0 and x+e '
p
2�N in the second one. For � = 2 it agrees with

the LDA result, and it shows that the Fermi gas expands for � > 2 and shrinks for � < 2, as
compared to the noninteracting case � = 2, while retaining a semi-circular shape. In the case
of the box, corresponding to the J�E, the density is uniform in the large N limit. Note that
in the large N limit, with � = O(1), the 1/x2 part of the potential in the third and fourth
models in the Table 1 do not a↵ect the bulk density (for a di↵erent scaling see below). They
become important only in the region close to the wall (see below).

1.3 Outline and main results

In this paper we study the statistics of N (�)
I , i.e., the number of fermions in an interval I, for

the models in the Table 1 for any � � 1, and, in a second stage, for a larger class of models.
In parallel to the applications to fermions we also obtain new results in the corresponding
random matrix ensembles, with a slightly larger domain of validity, i.e., for any � > 0.

In Section 2 we study the variance of N (�)
[a,b] for an interval I = [a, b] of macroscopic size

in the bulk for � = 1, 2, 4 in the large N limit, and then propose an extension to any �.
In all these cases the variance grows logarithmically with N for large N , and we obtain the
amplitude of the logarithm together with the O(1) correction term which has a non trivial
dependence on the two edges a, b on macroscopic scales. In the noninteracting case � = 2

there exists a formula, recalled here in Eq. (24) for the variance VarN (�=2)
[a,b] for a general

potential V (x). For the harmonic potential V (x) = x2

2 , which corresponds to G�E, we extend
this formula to � = 1, 2, 4, and it reads

�⇡2

2
VarN[a,b] = logN +

3

4
log

h�
1� ã2
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Figure 4: (a) Number variance for a semi-infinite interval [0,1[ for the harmonic oscillator
(3) as a function of � � 1. The squares and circles correspond to numerical simulations of
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where ã = a/
p
�N and b̃ = b/

p
�N , |ã| ,
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