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DIMER MODEL: DEFINITION
» Planar, bipartite graph G = (V =BUW, E).

> Dimer configuration M: subset of edges s.t. each vertex is
incident to exactly one edge of M ~» M(G).

> Positive weight function on edges: v = (Ve)ecE-
» Dimer Boltzmann measure (G finite):

[T ve

YMeM(G), Paimer(M) = sz—(Gv)

where Zgimer(G, v) is the dimer partition function.
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DIMER MODEL: KASTELEYN MATRIX

» Kasteleyn matrix (Percus-Kuperberg version)
- Edge wb ~» angle ¢, s.t. for every face wy, by, ..., Wy, by:

k
D Gupy = buy) = (k= mod 2.
j=1

- K is the corresponding twisted adjacency matrix.

Vup€®®  if w~b
Kw,b — { wb

0 otherwise.



DIMER MODEL: FOUNDING RESULTS
> Assume G finite.
THEOREM ([KASTELEYN'61] [KUPERBERG'8])
Zdimer(G, v) = | det(K)|.

THEOREM (KENYON'g7)
Let & = {1 = wiby,...,e, = w,b,} be a subset of edges of G, then:

]pdimer(el’ ceey en) = |(ﬁ KWj,bj) det(K_l)g|,
Jj=1

where (K V)¢ is the sub-matrix of K™! whose rows/columns are indexed
by black/white vertices of €.

» G infinite: Boltzmann measure ~» Gibbs measure

- Periodic case [Cohn-Kenyon-Propp’01], [Ke.-Ok.-Sh.'06]
- Non-periodic [dT’07], [Boutillier-dT°10], [B-dT-Raschel'19]



DIMER MODEL: PERIODIC CASE

> Assume G is bipartite, infinite, Z?-periodic.

» Exhaustion of G by toroidal graphs: (G,) = (G/nZ?).



DIMER MODEL: PERIODIC CASE

» Fundamental domain: Gy

> Let K; be the Kasteleyn matrix of fundamental domain Gy.
> Multiply edge-weights by z,z7!,w,w™! — K;(z,w).

» The characteristic polynomial is:
P(z,w) = detK(z, w).

Example: weight function v =1, P(z,w) =5-2z — % -W - %
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DIMER MODEL: SPECTRAL CURVE

> The spectral curve:
€ ={(z,w) € (C")?: P(z,w) = 0)}.

> Amoeba: image of C through the map (z,w) — (log|z|, log |w]).

Amoeba of the square-octagon graph



DIMER MODEL AND HARNACK CURVES

THEOREMS

> Spectral curves of bipartite dimers

[Ke.-Ok.-Sh.06] [Ke.-Ok. 06] . .
— Harnack curves with points on ovals.

> Spectral curves of isoradial, bipartite dimer models with critical

. [Kenyon-Okounkov'06]
weights [Kenyon '02] — Harnack curves of genus 0.

Explicit («—) map.

.. . . . [Goncharov-Kenyon '13]
> Spectral curves of minimal, bipartite dimers —

Harnack curves with points on ovals.

Explicit (—) map

> [Fock'l5] Explicit («—) map for all algebraic curves.
(no check on positivity).



GIBBS MEASURES FOR BIPARTITE DIMER MODELS

THEOREMS (KENYON-OKOUNKOV-SHEFFIELD 06)

- The dimer model on a Z?-periodic, bipartite graph has a
two-parameter family of ergodic Gibbs measures.

- The latter are obtained as weak limits of Boltzmann measures with
magnetic field coordinates (By, By).

- The phase diagram is given by the amoeba of the spectral curve C.

y

B:

frozen




GOAL OF OUR WORK

> Find explicit («—) map for general genus Harnack curves.

> [Kenyon'02] proves “local” formula for the maximal entropy
Gibbs measure in the case of the critical dimer model on
isoradial graphs.

~» Extension to the two-parameter family of Gibbs measures in
the general genus case.

> Extension to the case of non-periodic graphs.



QUAD—GRAPH, TRAIN-TRACKS

> Infinite, planar, embedded graph G; embedded dual graph G*.

> Corresponding quad-graph G°, train-tracks.
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ISORADIAL GRAPHS

> An isoradial embedding of an infinite, planar graph G is an
embedding such that all of its faces are inscribed in a circle of
radius 1, and such that the center of the circles are in the interior
of the faces [Duffin] [Mercat] [Kenyon].

> Equivalent to: the quad-graph G° is embedded so that of all its
faces are rhombi.

THEOREM (KENYON-SCHLENCKER 04)

An infinite planar graph G has an isoradial embedding iff

BN







ISORADIAL EMBEDDINGS







MINIMAL GRAPHS

> If the graph G is bipartite, train-tracks are naturally oriented
(white vertex of the left, black on the right) ~» T




MINIMAL GRAPHS

> If the graph G is bipartite, train-tracks are naturally oriented
(white vertex of the left, black on the right) ~» T

> A bipartite, planar graph G is minimal if

==

[Thurston’04] [Gulotta’08] [Ishii-Ueda’ll] [Goncharov-Kenyon'13]




IMMERSIONS OF MINIMAL GRAPHS

> A minimal immersion of an infinite planar graph G is an
immersion of the quadgraph G° such that:

- all faces are rhombi (flat or reversed)
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- the immersion is flat: sum of rhombus angles around every vertex
and every face is equal to 2.

THEOREM (BoutiLLIER-CiMASONI-DT'1Q))

> An infinite, planar, bipartite graph G has a minimal immersion iff it
is minimal.

» The space of minimal immersions of G is an explicit subset of the
angle maps {(a) : T — R/nZ} (preserves cyclic order).



DIMER VERSION OF FOCK’S WEIGHTS

» Tool 1. Geometric data and theta functions.

o Genus 1.
- Parameter g = ¢”7, 7 € iR, A(q) = nZ + n7Z
- T(@=C/A:=Z%

- Jacobi’s (first) theta function on C

o0

0(z) = 2q7 Z(—l)”q”(”“) sin(2n + 1)z.

n=0
- Building block of meromorphic functions on X.

- 0(z) ~ Zq% sin(z) as g — 0.



DIMER VERSION OF FOCK’S WEIGHTS

> Tool 1. Geometric data and theta functions.
o Genus g > 1.
- Maximal curve X of genus g. Riemann surface with o,

anti-holomorphic involution; Real locus: g + 1 top. circles
Co,Cy,...,C,, fixed by o

- Jacobian variety: Jac(Z) = C#/(Z? + QZ?)
Q is pure imaginary period matrix constructed from X.
- Theta function on C#

0(z) = )" exp(~im(n, Qn) + 2in(z, n)),
nezé

- Abel map: £ — Jac(Z) ~» theta function on .
- Prime form E on XXX
Building block of meromorphic functions on X.

o Genus 1: ¥ ~ Jac(X) (easier!)



DIMER VERSION OF FOCK’S WEIGHTS

> Tool 2. Another type of geometric data.

- Minimal graph G.

- Angle map (@) : 7> Cy preserving cyclic order.
» Tool 3. Discrete Abel map 7,

- Function 1 on vertices of G°: n(fo) = 0 for given face fj, then local

rule
B n)=nw+B «

n(w) nb) =nw)+a+p

n(f") = n(w) + a

> Well chosen point ¢t € Jac(X): t € (R/Z)2.



DIMER VERSION OF FOCK’S WEIGHTS

» Fock’s adjacency matrix

EQB-a)
Kuwp = 3 0 +n(f)O + n(f"))
0 otherwise.

ifw~b

TueEOREM (B-C-pT)

If the following conditions hold:
- X is a maximal-curve,
- angle map (@) : A Co preserves cyclic order,
- parameter t € Jac(X) well chosen,

then, Fock’s adjacency matrix is a Kasteleyn matrix for a dimer model
on G (positive weights).

~» Good framework for doing probability.



INVERSE(S) OF KASTELEYN OPERATOR

Tueorem (BCpT) e
bl

For any ug € upper half of X, the following local <
formula defines an inverse of the Kasteleyn operator K 0

1
uo ._
Vb, w Abw = o o Zrw() _m

where ghw = 8hx8x1xs - - - 8xpw fOT b, X1, X2,. .., Xp, w path in G°

_Ou+r+nw) -1
gf,w(u) = Ew,p) = gwf(u) y b
0w —t —n(b)) _
o) = = = g ;
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INVERSE(S) OF KASTELEYN OPERATOR

TrEOREM (BCDT)

For any ug € upper half of X, the following local cie
formula defines an inverse of the Kasteleyn operator K m

uou

1
uy ._
Vb, w Abw = o oo Zrw()

Where gpw = 8bx,8xx - - - &x,w TOr b, X1,X2,...,Xp, w path in G°
CEER/0) - Px. L
U= ———-">-"-= u
oo Ewp o .
O(u —t — n(b))

gh(u) = T Eea) grpw) 7

vl



IDEA OF PROOF

> Show the identity KA* = Id.
» Use Fay’s trisecant identity:

Os+u—a-p) E(a,p) B
E(a,)EQB,u) O(s —a)d(s —p)
Os+u—-B-vy)  E(y.p) _Os+u-—a-y) E@y.a)
EB,wWE(y,u) 6(s—p)0(s—y)  Ela,wE(y,u) 0(s—a)i(s—7y)

> Show that the contours of integrations are such that one has 1’s
on the diagonal.



GIBBS MEASURES AND PHASE DIAGRAM

> Assume that the minimal graph G satisfies:

(*) any finite connected subgraph Gg C G is contained in a
periodic minimal graph.

TreorEM (BCpT)

For any uyg in the upper half of Z, there is a Gibbs measure P*
on M(G) such that for €1 = wiby, - -+ , € = wiby, distinct edges of G,

k
PY(er,....e0) = (1_[ K‘”i’b")1g?£k [Agzwj] '
i=1 sh=

Moreover, we have the phase diagram:
> ug € Cj,1<j < g, & gaseous (expon. decay)

> uy € Cy & frozen (no decay of correlations)

> ug ¢ CoU---UCy © liquid (polynomial decay)



REMARKS

> Periodic case: explicit local expression for the two parameter
family of Gibbs measures of [KOS'06].

> Non-periodic case: better understanding of possible phase
diagram (upper half of the maximal curve X).



EXPLICIT PARAMETERIZATION OF THE SPECTRAL CURVE

» Assume G is Z?-periodic. Define the map v,

Y X — C?
u = Y(u) = (z(w), ww))

where Z(1) = by bo+(1.0) (L), W(L) = by bo+0.1)(W)L.

bo +(0,1)
[ ]

[ [ )
e hg +(1.0)

lwith additional assumption to ensure periodicity



EXPLICIT PARAMETERIZATION OF THE SPECTRAL CURVE

ProrosiTioN ([B-C-pT])

The map  is an explicit birational parameterization of the spectral
curve €, mapping Cy, ..., Cq to the ovals of € and Cy to the unbounded
real component of C, implying in particular that C has geometric

genus g.

IS

OF s x— = X% xx-xX— - /\

T(q)




DiMER MODEL AND HARNACK CURVES OF GENUS g

THEOREM ([B-C-pT))

Fix a Harnack curve with a standard divisor. Then there exists X, G,
(@), t such that C is the corresponding spectral curve.



CONNECTION TO PREVIOUS WORK

> Genus 0. (as limit of genus 1 case) [Kenyon'02].
> Genus 1. Two specific cases were handled before:

- the bipartite graph arising from the Ising model
[Boutillier-dT-Raschel 20]

- the Z-Dirac operator [dT'18] ~» massive discrete holomorphic
functions.



PERSPECTIVES

> Prove the (%) condition.

> Explore higher genus analogue of the massive Laplacian [George].
> Link with t-embeddings for dimers
[Kenyon-Lam-Ramassamy-Russkikh].



